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Figure 1: Using non-rigid global alignment techniques, we are able to preserve more surface detail with fewer merging

artifacts, as seen in closeups of the upper-left edge of this Forma Urbis Romae fragment. (c) Using non-rigid alignment

(section 3.3) improves alignment enough to eliminate most surface noise. (d) Incorporating locally weighted ICP-based

feature correspondences (section 3.2) further improves detail alignment, notably eliminating double edges.

Abstract

A key challenge in reconstructing high-quality 3D scans is regis-
tering data from different viewpoints. Existing global (multiview)
alignment algorithms are restricted to rigid-body transformations,
and cannot adequately handle non-rigid warps frequently present
in real-world datasets. Moreover, algorithms that can compen-
sate for such warps between pairs of scans do not easily general-
ize to the multiview case. We present an algorithm for obtaining a
globally optimal alignment of multiple overlapping datasets in the
presence of low-frequency non-rigid deformations, such as those
caused by device nonlinearities or calibration error. The process
first obtains sparse correspondences between views using a locally
weighted, stability-guaranteeing variant of iterative closest points
(ICP). Global positions for feature points are found using a re-
laxation method, and the scans are warped to their final positions
using thin-plate splines. Our framework efficiently handles large
datasets — thousands of scans comprising hundreds of millions of
samples — for both rigid and non-rigid alignment, with the non-
rigid case requiring little overhead beyond rigid-body alignment.
We demonstrate that, relative to rigid-body registration, it improves
the quality of alignment and better preserves detail in 3D datasets
from a variety of scanners exhibiting non-rigid distortion.

1 Introduction

Range scanning is a common method for acquiring three-
dimensional models of real objects. Because a range scanner sees
only a single viewpoint at a time, a complete model requires merg-
ing several scans. With small objects, it is easy to obtain calibrated
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motion of the scanner or object — by placing the object on a mo-
torized turntable, for example — so that the relative alignments be-
tween range scans are known. However, this is not possible for large
objects such as Michelangelo’s statues, nor when both the top and
bottom of an object need to be scanned as well as the sides. In these
cases, the range scans must be aligned after acquisition. Because
they must be merged and retriangulated to obtain a final mesh, even
small misalignment leads to smoothing of high-frequency details
in the merged mesh. Larger misalignments may result in corrupt
reconstructions.

Although existing global (multiview) registration techniques as-
sume that the scans can be aligned using only rigid-body trans-
formations, there are several practical situations in which this as-
sumption is invalid. In the case of data acquired by the Digital
Michelangelo Project [Levoy et al. 2000], the desired precision of
approximately 0.25 mm combined with viewing volumes over 5 m
made perfect scanner calibration unattainable, leading to warping
on the order of several millimeters. Even much smaller scanners,
which acquire similar-resolution geometry in a much smaller work-
ing volume, exhibit warping when their resolution is pushed to the
maximum (Figure 2). Over time, we believe that calibration will
get harder, not easier, because sensor resolution is increasing faster
than lens and motor precision.

We propose a method for simultaneously computing non-rigid
warps to a large collection of 3D meshes, in order to minimize scan-
to-scan distances in all overlapping regions. The alignment mini-
mizes the warp applied to each scan, and distributes error evenly
across all meshes. By correctly aligning surface details, the method
ensures that low-frequency errors do not corrupt high frequencies of
the reconstruction: the merged models exhibit less smoothing and
fewer artifacts than their rigidly-aligned counterparts (Figure 1).

Our registration goals are high alignment accuracy and efficiency
on large datasets. Specifically, we preserve the overall shape of the
scans, which is generally correct, while improving the alignment of
surface detail so that the final model is sharper. Since the warp is
low frequency, we use a relatively small number of control points,
which improves performance and helps prevent high-frequency dis-
tortions. We also avoid performing matrix operations such as sin-
gular value decomposition on the pairwise constraint matrix so that
we can scale to arbitrarily large data sets. Our main contributions
are the following:

1. Feature correspondences: We introduce a novel variant of iter-
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Figure 2: Rigid vs. non-rigid alignments of range scans from different 3-D scanners. The gray figures show two range scans (light and dark) superimposed,

while the color figures show the alignment error between the two scans. Low-frequency warp in the initial range scans leads to biased alignment error, which

in turn causes one scan to be in front of the other over large contiguous regions. Since the non-rigid alignments compensate for this warp, bias is removed, and

neither scan appears consistently in front of the other. Non-rigid registration also reduces alignment error across the scan, as shown in the color figures.

ative closest points (ICP), locally weighted ICP, for efficiently
finding correspondences between deformed ranged scans.

