
Video Puppetry: A Performative Interface for Cutout Animation

Connelly Barnes1 David E. Jacobs2 Jason Sanders2

Dan B Goldman3 Szymon Rusinkiewicz1 Adam Finkelstein1 Maneesh Agrawala2

1Princeton University 2University of California, Berkeley 3Adobe Systems

Figure 1: A puppeteer (left) manipulates cutout paper puppets tracked in real time (above) to control an animation (below).

Abstract

We present a video-based interface that allows users of all skill
levels to quickly create cutout-style animations by performing the
character motions. The puppeteer first creates a cast of physical
puppets using paper, markers and scissors. He then physically
moves these puppets to tell a story. Using an inexpensive overhead
camera our system tracks the motions of the puppets and renders
them on a new background while removing the puppeteer’s hands.
Our system runs in real-time (at 30 fps) so that the puppeteer and
the audience can immediately see the animation that is created. Our
system also supports a variety of constraints and effects including
articulated characters, multi-track animation, scene changes, cam-
era controls, 21/2-D environments, shadows, and animation cycles.
Users have evaluated our system both quantitatively and qualita-
tively: In tests of low-level dexterity, our system has similar ac-
curacy to a mouse interface. For simple story telling, users prefer
our system over either a mouse interface or traditional puppetry.
We demonstrate that even first-time users, including an eleven-year-
old, can use our system to quickly turn an original story idea into
an animation.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.3.7 [Computer Graphics]:
Three-dimensional Graphics and Realism—Animation

Keywords: real-time, animation, tangible user interface, vision

1 Introduction

Creating animated content is difficult. While traditional hand-
drawn or stop-motion animation allows broad expressive freedom,
creating such animation requires expertise in composition and tim-
ing, as the animator must laboriously craft a sequence of frames
to convey motion. Computer-based animation tools such as Flash,
Toon Boom and Maya provide sophisticated interfaces that allow
precise and flexible control over the motion. Yet, the cost of pro-
viding such control is a complicated interface that is difficult to
learn. Thus, traditional animation and computer-based animation
tools are accessible only to experts.

Puppetry, in contrast, is a form of dynamic storytelling that per-
formers of all ages and skill levels can readily engage in. Pup-
peteers directly manipulate physical objects — puppets — to bring
them to life and visually enact the motions in real-time. Even young
children commonly manipulate objects (e.g. dolls, paper-cutouts,
toy cars, etc.) as they create and tell stories.

Yet, puppet shows typically have lower visual and motion fidelity
than animations. Puppeteers and their controls are often visible to
the audience. Motions must conform to the laws of physics and are
usually less precise than carefully crafted animated sequences. Un-
like animations, puppet shows are ephemeral and cannot be viewed
repeatedly. Nevertheless, the real-time performative nature of pup-
petry makes it a powerful medium for telling stories.

In this paper we present a video-based puppetry system that al-
lows users to quickly create cutout-style animations by performing
the character motions. As shown in Figure 1 the puppeteer works
with familiar media including paper, markers and scissors to create
paper-cutout puppets. He or she then physically moves these pup-
pets to tell the story. Our system tracks the motions of the puppets
using an overhead camera, and renders them on a new background
while removing the puppeteer’s hands. In addition, our system
applies a variety of special effects, to enhance the richness of the
resulting animations. Our system works in real-time (at 30 fps) so
that both the puppeteer and the audience can immediately see the
animation they are generating. Such real-time feedback is essential
to retain the performative nature of puppetry.

Our work is related to motion capture techniques which allow
actors to physically demonstrate motions and animate characters
in real-time. However, these techniques usually require extensive
setup, both in terms of complex and expensive hardware and elab-



orate character rigging. More recently enthusiasts have used game
engines to create animated content called machinima. Games offer
real-time feedback and their controls are designed to be very easy
to learn. However, users are limited to working with pre-designed
environments and characters with a narrow range of motions. Thus,
this approach significantly limits freedom of expression.

The primary contribution of our work is the interface for creat-
ing animated stories via the performance-based direct manipulation
paradigm of puppetry. This interface is designed to present a shal-
low learning curve to users of all skill levels, while placing as few
limits as possible on creativity in the design of characters, painting
of backgrounds, and telling of stories. Our camera-based input is
inexpensive, using hardware that many users already own. More-
over, the effects possible with our system are difficult to achieve
with systems such as stop-motion animation or traditional puppetry.
Although the resulting animations cannot match the visual quality
of a studio production, they are suitable in many contexts, includ-
ing kids’ productions, animatics, or the class of animations such as
“South Park” or “JibJab” that explicitly target a “cutout” aesthetic.

We describe an initial study in which we evaluate our system
in three ways. First, in a low-level task measuring motor skills,
we compare our system against a mouse-based interface and find
no significant difference in accuracy. Second, in a mid-level task,
users tell a specific story using three different tools — our system,
a mouse interface, and traditional puppetry — and evaluate which
method they prefer. In this test, all users preferred our system.
Third, at a higher level, users draw their own characters and tell
their own stories. Our results indicate that even first-time users,
including an eleven-year-old, can use our system to quickly turn a
story idea into an animation.

2 Related Work

Developing an interactive and easy-to-learn interface that people of
all skill levels can use to create animation is a long-standing prob-
lem in computer graphics. Here we focus on interface techniques
that go beyond standard GUI-based solutions.

Sketch-based animation: Many systems allow users to cre-
ate animatable objects and demonstrate their motions via sketch-
ing [Baecker 1969; Moscovich and Hughes 2001; Davis et al.
2008]. However, while drawing 2D translational motion paths is
easy, even simple 2D rotations and scales can be difficult to sketch.
Moreover, these systems only allow one object to move at a time
and therefore require multiple record-and-playback cycles to build
a multi-object layered animation.

Several systems explore techniques for sketching articulated fig-
ures and their motions. Moscovich and Hughes [2001] describe
an IK-based layered animation control system in which users se-
lect multiple joints to control different layers of motion. Thorne et
al. [2004] develop a gestural interface in which users are limited to
working with a library of pre-defined motions. Davis et al. [2003]
provide an interface for converting 2D drawings of skeletal key-
poses into 3D articulated figure animations. Since users must draw
the keyposes this system is not demonstration-based.

