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Abstract

We present a non-rigid alignment algorithm for align-
ing high-resolution range data in the presence of low-
frequency deformations, such as those caused by scan-
ner calibration error. Traditional iterative closest points
(ICP) algorithms, which rely on rigid-body alignment, fail
in these cases because the error appears as a non-rigid
warp in the data. Our algorithm combines the robustness
and efficiency of ICP with the expressiveness of thin-plate
splines to align high-resolution scanned data accurately,
such as scans from the Digital Michelangelo Project [14].
This application is distinguished from previous uses of the
thin-plate spline by the fact that the resolution and size of
warping are several orders of magnitude smaller than the
extent of the mesh, thus requiring especially precise feature
correspondence.

1. Introduction

Range scanners are useful tools for acquiring three di-
mensional models of real objects. Because a scanner can
see only a single viewpoint at a time, multiple scans must
be assembled to acquire such a model. For small objects,
it is feasible to perform only calibrated motions (using a
turntable, for example) to obtain the necessary scans. But
for large objects, such as Michelangelo’s statues, this is
simply not possible. Some method must therefore be used
to recover the alignment of the different scans. Even small
errors in scanner calibration lead to further complication,
as they results in a low-frequency, non-rigid warp in the
acquired data.

We are interested in aligning range scans from the Dig-
ital Michelangelo Project [14]. These scans have ap-
proximately quarter-millimeter precision, for very large
statues—5 meters high in the case of the David—and were
acquired using a laser range scanner mounted on a custom
gantry. In the case of the David, the gantry had to extend
up to 7.5m high, since the David is mounted on a pedestal,
and also had to be highly reconfigurable so that the scan-
ner would be able to see all parts of the statue without

ever touching it. These extreme size and configurability
requirements make accurate calibration of the gantry diffi-
cult if not impossible to achieve, and the range scans conse-
quently exhibit enough low-frequency warping to prevent
even pairwise rigid-body alignment in some cases. Even
if the scanner calibration were improved, rescanning these
statues is a practical impossibility. Since these engineering
challenges will not go away, we expect that similar calibra-
tion problems will arise in other very large-scale scanning
projects, as well as in very low-cost ones. An algorithm
that can recover and correct for these warps is consequently
necessary.

Figure 1. In this closeup of David’s hair, the original
source (green) and target (blue) meshes have been
aligned using ICP, but still contain substantial error.

After alignment, range scans are merged to produce a
full model. This can be accomplished using a variety of
algorithms, including VRIP [8] and ball pivoting [2]. These
algorithms merge the two meshes and retriangulate them,
and must smooth out noise in the process. The resolution
of the output model which can be produced is therefore
dependent not only on the range scan resolution, but also
on the alignment quality—range scans must be aligned to
within the desired precision of the output model. Thus, on
Michelangelo’s David, for instance, even alignment errors
on the order of .5mm can prevent accurate merging of the
range scans.

We present a non-rigid alignment algorithm that can
handle the non-rigid warps present in range scans from the
Digital Michelangelo Project, while retaining the robust-
ness offered by a rigid-body transformation with few de-
grees of freedom. We use a thin-plate spline to represent
the warp, based on feature correspondences computed us-
ing a hierarchical iterative closest points (ICP) method. We



have found that this reduces overall alignment error. Since
the thin-plate spline parameters are computed by solving a
linear system of equations, the algorithm is efficient, and is
dominated by the ICP computations.

In the following sections, we review existing work in
rigid and non-rigid alignment, and discuss how it relates
to the problem of range-scan alignment in the presence of
non-rigid warps. We then describe the thin-plate spline and
show how to compute it. Next we describe our feature cor-
respondence algorithm. Finally, we present and discuss the
results of our system, and areas of future work.

2. Previous Work

Most range-scan alignment is currently done using vari-
ants of ICP [4] [6], which assumes a rigid body transfor-
mation (i.e. no measurement error). Although the lack of
degrees of freedom allows ICP to effectively handlehigh
frequencynoise, low-frequency warps result in poor align-
ments, with high measured error. The Digital Michelan-
gelo Project and the Florentine Pietà Project [3] have both
used variants of ICP for alignment. Several improvements
to ICP have been developed in the context of the Digi-
tal Michelangelo Project and accompanying Forma Urbis
Romae Project, in order to improve the mesh alignment.
For example, [10] and [12] introduce improved techniques
for sampling the range scans and evaluating the stability of
these point sets for ICP alignment. These techniques are of
general applicability in ICP, including the hierarchical ICP
alignment phase of our algorithm. However, they do not
address the situation in which a rigid-body transformation
cannot represent the alignment transformation adequately.