2. Global optimization: Our global optimization framework is
highly parallelizable and memory efficient, making it practical
for arbitrarily large datasets. It is agnostic to the final trans-
formation, so that it is suitable for rigid as well as non-rigid
alignment.

3. Thin-plate spline warp: We show how to use non-rigid thin-
plate spline warps to consistently warp many scans simultane-
ously. Their use in range scan alignment has previously been
limited to pairs of range scans.

2 Previous Work

Pairwise Rigid-Body Alignment: The most common algorithm
for pairwise range-scan alignment is Iterative Closest Points (ICP),
originally introduced by Besl and McKay [1992] and Chen and
Medioni [1992]. ICP begins with an initial estimate of the align-
ment, refines it by repeatedly selecting points on one or both mod-
els, finding closest points in the other mesh, and computing the
rigid body transform that minimizes the least squares error between
the two point sets. Gelfand et al. [2003] improve alignment perfor-
mance and quality by selecting feature points that will constrain all
degrees of freedom in the rigid-body transform. Because rigid-body
transforms have only six parameters, they are efficient to compute
and apply, and do not overfit the (possibly) poor correspondences
in early iterations. On the other hand, the algorithm relies on these
properties, and does not extend easily to more complex transforms.

Global Rigid-Body Alignment: Several algorithms have been
proposed for simultaneously registering a collection of scans, using
rigid-body alignments. Chen and Medioni [1992] perform global
alignment by incrementally aligning new range scans to all pre-
vious ones. Since error accumulates with successive scans (Fig-
ure 4), more recent algorithms focus on distributing the error more
evenly across scans. Bergevin et al. [1996] iteratively align each
scan to all others, until the errors stabilize and are well-distributed.
Pulli [1999] improves the practicality of this approach for large
collections of scans by finding corresponding points between pairs
of meshes, then repeatedly aligning single scans to all others us-
ing these correspondences until the system converges. Neuge-
bauer [1997], Benjemaa and Schmitt [1998], Williams and Ben-
namoun [2000], Li and Guskov [2005], and Krishnan et al. [2005]
describe closed-form methods for determining the alignment of all
scans simultaneously, while Wen et al. [2005] simultaneously solve
for both rigid pose and target feature positions, assuming corre-

spondences are known. Huang et al. [2006] incorporate a non-
intersection constraint during global registration. Our method is
most similar to Pulli’s: we scale to large datasets by dividing regis-
tration into two phases, a computationally expensive yet paralleliz-
able pairwise alignment for all pairs of overlapping scans followed
by a global optimization based only on point pairs computed during
the first phase.

Non-Rigid Alignment Techniques: Ikemoto et al. [2003] address
the rigid-body constraint of ICP by dicing each range scan, and
performing global rigid-body alignment on the overlapping pieces.
This can accommodate low-frequency warps, but causes smooth-
ing. Also, its running time is quadratic in the amount of dicing
performed. The Florentine Pietà Project [Bernardini et al. 2002]
uses ICP alignment but also incorporates image-based alignment
and conformance smoothing of overlapping scans along scanner
lines-of-sight to improve the registration further. Hänel et al. [2003]
present an extension to ICP that allows deformable objects to be
aligned by computing rigid-body warps on different parts of a
jointed skeleton. Allen et al. [2003] use an affine transformation
at each vertex of the source mesh to allow non-rigid registrations
of full-body scans to a high-resolution template. In contrast, we
assume a low-frequency deformation which allows us to compute
a warp more efficiently using many fewer parameters. Shum and
Szeliski [2000] perform nonrigid alignment of images using fea-
ture correspondences, which is similar to our work in many ways.
However, the global optimization is performed only on the rigid
part of the transformation, with the nonrigid warp based on an av-
erage of correspondence locations. Due to the irregular nature of
3-D scan overlaps, such an approach leads to unacceptable artifacts
in our case (Figure 7).