Another approach is to combine sketching with simulation tech-
niques. Alvarado and Davis [2001] use physics-based mechanical
simulation, while LaViola and Zeleznik [2004] use general math
equations to animate sketches. Popović et al. [2003] allow users to
draw motion paths for 3D objects and then run rigid-body simula-
tions to compute physically plausible motion that best matches the
sketch. While these techniques can generate high-quality motion,
the user must give up some control over the resulting animation.

Performance animation: Motion capture systems are designed
to interactively transfer an actor’s physical performance to a virtual
character. Computer puppetry [Sturman 1998] is another form of
performance animation in which the performer uses a specialized

input device such as an articulated armature [Knep et al. 1995]
to control the character in real-time. Both Oore et al. [2002] and
Dontcheva et al. [2003] have developed interfaces for quickly cre-
ating and editing layered character animations using either motion
capture or tracked props. Despite their ease of use, however, these
techniques are out of reach for most users because they require
expensive specialized hardware. Moreover, using these systems
requires some expertise in building animatable 3D characters and
specifying the mapping between the motions of the actor or input
device and those of the character.

Video-based animation: In some cases it is much faster to cap-
ture video of a real scene than it is to create an animation of the
scene. Yet, real-world video does not have the same visual char-
acter as most animation. One way to resolve this problem is to
apply non-realistic video rendering techniques [Wang et al. 2004;
Winnemöller et al. 2006; Bousseau et al. 2007] on the input video.
With more sophisticated video processing, such as optical flow cal-
culation or object tracking, it is possible to add non-photorealistic
motion cues such as deformations and streak lines to the video [Col-
lomosse and Hall 2005; Collomosse and Hall 2006; Wang et al.
2006]. However, none of these techniques can change the visual
content of the video – they only modify its visual style. If the
user’s hand is in the input video it remains in the output anima-
tion. Video cutout [Wang et al. 2005] and user-guided rotoscoping
methods [Agarwala 2002; Agarwala et al. 2004] can address this
problem as they provide more control over the composition of the
output video. Yet, these techniques do not work in real-time and
therefore cannot be part of a performance-based interface.

Tangible and multi-touch interfaces: Our work is inspired by
tangible and multi-touch interfaces. Tangible interfaces [Ishii and
Ullmer 1997] allow users to manipulate physical objects to con-
trol the computer. These interfaces usually allow coordinated two-
handed input and provide immediate visual feedback about the po-
sition of the physical objects. In our system the tangible paper
puppets act as the physical interface objects. Moreover, paper is
a familiar material with well-known affordances, so most users are
immediately aware of the kinds of puppets they can create and the
kinds of motions they can perform.

Recently Igarashi et al. [2005] have shown that direct multi-
touch control is a natural interface for controlling non-rigid de-
formable characters. Although our paper-based system similarly
allows such multi-touch control over the puppets, it also assumes
the paper puppets are rigid or articulated models and cannot gen-
erate non-rigid animations. Nevertheless, because users of our
system work with physical puppets, they benefit from kinesthetic
feedback about the position and orientation of the puppets, and
can lift puppets off the table to control scale and depth ordering
using a more natural affordance than a multi-touch device can pro-
vide. Moreover, the table-top and camera interface offers several
other benefits relative to multi-touch, such as ease of selection of
off-screen characters and components, the ability to scale to large
(multi-performer) workspaces, and the relative ubiquity and low
cost of cameras.

Video-based paper tracking: Several systems have been de-
signed to recognize and connect physical paper documents and
photographs with their electronic counterparts [Wellner 1993; Rus
and deSantis 1997; Kim et al. 2004; Wilson 2005]. These tech-
niques use video cameras to capture the movements of the physical
documents and track the position and stack structures of these doc-
uments. Users can then choose to work with the tangible physical
document or the virtual copy. Our system applies similar ideas and
techniques to the domain of real-time animation authoring.

Augmented reality: The field of augmented reality has pioneered
applications that combine camera-based input, low-level tracking
and recognition techniques similar to those we use, and computer-



generated rendering. Indeed, our system falls in the under-explored
“augmented virtuality” zone of Milgram’s continuum [1994], and
demonstrates a novel application in this area: animated storytelling.
In contrast with some augmented reality systems, however, we ex-
plicitly focus on tracking unmodified paper puppets, as created by
novice users. In particular, we do not use visually-coded tags for
identification, as is done by some previous systems [Rekimoto and
Ayatsuka 2000; Fiala 2005; Lee et al. 2005]. While the use of such
tags would simplify tracking and recognition, it would impose un-
wanted additional burden on users: they would have to generate the
tags, attach them to the physical puppets, and register the mapping
between the tags and the puppets in the tracking system.

3 System Overview

Our video-based puppetry system is divided into two modules; a
puppet builder and a puppet theater. From a user’s perspective the
first step in creating an animation is to construct the cast of physi-
cal puppets. The puppet builder module then captures an image of
each puppet using an overhead video camera and adds it to a puppet
database (Section 4). Then as the user manipulates the puppets to
perform a story, the puppet theater module tracks the puppet move-
ments and renders them into an animation in real-time.

Internally, the puppet theater module consists of a tracker, an in-
terpreter, and a renderer. The input to the theater module is a video
stream of the puppet movements. The tracker computes a mapping
between the puppets in each video frame and their corresponding
images in the puppet database, as well as a depth ordering between
overlapping puppets (Section 5). The interpreter then applies con-
straints on the tracked transforms and detects non-actor puppets that
trigger special rendering effects (Section 6). Finally, the renderer
displays the output animation.

4 Puppet Builder

Our puppet builder provides an intuitive interface for adding new
puppets to our system. A user first draws a character on paper with
markers, crayons, or other high-contrast media. Next the user cuts
out the puppet and places it under the video camera. The puppet
builder captures an image of the workspace and processes the image
in several stages before adding the puppet to a puppet database. For
non-articulated puppets, the processing is automatic and takes about
15 seconds per puppet. We describe the puppet building process for
articulated characters in Section 6.1.