The Florentine Pietà Project also incorporated image-
based alignment and conformance smoothing of overlap-
ping scans along scanner lines-of-sight to improve the reg-
istration further. Image-based alignment is most useful if
the image resolution is higher than the geometric resolu-
tion, as in the case with the Pietà project’s structured light
scanning system. We expect that conformance smooth-
ing, while of general applicability in reducing measurement
noise, will not help in the case of calibration error, since the
error will not be along the lines of sight.

Ikemoto,et al. [12] have also looked at the alignment
problem in the presence of calibration error. They use a
hierarchical ICP algorithm to align range scans from both
the Digital Michelangelo Project, and especially the ac-
companying Forma Urbis Romae project. They therefore
directly address the same alignment problems as ours. In-
stead of using a non-rigid warp, the pair of range scans to
be aligned are diced into a number of overlapping pieces,
which are then globally aligned to each other. When the
mesh is diced, the overlapping area must be large enough
(and contain enough high frequency features) to make the

estimate of pairwise alignment well-defined. On the other
hand, it must not be too large, or any difference at all will
result in high alignment error. The overall size issue is ad-
dressed by a user-controlled parameter. The stability of the
ICP (i.e. the presence of features) is verified by computing
the eigenvalues of the covariance matrix between the pair
of scans. If the ratio of the largest and smallest eigenvalues
is close to one, the covariance matrix is well-conditioned,
and ICP is stable; if not, the matrix is ill-conditioned, and
ICP will be unstable. (For instance, two flat planes can
slide in two directions relative to each other without affect-
ing alignment error.)

The primary drawback of this method is its speed. Be-
cause a global alignment phase is required, it takes minutes
or hours to align mesh pairs, where our method takes only
seconds. Since David’s head alone consists of 98 different
range scans, this is a substantial issue. Moreover, since the
range scan is diced and each piece is aligned separately, the
transformation is neither smooth nor even continuous, and
relies on the merging stage to compensate. Since there are
now many more overlapping pieces that must be merged,
the precision constraints are even higher, and the process is
slower.

Hänelet al. [11] present an extension to ICP that allows
deformable objects to be aligned. It does this by attaching
links to individual point pairs, which allow translation and
rotation, then use a skeletonization of the model to hier-
archically optimize an energy functional combining both
rigid-body transformation and link deformations. While
this approach is suited to range scan data, the deformations
it is designed to handle are large-scale model deformations
(such as arms moving), not subtle warps.

Allen et al. [1] use an affine transformation at each ver-
tex of the source mesh to allow non-rigid registrations of
full-body scans to a high-resolution template. There are
therefore twelve degrees of freedom per vertex. In order to
guarantee smoothness, a term is added to the energy func-
tional which penalizes differences between the transforma-
tions applied to neighboring vertices. Initial registration
is performed using markers placed on the bodies during
scanning to help prevent convergence to a local minimum.
Because we know that our warps will be slowly varying,
and our range scans often have millions (rather than hun-
dreds of thousands) of vertices, it makes sense to represent
our warp using a more computationally efficient and com-
pact representation which nevertheless guarantees a smooth
transformation.

The thin-plate spline which we use to represent our warp
has been used extensively in medical imaging applications,
where its use was first proposed in [5]. Chuiet al. [7]
use a softassign/deterministic annealing framework to iter-
atively compute point correspondences and align both med-
ical and non-medical data in 2-D and 3-D using thin-plate



splines. Rather than assigning features based on closest
points as in ICP, each pair of points is assigned a probabil-
ity of corresponding based on a Gaussian function of their
distance from each other (softassign). A thin-plate spline
is computed based on these weighted probabilities, and a
new correspondence is calculated with a narrower Gaus-
sian (deterministic annealing), until the system converges
to exact correspondences. This framework is well-suited to
situations where two point sets can be almost completely
paired, but not to the partial overlap case we address. Rohr
et al. [17] [16] extend the thin-plate spline computation to
take covariance matrices and vertex normals into account,
and are discussed more fully below. These constraints
can substantially improve the quality of a large warp, but
have very little practical effect for us. The reason is that
our alignment constraints are so stringent that interpolation
quality effectively dominates any other consideration.