Thin-Plate Splines: The thin-plate spline that we use to repre-
sent our warp has been extensively used in the pairwise context
in medical imaging applications, where its use was first proposed
by Bookstein [1989]. Chui and Rangarajan [2003] compute point
correspondence iteratively using a softassign/deterministic anneal-
ing framework to align both medical and non-medical data in 2-D
and 3-D using thin-plate splines. Rather than assigning features
based on closest points as in ICP, each pair of points is assigned
a probability of corresponding based on a Gaussian function of
their distance from each other (softassign). Jian and Vemuri [2005]
match Gaussian mixture models as opposed to the data points them-
selves. These algorithms assume that high frequency information
is unreliable (as in the case of scans of two different brains). This
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Figure 3: The global alignment framework. We compute pairwise correspondences between features selected on each range scan and all other range scans.

From these we obtain a set of global features whose positions on each range scan are known. Next we optimize the locations of these features using relative

distances between them as constraints. Finally, we warp and align each range scan using the features as control points of a thin-plate spline.

makes them inappropriate for range scan alignment, where accu-
rately aligning high frequency detail is a primary goal.

The thin-plate spline has also been used for pairwise registration
of large range scans [Brown and Rusinkiewicz 2004]. Feature cor-
respondences are obtained by dicing one range scan hierarchically,
and aligning each piece separately to the other range scan using
ICP. The method provides improved pairwise alignments, but in-
cludes no mechanism for computing any globally consistent warp-
ing among many range scans. Also, the discontinuities between
piecewise alignments in the feature correspondence computation
are apparent in the structure of the spline warp.

3 Global Alignment Framework

Global alignment aims to find alignments for all scans which min-
imize overall alignment error while distributing it evenly among
scans. Significant error generally results in smoothing and/or ar-
tifacts in the final mesh; since low-frequency error in individual
range scans produces substantial rigid-body misalignment, it effec-
tively causes error at all frequencies in the merged result. In the
non-rigid case, the undesirable high frequency misalignment can
be traded for a low frequency warp in the range data, restricting the
final error to the frequencies where error already existed. On the
other hand, it is possible to produce a badly warped global align-
ment which nevertheless has low alignment error, so it is important
to minimize and evenly distribute the warp.

The simplest approach to aligning multiple scans is to sequen-
tially align each scan to either the single previous scan, or to all
previous scans. While this frequently works for small models, it
does not scale well. Small alignment errors accumulate with each
successive scan so that the last scans to be incorporated have far

Figure 4: Edge scans from Forma

Urbis Romae fragment 033 aligned

sequentially, using non-rigid align-

ment. Error accumulates with each

scan, such that the first and last scans

do not align at all. In this case, the

scans started correctly aligned; all er-

ror is due to the alignment process.

Figure 5: The peach scan has been

simultaneously aligned to the blue

and red scans using non-rigid align-

ment. The result is that it has been

pulled in two directions at once, lead-

ing to stretching and high-frequency

artifacts such as the pinched region

on the nose.

higher error than the first ones. This is easily seen in examples such
as 4, where the scans form a closed ring. Although these scans from
the edge of a Forma Urbis Romae fragment in fact form a closed
loop, the first and last scans in the sequence do not align because of
the accumulated error. Successive non-rigid alignment fares even
worse, because warp can accumulate as well. A more successful
alternative for rigid registration is to iteratively align each scan ei-
ther to all scans or to all previously aligned scans. Unfortunately,
the additional freedom of the non-rigid warp causes serious prob-
lems for this class of algorithms. Figure 5 shows the result of a
range scan being pulled in two directions at once by simultaneous
alignment to two slightly misaligned scans: distortion and high fre-
quency artifacts then propagate through the alignment process. The
long running times for convergence and the requirement that all
scans be in memory simultaneously make these iterative technique
unsuitable for large datasets in any case.