In the first stage of processing the puppet builder recovers two
mattes for the puppet (Figure 2). The paper matte, used during
tracking, includes the entire piece of paper containing the puppet,
while the character matte, used for overlap detection and rendering,
includes only the region containing the character. To generate the
paper matte we perform background subtraction on the input frame
and apply a flood-fill seeded from a corner to isolate the paper
boundary. We then fill the background with white and perform
a second flood-fill to obtain the character matte. This approach

Figure 2: To matte out the puppet from the input frame our system
first performs background subtraction. Next it applies a flood-fill
technique to isolate the paper matte and then the character matte.

GPU-KLT 
Tracking

SIFT Feature 
Extraction

Update 
Transforms

KLT Point 
Assignment

Database 
Matching

Occlusion 
Detection/
Resolution

Transform 
Computation

KLT Path (Real-Time)

SIFT Update Path (Not Real-Time)

Tr
a
n
sf
o
rm

 a
n
d
 D
e
p
th
 O
rd
e
r 
P
e
r 
P
u
p
p
e
t

In
p
u
t 
Fr
a
m
e

Figure 3: An overview of our tracker. The tracking path (bottom) is
computed in real time on each frame, while the identification path
(top) is computed as a background task.

is based on the assumptions that the puppet is evenly illuminated
and that the character boundary is defined by an edge that contrasts
sharply against the white paper background.

One consequence of our approach is that correct mattes are ex-
tracted only for characters of genus zero. Although other auto-
mated methods such as color range selection could allow for higher-
genus puppets, these techniques could not distinguish holes from
intentionally-white regions in the puppet, such as eyes. Therefore,
a user can only produce higher-genus mattes using an image editor.

In the second stage, the puppet builder generates data structures
that will be used by the real-time puppet theater module to recog-
nize puppets, track them, and detect overlaps.

5 Puppet Theater: Tracker

Although object tracking is a well-studied topic in computer vi-
sion [Trucco and Plakas 2006], our system places two key design
requirements on the tracker. First, it must robustly recognize the
wide variety of hand-drawn puppets users may create. Second, it
must accurately track those puppets in real time. As shown in Fig-
ure 3, our approach takes advantage of the complementary strengths
of two techniques. SIFT features are used to identify all puppets
every 7-10 frames. Between SIFT updates, optical flow on KLT
features is used to track the movement of puppets in real time.

We have found this combination of techniques to be relatively
efficient and robust for the entire tracking pipeline: recognition,
frame-to-frame propagation, and depth ordering. We tune it to be
conservative in the following sense: it rarely reports incorrect pup-
pet locations, at the cost of greater likelihood of losing tracking.
When the tracking is lost, the on screen character simply freezes at
its last known position. We have found this to be the most natural
response, and users quickly figure out what happened. They then
simply hold the character still until new SIFT features are found
(typically within a few frames) and then the character jumps to the
correct location.

5.1 Identifying Puppets

We recognize puppets using the Scale-Invariant Feature Transform,
which selects a set of distinctive feature points from an input image
and computes a descriptor based on edge orientation histograms at
each point [Lowe 1999]. As noted by Kim et al. [2004], SIFT de-
scriptors are well-suited for matching and recognition tasks because
they are invariant under translation, rotation, and scale, robust to
partial occlusion and illumination changes, and distinctive.



We compute SIFT features at a subset of video frames, matching
each extracted feature to the most similar one in our precomputed
database. Given a set of features matching to the same puppet, we
apply a Hough transform to prune outlier matches. We then use
least-squares minimization to compute a similarity transform that
best maps the puppet image from the database to the video frame.

The main drawback of this approach is its computational cost.
Even though we parallelize the feature matching, we are only able
to execute the identification loop every 7-10 frames, depending
on resolution (typically 640 × 480) and the size of the puppet
database.1 Thus, we only use this pathway to initialize puppet trans-
forms and, as described below, to compensate for accumulated drift
in our real-time tracking.

5.2 Tracking Puppets

Our real-time tracking pathway is based on the Kanade-Lucas-
Tomasi (KLT) technique [Tomasi and Kanade 1991], which finds
corner-like features and determines their motion using optical
flow.2 We identify tracked features with puppets and maintain pup-
pet transformations as follows.

Identifying features: Newly-found KLT features are associated
with a puppet if and only if they overlap the character matte of
exactly one puppet known to be present. This may occur if we have
successfully been tracking the puppet (based on other features), or
if we have identified the puppet via the SIFT pathway. Thus, a new
puppet will not be tracked until the identification pathway has run,
and must remain motionless for up to 10 frames so that the SIFT
position corresponds to the true position of the puppet. Similarly,
if a puppet is moved while completely occluded by other puppets
or the user’s hands, we must wait until it is identified in its new
position. However, if a puppet is occluded but is not moved, then
as soon as it is unoccluded we propagate the puppet’s identity from
its last-observed position, and immediately resume tracking.

Tracking features: The motion computed by optical flow is used
to propagate feature identities from frame to frame (Figure 4, left).
We leave unassigned any features that overlap one puppet’s paper
matte and another puppet’s character matte, since these are likely
to be “phantom” points whose motion does not necessarily match
the motions of either puppet (Figure 4, right). We use precom-
puted oriented bounding box (OBB) trees [Gottschalk et al. 1996]
to accelerate the point location tests against the character and paper
mattes (Figure 5).

Computing puppet transformations: Given the motion of fea-
tures that have been assigned to a puppet in two consecutive frames,
we use the method of Horn [1986] to solve for translation, rotation,
and scale. This is used to update the puppet’s transformation. Any
features not consistent with the recovered transformation are con-
sidered outliers, and are marked as unassigned.

