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Abstract—We propose an approach to enhance rough 3D
geometry with fine details obtained from multiple normal maps.
We begin with unaligned 2D normal maps and rough geome-
try, and automatically optimize the alignments through 2-step
iterative registration algorithm. We then map the normals onto
the surface, correcting and seamlessly blending them together.
Finally, we optimize the geometry to produce high-quality 3D
models that incorporate the high-frequency details from the
normal maps. We demonstrate that our algorithm improves
upon the results produced by some well-known algorithms:
Poisson surface reconstruction [1] and the algorithm proposed
by Nehab et al. [2].

Keywords-2.5/3D alignment, mesh enhancement, surface nor-
mals.

I. INTRODUCTION

Geometry acquisition has become increasingly popular in
computer graphics and vision, with demand for high-quality
models driven by advances in 3D printing, realistic real-
time renderings of 3D self-avatars in video games, digital
libraries for historical objects etc. Producing such detailed
geometry requires not only precise acquisition devices, but
also a pipeline of processing steps including registration of
multiple views (since an entire 3D model typically cannot
be acquired in one sweep) and merging of different scans. In
this work we present a high-quality reconstruction pipeline
that combines data from two different sources: a rough 3D
model obtained with an active (laser-stripe or structured-
light) scanner and a few 2D normal maps calculated by a
photometric stereo algorithm.

The motivation for combining these two kinds of data is
strong. Normal maps are easily obtained at high resolution
using active shape from shading (photometric stereo). They
can contain a wealth of information about the fine details of
a surface, but suffer from low-frequency bias. 3D scans, in
contrast, are difficult to obtain at extremely high resolutions,
but they contain all of the information about the topology
and overall coarse-scale shape of the surface.

Although direct reconstruction of a 3D surface from nor-
mal maps is possible, in practice the results are far from sat-
isfactory because of bias present in low frequencies, noise,
and insufficient constraints among disconnected patches.
This problem was addressed by the work of Nehab et al.
[2], which proposed combining the low-frequency compo-
nents of the geometry with the high-frequency details of the
normal maps. However, that work assumed perfect alignment

between the 3D geometry and a single 2D normal map.
Also, their optimization for full 3D models (as opposed to
height fields) is an approximation that forces the surface
to be locally planar, resulting in over-smoothing of high-
frequency details.

In this paper, we present a complete system to enhance
rough geometry with multiple detailed normal maps. The
pipeline consists of four main steps:

• Acquisition of 3D rough geometry, as well as extraction
of 2D normal maps from images under varying light
directions with respect to the object (Section III);

• Alignment of the normal maps to the rough geometry
without any initial alignment, (Section IV);

• Blending of multiple normal maps to produce a seam-
less normal field over the surface (Section V); and

• Optimization of the 3D model to incorporate high-
frequency details from the normal maps (Section VI).

Our pipeline takes two types of inputs (multiple 2D nor-
mal maps and coarse 3D geometry), and produces an en-
hanced 3D model. The advantage of our system is that
it requires neither initial alignment nor resolution/precision
compatibility between different data types.

Our main contributions are four-fold:
• A new feature detector tailored for normal maps.
• An algorithm to align 2D normal maps to a 3D surface

by iteratively minimizing dissimilarity of normals.
• Seamless mapping of the aligned 2D normal maps to

the 3D geometry.
• A method for combining the original 3D positions with

the mapped normals.

II. RELATED WORK

Registration: Pairwise alignment have been common
problems in many research areas such as computer vi-
sion/graphics, medical imaging, robotic vision, etc. The
types of input signals can be varied, and can include 2D
images (visible/infrared image, x-ray, magnetic resonance
imaging, computed tomography , positron emission tomog-
raphy etc.) and/or 3D geometry (point clouds, range maps,
or surface meshes). Registration for many combinations of
these input types has been studied in the literature, but there
is little previous work addressing the problem of aligning
normal maps to rough 3D surface geometry.



Surface normals are frequently used for 3D-to-3D reg-
istration, in work such as [3], [4], [5]. Related studies on
invariant features and motion estimation for small nonrigid
deformations between 3D models have been presented in
various publications such as [6], [7], [8], [9], [10]. Wang et
al.[11] proposed a method to register 3D face template to
normal maps by selecting 8 points manually and deforming
the generic model. All of these works showed that normal-
guided registration is more robust than others.