3. Thin-plate splines

Thin-plate splines are a class of non-rigid spline map-
ping functions with several desirable properties for our ap-
plication. They are globally smooth, easily computable,
separable into affine and non-affine components, and con-
tain the least possible non-affine warping component to
achieve the mapping. By the last statement, we mean that
the sum of squares of all second order partial derivatives is
minimized. So, iff : Rn→R is ann-dimensional thin-plate
spline, thebending energy,

J =
∫ (

∑
i, j

f 2
xix j

)
dx1 . . . dxn (1)

is minimal. (This definition is often extended to minimize
the sum squares of alld’th order derivatives, subject to the
constraint that 2d− n > 0). Note that since affine trans-
formations are linear, they contribute no error under this
metric.

Duchon [9] proves that, for two corresponding point
sets X = {x1, . . . ,xm} and Y = {y1, . . . ,ym}, there is a
unique functionf such thatf (xi) = yi whose bending en-
ergy is minimal. Furthermore, this function takes the form
xd+ Kw, wherex is a point written in homogeneous co-
ordinates,d is an affine transformation,w is a fixedm-
dimensional column vector of non-affine warping param-
eters constrained toXtw = 0, andK is anm-dimensional
row vector whereKi is the Green’s functionU(|x−xi |). In
our case (minimizing second order partials inR3), this is
simply |x−xi |; the constant factor is implicitly folded into
w.

Thin-plate splines need not be interpolating. Instead,
they can minimize the energy functional [9] [18]

Eλ =
1
m∑ |yi − f (xi)|+λJ (2)

The spline will not be interpolating in this case, but for any
fixed λ , there will still be a unique minimum, of the form
described above. Rohret al. [17] [16] give extensions to
allow a confidenceσi to be attached to eachxi , or to as-
sign a covariance matrix to eachxi , or even to constrain the
normals at each point (although the latter changes the form
of the spline slightly). In all cases, the energy functional
changes, but the overall manner of computation does not.
Chui et al. [7] add a constraint on the affine transforma-
tion, which can help prevent flips in early stages of feature
correspondence. This is not a problem in our case, and
complicates the parameter computation somewhat.

For the interpolating case, the thin-plate spline speci-
fication provides a linear system of equations, which [5]
solves directly:(

w
d

)
=

(
K X
Xt 0

)−1(
Y
0

)
(3)

whereKi j = U(|xi − x j |). For the approximating case [18,
eqs. 2.4.23 and 2.4.24] derives a similar system of equa-
tions by rewriting equation 2 in matrix form, performing a
QR decomposition onX, and simplifying:

Xd+(K +mλ I)w = Y
Xtw = 0

(4)

An analogous derivation yields a similar equation when
confidence values are used:I is replaced by diag(σi)
[17]. When covariance matrices are used,I is replaced by
diag(Σi) whereΣi is the 4×4 covariance matrix associated
with xi . In this caseKi j andXi j are replaced byKi j I4 and
Xi j I4, expanding these matrices by a factor of 4 in each di-
rection.w, d, andY are rewritten as column vectors, read-
ing across the rows and down the columns [16]. The deriva-
tion is slightly more complex in this case, but follows the
same pattern.

Because we need alignment error of less than .5mm over
a mesh which spans roughly a half meter, the spline must
be heavily weighted toward interpolation, and any effects
of covariance matrices or more exotic restrictions are mini-
mal. For this reason, we use no covariance constraints, and
rely on very accurate correspondences to produce a good
alignment. We setλ to a very small value because Equa-
tion 4 becomes unstable whenλ = 0 and many point pairs
are used.

The alignment algorithm therefore works as follows. We
randomly select a subset of vertices on one mesh, and find
the corresponding vertices on the other mesh, using the
technique described below. Correspondence pairs in which
either vertex lies on the boundary of its mesh, or whose
maximum distance exceeds a threshold are rejected. This
guarantees that the sample vertices are all in the overlap-
ping portion of the two meshes. A thin-plate spline is then



computed to map the sample source vertices to their corre-
sponding targets. This spline defines a global warping of
space, and is therefore used to warp the entire source mesh
onto the target mesh. Since the warp is smoothly extrapo-
lated from the overlapping area to all of space, no disconti-
nuities are introduced. Furthermore, the minimal warping
property of the thin-plate spline guarantees that the extrap-
olation will be reasonable.