Compensating for drift: Because the puppet transformations are
maintained by incrementally applying the results of frame-to-frame
KLT tracking, they are subject to accumulation of errors (Figure 6).
We can eliminate this error by periodically using the SIFT path-
way to provide the ground-truth transformation. However, because
SIFT requires k frames of computation time, we cannot remediate
the error immediately. Instead, we correct the error at frame i + k
by starting with the newly-obtained ground-truth position for frame
i, and re-applying all subsequent frame-to-frame transforms. This
can result in puppets “popping” into position, but we prefer this
approach over smoothing with a predictive filter because the SIFT
updates are far more reliable than the KLT updates. By using this

1 We use Lowe’s implementation to compute the SIFT features:
http://www.cs.ubc.ca/~lowe/keypoints/

2 We use the GPU-based KLT implementation by Sinha et al.:
http://www.cs.unc.edu/~ssinha/Research/GPU_KLT/

Figure 4: Left: a puppet annotated with KLT points. Right: when
puppets overlap, the KLT tracker will often find points along their
moving boundary. These “phantom” points (yellow) move in arbi-
trary ways, and are rejected as outliers.

Figure 5: Leaves of the oriented bounding box trees for the paper
and character mattes.

Figure 6: Correcting cumulative KLT errors. A SIFT input frame
(left) and the current input video frame at the time of SIFT’s com-
pletion (right). Blue rectangles show the KLT transforms for the
puppet. The green rectangle shows the SIFT transform for frame i
after k frames of processing time. We concatenate the SIFT trans-
form with the incremental KLT transforms after frame i to produce
the combined SIFT and KLT transform (red rectangle). Our system
assumes that this combined transform is more correct than the KLT
transform (blue) for frame i + k.

scheme, at any given instant the puppet’s pose on the screen is al-
ways as accurate as possible given the available information.

Withdrawing puppets: As described above, if we are unable to
locate any KLT features belonging to a puppet, we assume that it
has been occluded and keep track of its last known location. An ex-
ception is made if the puppet was near the edge of the video frame –
in this case, we assume that it was moved off-screen, and withdraw
it from our list of active puppets.

5.3 Resolving Depth Ordering

When puppets partially occlude each other our tracker determines a
depth ordering among them so that the virtual puppets can be ren-
dered in the proper depth order. We begin by detecting occlusions:
we check for overlap between the character matte OBB-trees of all



Figure 7: Articulated puppets add an extra dimension of expres-
siveness not possible with single-body puppets.

pairs of visible puppets, using a 2D version of the separating axis
test proposed by Gottschalk et al. [1996].

Once we have detected an occlusion, we must determine which
puppet is frontmost. Although we could compare the image con-
tents in the overlap region to the images of both puppets in the
database, this would be neither computationally efficient nor robust.
Instead we apply a sequence of tests to determine depth ordering:

1. Number of KLT Features. If one puppet owns more KLT fea-
tures in the region of overlap, it is likely to be on top.

2. Relative Scale. A puppet whose image is larger than its initial
size (computed by the puppet builder when it was lying on the
table) is likely to be closer to the camera and thus on top.

3. Velocity. It is often difficult to move occluded puppets quickly.
Therefore, the faster-moving puppet is likely to be on top.

4. Puppet ID. If no other test is conclusive, we arbitrarily consider
the puppet with lower ID to be on top.

The tests are ordered by decreasing reliability and therefore we
terminate as soon as one is deemed conclusive (based on an
experimentally-determined threshold).

To maintain frame-to-frame coherence in depth ordering, we ini-
tially transfer all conclusive pairwise relationships from the previ-
ous frame to the current frame. Thus, the depth ordering can be
flipped only if a more reliable test contradicts the previous result.

Given pairwise occlusion information, we perform a topological
sort to obtain a global depth ordering among the puppets. Although
the occlusion graph can contain cycles, in practice these are phys-
ically difficult to produce and are rare in normal interaction. We
have therefore not implemented any complex heuristics for resolv-
ing occlusion cycles, simply breaking such cycles greedily.

6 Puppet Theater: Interpreter

With our basic tracking system alone, users can render animations
of rigid puppets on new backgrounds while removing the pup-
peteer’s hands. We have found that in many cases this is enough
functionality to produce an effective animation. However, when
we combine the raw transforms output by the tracker with an inter-
pretation module, we can take full advantage of our animation tool
as a digital system. The special effects and puppetry techniques
made possible by an interpretation phase expand the user’s creative
horizons without sacrificing ease of use.

6.1 Articulated Puppets

Articulated puppets, composed of multiple rigid segments, physi-
cally pinned together at joints, are common in shadow puppetry and
other traditional forms [Wisniewski and Wisniewski 1996]. While
such articulated puppets are more difficult to create than puppets
composed of a single rigid segment, they offer the possibility of
much more expressive motions. Pinning the segments together

Figure 8: Multi-track animation. Left: the octopus body move-
ments are recorded in a first track. Middle: several of the legs
are recorded next, while playing back the first track for reference.
Right: after several more layers are added (including a fish char-
acter), the final animation.

creates a physical analog to inverse kinematics. Yet, articulated
puppets can also be cumbersome to control — especially when
their segments are relatively small. Moreover, the large occlusions
between pinned segments can make it difficult to accurately track
the segments and compute their depth ordering.

In our video puppetry system there is no need for the segments
to be pinned together. While users can work with physically con-
nected segments, they can also separate the segments and work with
them independently when more control is needed (Figure 7).

Articulated Puppet Builder: We have extended our puppet
builder module (Section 4) to support articulated puppets. After
capturing each segment of an articulated puppet using the standard
builder, the user specifies the joint positions and depth ordering be-
tween pairs of segments using a drag-and-drop interface. As shown
in Figure 7 the user drags from the lower segment to the upper seg-
ment in the depth ordering. The user then picks a root segment
which controls the gross translation for the entire puppet.

Articulation Constraints: The tracker independently tracks each
segment of the articulated puppet. During the interpretation pro-
cess, we traverse the articulation hierarchy from the root down
to the leaves, translating each segment such that its joint location
agrees with that of its parent. Thus, for each segment other than
the root, only its tracked orientation affects the rendered output.
Whenever a segment disappears from the tracker (typically because
it leaves the working area) it is rendered in a default orientation.