The closest related problem to ours is that of aligning
images to geometry, and Viola and Wells [12] and Corsini
et al. [13] proposed methods based on mutual information.
While these techniques could be adapted for normal maps,
both of them assume that the details in the 3D model are
similar to those in the images. In our case, however, we
accept rough 3D geometry as input, and develop a method
of reliably aligning it to (possibly warped) normal maps.

Blending: Pérez et al. [14] proposed using the Poisson
equation to blend two images seamlessly, and Chuang et
al. [15] extended it to blending multiple texture images on
a 3D object using the Laplace-Beltrami operator. Li et al.
[16] also used Poisson blending, after recovering reflectance
and global illumination. We extend these kinds of methods
to blending normals, observing that the low-frequency bias
in normal maps should be corrected before blending.

Combining 3D positions and normals: Nehab et al. [2]
proposed a linear formulation to combine the high-frequency
details of normals and low-frequency shape from 3D posi-
tions. However, their acquisition setup used the same camera
to capture both range scans and normal maps (using pho-
tometric stereo [17]). That is why they assumed that their
different data types were perfectly aligned, and they did not
take into account missing parts or holes in the 3D positions.
However, the condition of perfect alignment between the two
different types of data cannot always be satisfied, as when
3D and normals are acquired using completely independent
devices. Building upon the work of Nehab et al., our sys-
tem does not require or assume any alignment or similar
resolution between the 3D positions and the normal maps.

Yu et al. [18] proposed an approach to improve the quality
of normal maps and consequently the geometry acquired
with MS Kinect. They try to enhance the quality of the
normals which is calculated from 3D data (depth); while we
do not focus on that problem, rather we assume that we have
normal maps with higher quality than the geometry and use
that extra information to improve the geometry.

A more general method for combining positions and nor-
mals is provided by Poisson surface reconstruction [1], [19].
This is a generic surface reconstruction algorithm that takes
as input a point cloud with corresponding normals. However,
if the accuracies and resolutions of the positions and normals
are different, Poisson surface reconstruction often generates
a smoothed result, as we show later.

III. DATA ACQUISITION
In this work, we experiment with both synthetic and ac-

quired data. The synthetic dataset begins with a ground-truth
3D model of the armadillo, and acquires the following:
• 2D normal maps: We render normal maps from multiple

views and save the viewing directions for evaluation.
• Rough 3D model: We smooth the original 3D model with

Gaussian filter of σ = 4×(average edge length).
Real data acquisition uses two separate capture stages:
• 2D normal maps: To obtain each normal map we capture

a series of D-SLR images of the object with the same
acquisition setup in [20] ; and use a variant of the photo-
metric stereo algorithm [17].

• 3D geometry acquisition: Of the many sensors available
on the market for 3D acquisition, we experiment with
two very different ones. First, we use a relatively high-
resolution NextEngine scanner, which is based on laser
stripe triangulation. We follow the steps in [21] to re-
construct the surface. Secondly, to explore even lower-
resolution geometric input, we have also experimented
with Kinect [22], with the Skanect [23] software used to
reconstruct the surface from the captured data.

IV. ALIGNMENT

Unlike other common alignment work-flows such as ICP
[24], [25] which start with a user-provided rough initial
alignment , we design a 2-step alignment algorithm to have a
fully automatic system: i) estimation of an initial alignment
via a feature based algorithm , ii) iterative refinement by
minimizing the dissimilarity between normals.

A. Initial Alignment

Inspired by SIFT [26], we design an adapted feature
(nSIFT), which detects scale-invariant feature points and
computes feature descriptors on normal maps. Denoting the
normal map by N(x, y) and the x, y components of it by
Nx(x, y) and Ny(x, y) (which are embedded in R and G
channels), we first construct a Gaussian scale space for
Nx(x, y) and Ny(x, y). In order to detect stable keypoint
locations in the scale space, we approximate the scale-
normalized Laplacian of Gaussian as follows:

σG(x, y, σ) ∗ ∂Nx(x, y)
∂x

+ σG(x, y, σ) ∗ ∂Ny(x, y)
∂y

(1)

where G(x, y, σ) = 1
2πσ2 e

−(x2+y2)/2σ2

. Similar to [26],
keypoints are detected by looking for local extrema in the
3 × 3 neighborhood at the scale-space. The orientation of
each keypoint is assigned by the x and y components of
the normal at that point and the descriptor is obtained by
computing a 3D spatial histogram of the normals in the
neighborhood of each keypoint, rotated by its orientation.
Since the real normal map has more details than the ren-
dered normal map we first smooth the real normal map by a
Gaussian kernel of σ = 3; and during feature matching, we