4. Feature Correspondence

In order to align two meshes, and measure the precision
of the alignment, a correspondence must be found between
them. This correspondence may be computed separately
from the alignment [16], or in alternation with it [4] [6] [7].
In the latter case, a rough feature correspondence gives rise
to a rough alignment, which in turn provides a better corre-
spondence, and so on. The iterated closest point algorithm
[4] [6], which is predominantly used for mesh alignment,
is an example of this. A subset of points on meshX is se-
lected, and the “closest” points on meshY are chosen as
the corresponding ones. Chenet al. [6] define closest using
a point-to-plane metric (|~ny.(x−y)|), allowing flat areas of
the mesh to slide relative to each other, while constraining
areas of high curvature. The best rigid-body transforma-
tion is then found to map the points onX to the points on
Y, and the process is repeated. Assuming the initial align-
ment is fairly close, this will converge to a good rigid-body
alignment. The initial alignment is usually performed ei-
ther manually [14], or using a technique such as spin im-
ages [13].

ICP cannot be directly extended to use a thin-plate
spline mapping rather than a rigid-body mapping because
it can interpolate the point set regardless of the corre-
spondence precision. As a result, an incorrect correspon-
dence simply warpsX incorrectly, causing equally bad—or
worse—correspondences on the next iteration. Even im-
posing a smoothness constraint does not help in our case,
because the warp is too small compared to the scale of the
data points.

Chuiet al.[7] do successfully use an iterative correspon-
dence algorithm with the thin-plate spline, but makes a key
assumption which does not hold in our case. Specifically,
it assumes that there is an almost complete matching be-
tween the two data sets (although some outliers may exist).
To be in that condition, we would need to useeverypoint
in the overlapping area of the the two meshes—often on
the order of a million points for the David. That is simply
not feasible. One possible workaround to this is to select
closest points on the target mesh at each iteration, similar
to ICP. But since the thin-plate spline will always interpo-
late its points, the poor initial correspondences will incor-
rectly warp the source mesh, leading to an incorrect local

minimum. Furthermore, we have found in practice that at
later iterations of the deterministic annealing, most points
get rejected as outliers even in this scenario, leading to an
unstable system.

To solve these problems, we use a hierarchical ICP ap-
proach to find good feature correspondences, then compute
a single thin-plate spline to smoothly warp the mesh. We
start with a global ICP phase, then divide the source mesh
through the middle of the longest axis of its bounding box,
and realign each half separately. We repeat this process a
fixed number of times, or until all pieces are unstable under
ICP [10]. (The latter case occurs when too few correspon-
dences can be found, such as when the given piece of the
source mesh does not overlap the target mesh at all.) A
fixed error threshold could be used in place of a fixed num-
ber of iterations. In practice, we are trying to recover a very
low-frequency warp, so large sections of the meshes can be
aligned well with ICP. As a result, only a small number
of decompositions is necessary to achieve good piecewise
alignment.

Figure 2. Hierarchical alignment [12] was used to dice
a source mesh, and align the resulting pieces to a
target mesh (not shown). Closeups of the circled ar-
eas show that the different pieces can overlap or drift
apart substantially from each other. These disconti-
nuities are smoothed out by the thin-plate spline com-
puted by our algorithm.

The ICP stage alone provides good feature correspon-
dences, at the cost of substantial discontinuities in the
source mesh. These are eliminated in the thin-plate spline
mapping, since it is a globally smooth mapping of the entire
mesh. This is in contrast to [12], which requires an ICP-
stable overlap between each piece for global alignment. In
that case, the mapping is not smooth, and the overlap size
determines a trade-off between smoothness and warping
flexibility.



5. Results

We have run our thin-plate spline alignment algorithm
on all overlapping pairs of range scans from David’s head.
The data set we used contains 98 range scans, with data
points spaced at approximately .5mm. There were 2996
overlapping pairs of range scans in total. The source mesh
was diced 15 times, and 1000 point pairs were used for
alignment. We computed the root-mean-square error of the
initial ICP alignment, and the thin-plate spline alignment
using 10,000 randomly selected point pairs in the over-
lapping area. Under ICP alignment, the mean error was
0.299mm, with a standard deviation of 0.354mm. For the
thin-plate spline alignment, the mean error was reduced by
a factor of 3 to 0.101mm, and the standard deviation was
0.132mm.