Depth Ordering: One drawback of working with disconnected
puppets is that rendered segments may overlap while their physical
counterparts do not. In such cases, the system must determine a
plausible depth ordering. We solve the problem by choosing the
topological sort of the occlusion graph (Section 5.3) that favors
showing puppets of larger relative scale.

Although our approach only works for tree-structured joint hier-
archies, we have found it to be sufficient for many types of puppets.
Additionally, our approach gives users the flexibility to work with
puppets that are either physically connected or disconnected. In
practice we have found that disconnected puppets are often easier
to manipulate, as they can be arranged in the workspace so that they
do not physically occlude or interact with one another.

6.2 Multiple animators or tracks

The control of complex puppets or multiple puppets can be dis-
tributed among several puppeteers, each controlling separate props.
The puppeteers might share a common work space, or our system
can combine the tracking data from multiple puppeteers working at
several identical stations like the one shown in Figure 1, collabo-
rating either in the same room or remotely. Each participant may



Figure 9: Controls and Effects. From left to right: zooming into the scene using “hand” puppets; faux shadows as well as 21/2-D effects such
as the foreshortening and occlusion of the boy; rain falling from the cloud as an animation cycle; sprites for each snowflake.

control one or more characters or segments, and each participant
sees the results of all characters merged into a single scene.

Just as it is possible to control different characters or segments
from multiple locations, our system also allows a puppeteer to con-
trol different objects at different times, by recording the motion of
one object while another object’s motion is playing back. During
playback, a new stream of puppet actions may be layered over the
“playback” stream. The new layer may either add motions for new
characters or refine the motions of articulated characters (for ex-
ample, where the gross motion of the root node has already been
recorded and now the limbs are articulated in the new stream – Fig-
ure 8). Motion for articulated characters is refined by overwriting
the transformations for all segments tracked in the current layer.

Different streams may be recorded by different people or by the
same animator. Each such stream may be thought of as a “track” as
in multitrack musical recording, and this framework exposes many
similar benefits – the expressive power and immediacy of perfor-
mative control, the ability to control many “instruments” simulta-
neously, and the opportunity to perform multiple “takes” of each
instrument independently until the artist is satisfied with the result.

6.3 Special Effects

Our system also supports a number of “special effects” that can be
triggered by special puppets (rather than by menus or commands,
in order to make them easier for novices to use and to remember).
Special effects are plug-in modules, each of which can be linked to
the appearance of a specific physical “trigger” puppet using a GUI
similar to the articulated puppet builder. We envision that special
effect modules could be downloaded by users, and even modified by
advanced users (using a high-level scripting language). Several of
these effects, while simple in a computer-animation system, would
be difficult to achieve using stop-motion based cutout animation or
pure video animation processes. For example, causing a user-drawn
character to automatically walk is simple with our system, though
difficult with others.

Scene Changes: To trigger a scene change, the animator simply
shows a picture of the desired background to the camera. Since
these scenes fill the entire screen, we prefer to scan hand-drawn
imagery on a flatbed scanner rather than grab it from the camera.
We imagine that a collection of such scenes would appear in a book
and that the animator could leaf through the book to select a pre-
existing scene. The same mechanism can be used to change the
“state” of a character. For example, the burnt knight shown in the
lower middle frame of Figure 11 was triggered by placing an image
of the character in that state. To control the pan and zoom of the
camera within the scene, the animator can hold a pair of “cine-
matographer’s hands” puppets, showing the camera where to crop
the scene as illustrated in Figure 9.

21/2-D: Some scenes may be pre-designated as 21/2-D envi-
ronments, thereby invoking several effects. First, characters
shrink under uniform scale as they approach the horizon –
specified by both a horizon height in the image as well as a
parameter indicating the linear term for the scale operation.

Second, mattes (as shown at right)
may accompany such scenes indicat-
ing various popup elements (e.g., the
house and tree in Figure 9). Faux
depths for these popup elements, as
well as for moving characters in the
scene are inferred from vertical height,
under the assumption that all such sprites are rooted to a common
ground plane. Rendering these layers with the appropriate depth
ordering gives the effect that characters in the scene can go either
in front of or behind various popups. While these assumptions are
generally brittle, they work for a variety of scenarios, producing
“plausible” animations appropriate to the cutout style.

Shadows: Because we have mattes for all the characters, it is
easy to generate plausible shadows using the well-known strategy
of darkening the background layer by a blurred, warped copy of the
character matte onto the background image, seen for example in
Figure 9. The direction of the warp is controlled by a “sun” puppet.

Animation Cycles: Several other effects can be implemented us-
ing animation cycles. The image of the boy in Figure 9 is actually a
series of frames representing a walk cycle. As the boy moves in the
image, these frames are advanced at a rate proportional to the rate
of movement. Furthermore, user-chosen puppets will automatically
flip to face in the direction of motion. Another example of an ani-
mation cycles is the rain shown in Figure 9. In this example, the rain
falls continuously from the cloud towards the bottom of the screen.
This is accomplished by a single (vertically periodic) image that
is simply translated per frame. The snowflakes shown in Figure 9
are sprites that fall down the screen with semi-periodic rotation and
horizontal drift. As a final example, puppet segments may be iden-
tified as “eyes” that will rotate to follow either the nearest character
or a specific eye target puppet, as shown in Figure 8.

Automatic Walk Cycles: One of the benefits of our system is
that it allows the user to focus on primary character motion, while
the computer provides secondary animation. As an example, we
automatically provide walk cycles for articulated characters. The
user begins by identifying segments that are arms or legs, and set-
ting a resting angle for each. As the character moves, the system
applies sinusoidal motions to the limb angles to match feet with
the ground. Neighboring arms and legs are offset in phase by 180
degrees, and modifying the extreme angles may cause a character
to switch between e.g. a walk, a power-walk, and a run. Examples
of automatic walk cycles are shown in Figure 10.

Audio: We detect amplitude peaks in an audio stream, automati-
cally opening a character’s mouth as the performer is speaking. An
example of this effect can be seen in the accompanying video.