Figure 1. nSIFT feature points detected on pre-smoothed real normal map
(left) and nSIFT feature points detected on rendered normal map (right).
(See the supplemental material for more results.)

only use features detected in higher scales (with larger σ) of
the real normal map to reduce false positive matches. After
computing the matches among features using the nearest
neighbor matcher, we use the RANSAC framework [27] to
eliminate outliers. We also incorporate the location of feature
points relative to the center of the model’s bounding box to
further eliminate outliers. The algorithm 1 summarizes our
feature-based alignment.

Algorithm 1 Feature-based Rough Alignment
Input: 3D model M , real normal map N , view sphere V ,

sample rate r.
repeat

Sample V at rate r to obtain set of viewpoints Vr
∀ viewpoint v ∈ Vr

Nv = rendered surface normals of M from v
Find N ’s nearest neighbor N∗

v by nSIFT
Feature matching in RANSAC framework
V ← N∗

v ’s neighborhood, r ← 2r
until ‖ N - N∗

v ‖ < τ

B. Refinement

Inspired by ICP [24], [25], we propose an iterative align-
ment algorithm that begins with a rough alignment between a
2D normal map and 3D model and improves the registration
by minimizing an energy function.

To evaluate the energy function, we transform the 3D
model given some candidate alignment, then render it into
image space using the projection matrix of the normal map.
The mesh is colored based on its normal map (transformed
by the rotational portion of the alignment transform), so
that the rendered image allows us to determine the mesh
normal Nm that is mapped to each pixel (i, j). We then
evaluate the dissimilarity between those mesh normals and
the corresponding normals Nimg from the normal map:

E =

#rows∑
i=1

#cols∑
j=1

f
(
Nm(i, j),Nimg(i, j)

)
. (2)

Figure 2. Alignment error for the armadillo dataset from the front (left) and
the side (right). Error is measured for six parameters of rigid transformation:
errors in translation (tx, ty , tz) are measured as a fraction of the diameter
of the bounding sphere of the model, while errors in rotation (Rx, Ry , Rz)
are measured in radians.

The dissimilarity function f is defined as:

f(a,b) =


0 if both a and b are masked,
π if either a xor b is masked,
|w × cos−1(a · b)| otherwise.

(3)
The masks hold the locations of background pixels, so that
this function imposes a large penalty if a pixel is part of the
background of either the model or normal map, but not both.
The weight w is calculated as w = 1− (b · C), where C is
the camera direction. So, if the normal is facing towards the
camera it gets a higher weight, and vice versa.

To optimize this energy function we need to transform the
model and render the normal map, making the problem non-
linear. We therefore use the Nelder-Mead algorithm [28],
which initializes a simplex in the 6-dimensional rotation-
translation space and heuristically grows, moves, and shrinks
the simplex. For added robustness we perform randomized
restart, computing a new random simplex (with maximum
extent half the size as at the previous restart) once the
simplex becomes sufficiently small, or if the algorithm per-
forms more than 8 “shrink” operations in a row. We also
re-initialize the simplex if 100 energy function calculations
have been performed since the last restart. We terminate the
algorithm after 8 restarts. See the supplemental material for
the the energy function over time.

To measure the accuracy of the alignment, we use two
synthetic normal maps (front and side) obtained from the
armadillo model. For each of 100 trials, we randomly perturb
the ground-truth alignment by up to 6% of the radius of the
model’s bounding sphere to obtain an initial registration, and
then run our iterative optimization to align the smoothed
3D mesh to the normal map. Scatter plots of the errors in
translation (tx, ty, tz) and rotation (Rx, Ry, Rz) are shown
in Figure 2, where translation is measured as a fraction of
the diameter of the model’s bounding sphere and rotation is
measured in radians.

Note that different components of the alignment are re-
covered with different accuracies, reflecting the screen-space
perturbation resulting from changing each parameter. For
example, for the front view (shown in Figure 2, left), it is



more difficult to recover the z component of translation,
corresponding to moving along the camera’s direction of
view, than it is to find the x and y components.