In order to visualize the alignment quality and warp,
we show the alignment of two range scans of Michelan-
gelo’s David which cannot be adequately aligned using
ICP alone. The source mesh isface4 e, which we
warp to the target mesh,right shoulder chest a.
The second-highest resolution is used for each mesh:
906,791 vertices forface4 e and 780,469 vertices for
right shoulder chest a. We diced the mesh 5
times, and used 250 control points for the thin-plate spline.
On a Pentium IV 2GHz with 1GB RAM, the warping
took 49.45 seconds to compute. Of this, 24.55 seconds
were spent in hierarchical ICP, 4.75 seconds in comput-
ing the thin-plate spline, and 20.15 seconds in performing
the warp. The warping time is directly proportional to the
number of control points, and is only 8.4 seconds with 100
control points (at only a nominal loss in quality).

Figures 3(a) and 3(b) show the target and source
meshes. Figure 3(c) shows the alignment quality of the
ICP and non-rigid alignments. The green channel of
each vertex shows the distance to the nearest vertex on
right shoulder chest a. Bright green means the
two vertices coincide; a green value of zero indicates the
nearest vertex onright shoulder chest a is more
than 5mm away. Similarly, the red channel encodes the
quality of the non-rigid alignment. Therefore, yellow ar-
eas indicate where both alignments are good, green areas
have worse non-rigid than ICP alignment, and red areas
have better non-rigid alignment. The large red areas in the
hair and under the chin show that the non-rigid alignment
is substantially better than the ICP alignment.

Figures 3(d), 3(e), and 3(f) show how the non-rigid
warp is affectingface4 e. Black vertices did not move
at all, white vertices moved 5mm (note that the scale is
non-linear due to gamma correction). Figure 3(d) shows
only the affine component of the warp, figure 3(e) shows
only the non-affine component, and figure 3(f) shows the
full warp. The affine component is very small—a slight

scaling—which shows that the initial ICP alignment was
nearly optimal for a rigid-body alignment. The non-rigid
component is largest in areas near the eye and in the
hair, where the original alignment was worst. It is also
fairly substantial in areas offace4 e that do not overlap
right shoulder chest a. This may seem counterin-
tuitive, but we place no constraints on the warp here, and
allowing the mesh to move in these locations produces a
globally smoother warp.

Finally, figure 3(g) shows the two meshes merged using
VRIP after non-rigid alignment. Figures 3(h) and 3(i) show
a closeup near the ear of VRIP merges after ICP and after
non-rigid alignment. Note in particular the improvements
at the top of the ear and the large lock of hair to the left of
the ear.

6. Discussion and Future Work

Our non-rigid alignment algorithm can accurately and
efficiently handle low-frequency warps present in scanned
range data. By relying in ICP for feature correspondences,
it is both robust an efficient, while the thin-plate spline al-
lows it to flexibly and compactly represent the warp. The
principal drawback we have noticed is that very high reso-
lution data is required for accurate warps. This is because
closest point computations are made only to vertices in the
target mesh; if those vertices are spaced too far apart, the
feature correspondence will be skewed. In our experience,
the resulting warp still provides a good alignment, but is
less smooth and warps non-overlapping areas of the source
mesh more than necessary.

As future work, we would like to improve the selec-
tion of control points for the warp. Since the time to warp
a mesh is directly proportional to the number of control
points used, it is desirable to have as few as possible, as
well-placed as possible. We would also like to improve
our memory efficiency, and explore out-of-core implemen-
tations so that we can work with larger data sets.

Another area of future work is to incorporate any knowl-
edge we may have of calibration and measurement error
into the thin-plate spline computation. Using this informa-
tion, to the extent it is available, should improve the accu-
racy of the resulting model, while maintaining alignment
consistency.

Finally, we can currently align meshes only pairwise.
We plan to extend our system in the future to support global
registration in an efficient way. An obvious possibility is
to incrementally add range scans to a global mesh. Un-
like rigid-body ICP, we do not expect that alignment error
would increase as additional scans are added. However, we
do expect that the amount of warp will progressively in-
crease, so the problem is one of minimizing and distribut-
ing total warp rather than total error. Combined with the



(a) right shoulder chest a (b) Unwarpedface4 e (c) Alignment quality.

■ No overlap
■ Good ICP alignment
■ Good TPS alignment
■ Good ICP & TPS

(d) Affine portion of the warp; brighter is
more warp

(e) Non-affine portion of the warp (f) The full warp

(g) The merged mesh (h) Ear and hair merged after ICP
alignment

(i) Ear and hair merged after non-rigid
alignment

Figure 3.



many additional degrees of freedom in a thin-plate spline
vs. a rigid-body transformation, this makes direct applica-
tion of existing global registration techniques infeasible.
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