7 Evaluation and Discussion

This section describes our experiences using this system, discusses
our observations about what works well in this kind of interface,
and offers areas for future investigation. We describe an initial
study composed of three types of evaluation. First, a low-level
study tests dexterity with the mouse against our puppet system.



Figure 10: Automatic walk cycles. Left: a GUI is used to assign
limb types, and set resting and maximal angles. Right: a biped and
quadruped automatically walking.

Second, in a mid-level study, users evaluate their experiences in
telling a specific story three times: with our system, using a mouse,
and videotaping traditional cutout puppetry. Third, at a high level,
we report the experiences of people using our system for open-
ended storytelling, both in our lab and in an exhibit at Maker Faire,
a public art and technology fair with tens of thousands of attendees.
Participants in the first two studies spent a total of about 40 minutes:
5 minutes to explain the system, 25 for the low-level study, and 10
minutes for the mid-level study.

Our current setups mostly use table-top working areas, often
around 30 × 20 cm., as shown in Figure 1, left. Puppets range
from 5 to 20 cm. By zooming the camera, we can scale to nearly
arbitrary working volumes (limited, of course, by the resolution of
the camera and the size and detail of the puppets).

7.1 User Study: Low-level Dexterity

At a low level, we compare the accuracy of our system to a mouse-
based interface. Users use either puppets or a mouse to follow tar-
gets undergoing three types of motion along random paths: one tar-
get undergoing translation only, one target undergoing translation
and rotation, and two targets undergoing translation and rotation.

The targets are glyphs of the letters F and G,
roughly 5 cm tall. As shown at right, the user
sees a composite rendering including both the mov-
ing target(s), outlined in red, and the current hand-
animated pose. The user is asked to keep the fig-
ure(s) aligned to the target(s) as closely as possible.
To avoid favoring one input method, we generate synthetic motion
paths. These are cubic B-splines with random control points in
(x, y, θ) space. In the case of two targets, we use identical motion
paths constrained to the left and right halves of the screen. Each
user follows the same motion path with both mouse and puppets.

For the mouse interface, translation of the mouse controls po-
sition, and the scroll wheel controls rotation. Two mice are used
when following two targets. Users may practice with each input
source as many times as desired, before following the motion path.

For the puppet interface we have found in general that some users
prefer to manipulate puppets attached to small sticks, while others
prefer to move the paper directly – examples of both styles can be
seen in Figures 6 and 8 as well as the accompanying video. While
the system works equally well in either case, for this study all users
used the direct method.

Results for 8 users are shown in Table 1. The users were graduate
students with no previous experience with our system but extensive
experience using a mouse. Each user runs two trials for each task,
with both the puppet and the mouse (alternating, with the same
number of users starting with each condition). The mouse and pup-
pet errors displayed statistically insignificant (p > 0.05) differences
under Student’s t-test in all conditions, suggesting that neither the
mouse nor puppet interface is clearly better. The error values have
high variance, which we attribute to variation in user motor skills.

T only T+R (1 target) T+R (2 targets)

T (mm) T (mm) R (◦) T (mm) R (◦)

Mouse 0.64 (0.34) 1.01 (0.48) 5.23 (2.48) 1.52 (0.45) 10.22 (3.97)
Puppet 0.83 (0.46) 1.07 (0.38) 3.79 (1.31) 1.87 (0.52) 11.10 (3.68)

Table 1: Comparison of mouse and puppet input accuracy. Val-
ues reported are means, with standard deviations in parentheses.
Translational error (T) is computed per trial as mean center of
mass distance. Rotational error (R) is mean absolute difference
in angle. Puppets and mice are calibrated to use equal distances
per on-screen translation.

7.2 User Study: Mid-Level Story Task

In this study, users create a story. The user is shown the desired
outcome for the story: a lumberjack cuts down a tree, as seen in the
video. The user is provided with pre-made characters, and told how
to make the story with three different systems: the video puppetry
system described in this paper, a mouse interface as described in the
previous section, and also a “raw video” system that simply records
a traditional paper-cutout puppetry session. With each interface, the
user records the story as many times as desired, until satisfied. He
or she then evaluates each interface.

The three interfaces are set up as follows. In both our system
and the mouse system, the lumberjack and tree are articulated char-
acters. In our system, the animation is done in one layer, but in
the mouse system, the user selects one limb at a time, and uses
translation and the scroll wheel to orient that limb. Because two
limbs move and translate simultaneously in the video, we use one
mouse and show the user how to record in two layers.

We conducted this study with the same 8 users as before. All
ranked our puppet system as the top preference, and all except one
ranked the mouse interface second. When asked to explain their
preference for our puppet system, users gave reasons such as:

• Puppets provide more intuitive and more precise control, espe-
cially over rotation.

• It is possible to use multiple fingers to control puppets.

• Puppets permit quickly switching the active character.

• The puppets’ motion is more fluid and requires less care, result-
ing in more “cartoon-looking” motion.

• It is useful to physically separate the puppets, to avoid having
them bump into each other.

In contrast, users disliked the raw video system because puppets
would bump into each other. Moreover, most users strongly dis-
liked having fingers visible in the video. Users typically ranked
the mouse as their second choice, as they felt that control was less
intuitive than with physical puppets.

We also asked an independent set of 10 users to rate the resulting
animations. Each user evaluated 12 of the 24 videos, scoring his or
her favorite as 10, the least favorite as 1, and assigning (not neces-
sarily unique) scores to the other animations. The results mirrored
the self-selected ratings, with average scores of 6.7, 5.9, and 3.8 for
puppets, mouse, and raw video. These results suggest that our sys-
tem’s appeal lies not only in its ease of use, but also in the aesthetic
quality of the animations.

7.3 User Experiences: High-Level Storytelling

Much of the animation shown on the accompanying video was per-
formed by the authors of this paper. However, roughly 100 users
have tried our system at Maker Faire, and roughly 30 people have
tried our system at other events. Animations from two of our test
users appear on the video and in Figure 11, one by a professional
puppeteer (“The Balloon”) and the other by an 11-year-old boy



Figure 11: Several short stories created using our puppetry system.