V. BLENDING NORMAL MAPS

After the normal maps are aligned to the coarse 3D geom-
etry, we would like to assign a single normal to each vertex
on the 3D surface (after isometrically re-meshing the surface
to have the desired output resolution). If the normal maps
were perfect, and perfectly aligned, we could assign to each
surface point a normal from an arbitrary normal map that
observed it (e.g., the one that observed it most head-on). In
practice, however, both of these hypotheses are false. Normal
maps are not perfect due to limitations with the photometric
stereo algorithm, which imperfectly accounts for shadows,
non-Lambertian materials, non-opaque surfaces, and inter-
reflection. The alignment is not perfect, since we are aligning
to coarse 3D meshes that sometimes do not contain enough
detail to reliably constrain the alignment. So, if we only
assigned a single normal to each surface point, the result-
ing normal field would be discontinuous. Averaging all the
normals projecting to a given 3D surface point would not
solve the problem, since we would still see seams where we
switched between including, and not including, the contri-
bution of each normal map.

A partial solution to this problem was proposed by Nehab
et al.[2]. They observed that the dominant error in normal
maps is low-frequency. In contrast, while scanned 3D mod-
els might have high-frequency noise or lack high-frequency
detail, their low frequencies are reliable. It is therefore pos-
sible to correct the normal maps by replacing their low-
frequency components by the low-frequency component of
normals obtained from the 3D model. We adopt this strategy,
including it in all of the results shown in this paper. Never-
theless, we find that this correction is not always sufficient
for avoiding seams between data from different maps.

Inspired by Poisson image editing [14], we propose blend-
ing between the (already-corrected) normal maps in a way
that preserves their gradients. To do this we optimize an
energy function with two terms, a vertex term that pushes
the result towards a consensus (weighted average) among
samples, and an edge term that preserves differences be-
tween neighboring normals:

E = λEvert + (1− λ) Eedge, (4)

where λ controls the relative significance of the terms. The
vertex energy seeks to minimize the weighted difference
between the mesh normal nv and the projected normal from
each normal map ns

v:

Evert =
#vert∑
v=1

#maps∑
s=1

wsv ‖nv − ns
v‖

2, (5)

where higher weight is given to normal maps that see the
surface more directly: wsv = (dviewer · ns

v)
p.

Figure 3. Comparison of different blending methods. Left: averaging all
sample normals. Center: choosing the normal which is captured from the
most direct view point. Right: our proposed blending method. Normals are
false-colored by embedding in the RGB color space.

The edge energy ensures that local gradients among the
samples and over the surface will be consistent:

Eedge =
#edge∑
e=1

#maps∑
s=1

[(nev1−nev2)−(ns
ev1−n

s
ev2)]

2, (6)

nev1, nev2 are the normals at the endpoints of edge e.
This energy function can be minimized with linear least

squares, and it is sparse because there is only one coefficient
for each vertex constraint and two coefficients for each edge
constraint. We set the parameter λ = 0.4 to blend multiple
normal maps for all results demonstrated in the paper.

We compare our method to two alternative approaches:
averaging samples, or just taking the normal captured from
the most direct view. As shown in Figure 3, both of these
methods create dramatic transitions, especially close to sil-
houettes. Our method successfully blends samples coming
from different normal maps, and handles silhouettes well.

VI. SURFACE ENHANCEMENT

Given high-quality normals and rough vertex positions,
the true surface can be approximated by Poisson surface
reconstruction[1], or using the method of Nehab et al.[2].
However, one of the most common problems with these
methods is loss of some high-frequency information. Even
though the work of Nehab et al. was designed to compen-
sate for this problem, their full-model optimization (as op-
posed to their method for height fields) sacrifices some high-
frequency details to make the problem linear, by assuming
that the surface is locally planar.

To overcome this drawback, we perform a non-linear op-
timization, minimizing an energy function consisting of two
terms (similar to the previous work [2]) as follows:

E = λEp + (1− λ)En, (7)



Iterated Poisson surface reconstruction Iterated Nehab et al. Our Method
Figure 4. Comparison of results of Poisson surface reconstruction, Nehab et al., and our method on a cube. The ground-truth vertex positions and normals
of the cube were used as input.

where Ep is the position term and En is the normal term (see
[2] for notations). These are formulated as follows:

Ep =
#vert∑
v=1

‖pv − pmesh
v ‖2 (8)

En =

#vert∑
v=1

−‖nv · nmeasured
v ‖2, (9)

where the optimized positions pv are intended to match
those coming from the mesh, and the optimized normals nv

are intended to match those coming from the normal maps
(after alignment, low-frequency correction, and blending).
We have also experimented with calculating En by summing
over the faces rather than over the vertices, but found that
this increased computational complexity with little benefit
visible in the final result.