(“Knight meets Dragon”). Here we make some general observa-
tions from these experiences:

• As advertised, the system is easy to learn and use. All users
were able to control the onscreen puppets with minimal instruc-
tion because the interface is so transparent. We believe that a
significant factor contributing to this ease of use is the fact that
people manipulate paper puppets that largely resemble their on-
screen counterparts, leading to a natural interface.

• Our system preserves many of the performative qualities of pup-
peteering — the immediate feedback of seeing one’s own per-
formance and the ability to tune and respond in real time —
and the quality of the resulting animation has the feeling of
“straight ahead” rather than “pose-to-pose” animation [Thomas
and Johnston 1981].

• The time to create a typical story is dominated by the time to
draw the characters. The largely automatic matting process
takes a few seconds, while adding controls for articulated char-
acters takes an additional few tens of seconds. While animation
is performed in real time, users often try a few “takes” before
they are happy with the result. Furthermore, for layered ani-
mation, each layer adds another multiplier on the performance
time. Nevertheless, performance generally takes less time than
drawing, and far less time than stop-motion, key-frame or other
offline animation paradigms.

7.4 Limitations

Unfortunately, our system is not capable of handling every puppet
or action a user may wish to animate. For example, in order for a
puppet to contain sufficient detail for robust tracking, it typically
needs to occupy a significant portion of the video frame’s area, so
very small puppets do not always track well.

Our system currently has almost 100 puppets in its database, and
some kids seem to delight in putting many of them in front of the
camera at once. With more than 5 or 6 puppets on camera simulta-
neously, it becomes difficult to manipulate puppets without creating
near-total occlusions that interfere with tracking. Although perfor-
mance remains real-time, the recognition portion of the pipeline
slows down with many puppets.

Additionally, puppets cannot be moved too quickly, as the KLT
algorithm assumes that the optical flow between frames is well
approximated by small displacements without rotation. Although
we offer alternatives via interpretation, such as per puppet render
scaling, a better tracking system could enable a more natural user
experience.

These limitations arise from the fact that our system’s hardware
can only process so many pixels per second. Increasing the volume
of pixels processed could alleviate both of these issues. More pixels
per frame would allow for smaller puppets or a larger workspace,
because smaller scale details would become trackable. More frames
per second would reduce inter-frame displacements, improving the

correctness of KLT’s assumption. Thus, as technology improves,
these limitations will become less significant to the user.

7.5 Conclusion and Future Work

We have demonstrated a novel interface for creating cutout style
animations by manipulating paper puppets. The system relies on
easy to use components for creating puppets, combined with a nat-
ural interface for controlling them. To implement these controls,
we introduce a novel use of known computer vision algorithms that
is designed to handle the particular real-time requirements of our
application in spite of occlusions common in this setup. It is ar-
guable that this kind of interface might instead be constructed via
a multi-touch display. However, for the foreseeable future, cam-
eras are likely to be substantially cheaper and more ubiquitous than
such displays. Moreover, we believe that the tactile, proprioceptive
experience of physically manipulating these puppets contributes to
both the ease of use and the quality of the resulting animation.

We show that this kind of interface is appropriate for real-time
creation of the kinds of cutout stop-motion animations that people
already make. However, we believe that it would be useful in other
applications as well, for example in creating low-budget animatics
during the planning stages for high-budget productions, or for cre-
ating productions in styles with deliberately low animation fidelity
(such as JibJab), which are currently created in key-frame oriented
systems such as Flash.

This system suggests a number of areas for future work, both to
further reduce the learning curve for users and to extend the range
of animations that can be created:

Automated articulation inference: We believe it would be pos-
sible to more automatically infer the segmentation and articulation
of a character by placing the segments on the table in several poses.
This would address the general goal of providing a single camera-
based interface for animation.

Audio: Our system can respond to audio events and, for example,
trigger a mouth animation cycle. However, treating sound as a first-
class component in the system and providing tools to layer audio
effects over the animation would provide for a more complete au-
thoring system. Furthermore, source separation techniques could be
applied to identify multiple performers controlling different objects
with their voices simultaneously.

Editing: Currently the animator can only “edit” an animation by
re-recording it. In order to author longer animations a facility for
tracking a sequence of scenes and the ability to edit these scenes or
animation layers within them will go a long way towards expanding
this system as a tool for authoring longer stories.

Acknowledgments

We would like to thank the many amateur (and professional) pup-
peteers of all ages who have tried the system and offered sugges-
tions, in particular Thomas (age 11), Lydia Greer, and Helene van
Rossum (hvanrossum.com). We thank the paper reviewers and the
Tiggraph gang for their helpful suggestions. This work was sup-
ported in part by Adobe Systems and the NSF grants IIS-0511965,
CCF-0347427, CCF-0643552 and IIS-0812562.

References

AGARWALA, A., HERTZMANN, A., SALESIN, D. H., AND SEITZ,
S. M. 2004. Keyframe-based Tracking for Rotoscoping and
Animation. ACM Trans. Graphics (Proc. SIGGRAPH), Vol. 23,
No. 3, 584–591.

AGARWALA, A. 2002. SnakeToonz: A Semi-Automatic Approach
to Creating Cel Animation from Video. In Proc. NPAR, 139–146.



ALVARADO, C., AND DAVIS, R. 2001. Resolving Ambiguities to
Create a Natural Sketch Based Interface. In Proc. IJCAI, 1365–
1371.

BAECKER, R. 1969. Picture-Driven Animation. In Proc. Spring
Joint Computer Conference, 273–288.

BOUSSEAU, A., NEYRET, F., THOLLOT, J., AND SALESIN, D.
2007. Video Watercolorization using Bidirectional Texture Ad-
vection. ACM Trans. Graphics (Proc. SIGGRAPH), Vol. 26, No.
3, 104:1–104:7.

COLLOMOSSE, J., AND HALL, P. 2005. Video Paintbox: The Fine
Art of Video Painting. Computers & Graphics, Vol. 29, No. 6,
862–870.

COLLOMOSSE, J., AND HALL, P. 2006. Video Motion Analysis
for the Synthesis of Dynamic Cues and Futurist Art. Graphical
Models, Vol. 68, No. 5-6, 402–414.

DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVIĆ, Z., AND

SALESIN, D. 2003. A Sketching Interface for Articulated Figure
Animation. In Proc. SCA, 320–328.

DAVIS, R. C., COLWELL, B., AND LANDAY, J. A. 2008. K-
Sketch: A “Kinetic” Sketch Pad for Novice Animators. In Proc.
SIGCHI, 413–422.

DONTCHEVA, M., YNGVE, G., AND POPOVIĆ, Z. 2003. Layered
acting for character animation. ACM Trans. Graphics (Proc.
SIGGRAPH), Vol. 22, No. 3, 409–416.

FIALA, M. 2005. ARTag, a Fiducial Marker System Using Digital
Techniques. Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, Vol. 2, 590–
596.

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996. OBB-
Tree: A Hierarchical Structure for Rapid Interference Detection.
In Proc. SIGGRAPH, 171–180.

HORN, B. K. P. 1986. Closed-Form Solution of Absolute Orien-
tation using Unit Quaternions. Journal of the Optical Society of
America, Vol. 4, 629–642.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
Rigid-as-Possible Shape Manipulation. ACM Trans. Graphics
(Proc. SIGGRAPH), Vol. 24, No. 3, 1134–1141.

ISHII, H., AND ULLMER, B. 1997. Tangible Bits: Towards
Seamless Interfaces between People, Bits and Atoms. In Proc.
SIGCHI, 234–241.

KIM, J., SEITZ, S., AND AGRAWALA, M. 2004. Video-based Doc-
ument Tracking: Unifying Your Physical and Electronic Desk-
tops. In Proc. UIST, 99–107.

KNEP, B., HAYES, C., SAYRE, R., AND WILLIAMS, T. 1995.
Dinosaur Input Device. In Proc. SIGCHI, 304–309.

LAVIOLA JR, J., AND ZELEZNIK, R. 2004. MathPad 2: A Sys-
tem for the Creation and Exploration of Mathematical Sketches.
ACM Trans. Graphics (Proc. SIGGRAPH), Vol. 23, No. 3, 432–
440.

LEE, G., KIM, G., AND BILLINGHURST, M. 2005. Immersive au-
thoring: What You eXperience Is What You Get (WYXIWYG).
Communications of the ACM, Vol. 48, No. 7, 76–81.

LOWE, D. G. 1999. Object Recognition from Local Scale-
Invariant Features. In International Conference on Computer
Vision, 1150–1157.

MILGRAM, P., AND KISHINO, F. 1994. A Taxonomy of Mixed
Reality Visual Displays. IEICE Transactions on Information and
Systems, Vol. 77, No. 12, 1321–1329.

MOSCOVICH, T., AND HUGHES, J. 2001. Animation Sketching:
An Approach to Accessible Animation. Tech. Rep. CS04-03,
Brown University CS Department.

OORE, S., TERZOPOULOS, D., AND HINTON, G. 2002. A Desk-
top Input Device and Interface for Interactive 3D Character An-
imation. Graphics Interface, Vol. 2, 133–140.

POPOVIĆ, J., SEITZ, S., AND ERDMANN, M. 2003. Motion
Sketching for Control of Rigid-Body Simulations. ACM Trans.
Graphics, Vol. 22, No. 4, 1034–1054.

REKIMOTO, J., AND AYATSUKA, Y. 2000. CyberCode: designing
augmented reality environments with visual tags. Proceedings
of DARE 2000 on Designing augmented reality environments,
1–10.

RUS, D., AND DESANTIS, P. 1997. The Self-Organizing Desk.
Tech. Rep. PCS-TR97-305, Dartmouth University CS Depart-
ment.

STURMAN, D. 1998. Computer Puppetry. IEEE Computer Graph-
ics and Applications, Vol. 18, No. 1, 38–45.

THOMAS, F., AND JOHNSTON, O. 1981. Disney Animation: The
Illusion of Life. Walt Disney Productions, New York.

THORNE, M., BURKE, D., AND VAN DE PANNE, M. 2004.
Motion Doodles: An Interface for Sketching Character Motion.
ACM Trans. Graphics (Proc. SIGGRAPH), Vol. 23, No. 3, 424–
431.

TOMASI, C., AND KANADE, T. 1991. Detection and Tracking of
Point Features. Tech. Rep. CMU-CS-91-132, Carnegie Mellon
University, Pittsburgh, PA, USA.

TRUCCO, E., AND PLAKAS, K. 2006. Video Tracking: A Concise
Survey. IEEE Journal of Oceanic Engineering, Vol. 31, No. 2,
520–529.

WANG, J., XU, Y., SHUM, H., AND COHEN, M. 2004. Video
Tooning. ACM Trans. Graphics (Proc. SIGGRAPH), Vol. 23,
No. 3, 574–583.

WANG, J., BHAT, P., COLBURN, R., AGRAWALA, M., AND CO-
HEN, M. 2005. Interactive video cutout. ACM Trans. Graphics
(Proc. SIGGGRAPH), Vol. 24, No. 3, 585–594.

WANG, J., DRUCKER, S., AGRAWALA, M., AND COHEN, M.
2006. The Cartoon Animation Filter. ACM Trans. Graphics
(Proc. SIGGRAPH), Vol. 25, No. 3, 1169–1173.

WELLNER, P. 1993. Interacting with Paper on the DigitalDesk.
Communications of the ACM, Vol. 36, No. 7 (July), 86–97.

WILSON, A. 2005. PlayAnywhere: a compact interactive tabletop
projection-vision system. In Proc. UIST, 83–92.

WINNEMÖLLER, H., OLSEN, S., AND GOOCH, B. 2006. Real-
time Video Abstraction. ACM Trans. Graphics (Proc. SIG-
GRAPH), Vol. 25, No. 3, 1221–1226.

WISNIEWSKI, D., AND WISNIEWSKI, D. 1996. Worlds of
Shadow: Teaching with Shadow Puppetry. Teacher Ideas Press.