We minimize this energy function with the conjugate gra-
dient method, using analytically-computed Jacobians and a
line search at each iteration (see the supplemental material
for details). We use the parameter λ = 0.4 for the enhance-
ment in both our method and the algorithm of Nehab et
al. [2] for comparison.

Figure 5 shows a quantitative comparison of our method
to Poisson surface reconstruction [1] and the method of
Nehab et al. [2]. We found that the latter two methods
exhibit less smoothing if the surface positions are close to
the correct ones, and so we actually run these methods in
an iterative manner. We start with a smoothed armadillo
model and normal maps obtained from the original mesh.
We then repeatedly assign the original normals onto the
enhanced model from the previous iteration (using ground-
truth alignment), and reconstruct/enhance the surface, until
each algorithm converges.

The visualizations in the figure are color-coded by per-
pendicular distance from the original model to the enhanced
surface, with the color mapping shown at the bottom of
Figure 5. It is obvious that Poisson reconstruction smooths
out high frequency details, and flattens parts with high cur-
vature such as the tips of the ears, hands, noise, and feet.
Note, however, that our scenario was not really the one for
which this algorithm was designed. Note also that we do not
use the more recent Screend Poisson Surface Reconstruction
algorithm [19] because it gives more weight to the vertex
positions, which would result in even worse results.

The algorithm by Nehab et al., which was designed for
this specific problem, produces better results. However, our
method, which performs the correct non-linear optimization,
loses fewer high-frequency details and produces results very
close to the true surface.

In Figure 4, we used a cube to test an extreme case. We
used the original positions and normals of the cube as input,
in order to observe the behavior of the three algorithms in
a controlled setting. The previous algorithms are unable to
preserve the sharp corners of the cube, introducing signifi-
cant smoothing. In contrast, our method neither introduces
any artifacts nor smooths over the corners.

VII. RESULTS AND DISCUSSION
Figure 6 demonstrates results for the three algorithms de-

scribed above, using source data from two different types of
3D acquisition techniques: moderate-resolution models ac-
quired with the NextEngine laser scanner and coarse models
obtained with MS Kinect. The leftmost column in Figure 6
shows the results and close-up images for the iterative Pois-
son reconstruction; the middle column shows the results of
the algorithm proposed by Nehab et al. [2]; and finally the
rightmost column shows our results. All of these used our
proposed alignment and blending algorithms.

Our method preserves more of the high-frequency infor-
mation from the normal maps, as compared to the other
two methods. This is particularly visible in the close-ups
in the last two rows of Figure 6, which used the compar-
atively coarse Kinect reconstructions as input. Also note
the additional detail in the fingers of the soldier (fourth
row) preserved by our method. Of course, in some cases
this may also mean that our method preserves more noise,
since it does not smooth the normal maps — this effect is
especially visible in the third row of Figure 6. We include
high-resolution renderings and time analysis in the materials.

VIII. CONCLUSION AND FUTURE WORK
In this work, we proposed a complete pipeline for com-

bining coarse 3D models with multiple unaligned 2D nor-
mal maps, including acquisition, fully automatic alignment,
blending the normal maps, and enhancing the model to in-
corporate high-frequency normals. We demonstrated that our
algorithm outperforms two well-known methods: Poisson
surface reconstruction from point clouds with normals and
the work proposed by Nehab et al.

We believe that there are several directions for future
work. First, we could use more information from the normal



maps, such as extracting the object silhouettes from the
normal maps and constraining the 3D object to match those
silhouettes. We could also use the available normal maps
to synthesize plausible surface detail (texture) in locations
where the normal maps did not cover the object. Finally, we
wish to explore large-scale applications, such as combining
normal maps of a building with 3D point clouds from Google
Street View or enhancing only a part of a big object.
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Figure 5. Comparisons of our method to Poisson surface reconstruction and Nehab et al. Blue represents zero distance between the reconstructed surface
and ground truth, while red is greater than or equal to 0.001 of the radius of the bounding sphere.
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Figure 6. Comparison of results of Poisson surface reconstruction, Nehab et al., and our method. The 3D models in the first five rows are acquired with
the NextEngine laser scanner, while the last two are obtained with MS Kinect.