We solve the problem of minimizing and distributing warp (Fig-
ure 3) by first finding the locations of a common set of features on
all range scans, using the locally weighted ICP method described in
Section 3.2. Conceptually, we might find the locations of the war-
rior’s mouth, elbow, shoulder and collar bone in every range scan.
We next find positions in space for each of these feature points, such
that each range scan can be mapped to these locations with minimal
warp. Finally, using these features as control points, we compute a
thin-plate spline warp for each range scan that brings it into align-
ment with the global point positions (and hence with all other range
scans). Note that, as in most previous work on global registration,
we assume that an approximate initial alignment is available.

3.1 Feature Point Selection

Feature points must cover the entire model and yield stable corre-
spondence computations between range scans. While it may be in-
tuitive to think of these features as derived from the object (e.g. the
tip of David’s nose), we do not select them this way because we
have only the initial range scans available at this stage. Instead, we
select features on each range scan, then find their correspondences
on every other range scan. We select half the features using uni-
form random sampling (to ensure coverage in smooth areas of the
model), and half using the stable sampling technique described in
section 3.2 (to ensure we can find good feature correspondences
wherever possible).

Since the feature points will eventually define a spline, the num-
ber of points required depends in principle on the degree of warp in
the scans. In practice, however, we have found the algorithm to be
relatively insensitive to the number of points that are selected. In-
stead, we sample a fixed percentage of points from each range scan,
typically 1% for small models, 0.1% for medium-size models, and
less for very large models with a high degree of overlap, such as the
Digital Michelangelo scans.



(a) Selected samples and alignment for locally weighted ICP

of a feature point on the chin.

(b) Selected samples and alignment for a point in the hair.
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Figure 6: Locally weighted ICP focuses the alignment on a small region,

producing a better result in that area and a worse one elsewhere. We use

locally weighted ICP centered at feature points to compute accurate corre-

spondences.

3.2 Locally Weighted ICP for Correspondences

The next stage of our pipeline is to find the correspondence for each
feature point fi on each scan that overlaps it. In order to find cor-
respondences efficiently for thousands of points distributed across
many scans, we use a novel variant of the ICP algorithm. Although
ICP is usually used for aligning entire scans, it has also been used
on “diced” sections of scans to provide more local alignment [Ike-
moto et al. 2003; Brown and Rusinkiewicz 2004]. We extend this
idea with “locally weighted ICP,” which gives higher weight in the
registration to the portion of the mesh immediately surrounding a
feature fi. After alignment, the closest point on the other mesh is
used as the correspondence.

Our ICP variant is based on the “baseline” algorithm described
by Rusinkiewicz [2001], with a point-to-plane error metric, rejec-
tion of matches to edge points, closest-point computations acceler-
ated with a k-D tree, and matching based on compatibility of nor-
mals. For additional stability, we also use compatibility of mean
curvatures to improve matching.

Our major change is to the point-selection stage: source points
are sampled using a probability distribution that makes it more
likely that points near fi are used. The major component of the
probability is a decreasing function of distance from the feature
point fi under consideration:

pfeature(x) =
1

ε +‖x− fi‖2
. (1)

If, however, the weight were based entirely on this, there would be
a danger of selecting only points that lie on a region of the mesh
without sufficient geometric variation to constrain all six degrees
of freedom of a rigid-body transformation. Therefore, we augment
the probability function with a term that assigns high probability to
locations on the mesh that constraint the alignment:

pstability(x) =
(

x×nx nx

)

C−1

(

x×nx

nx

)

, (2)

where C is the 6×6 point-to-plane ICP covariance matrix computed
over the entire region of overlap of the scans (see [Gelfand et al.
2003] for a derivation of the expression for ICP stability). Intu-
itively, the covariance matrix has small eigenvalues corresponding
to transformations that are not well-constrained, hence using its in-
verse will assign higher probability to points that are important for
these under-constrained degrees of freedom.

Note that Gelfand et al. [2003] samples for stability in a slightly
different fashion. Whereas we compute a probability distribution,
that work computes the stability of every point with respect to each
of the six degrees of freedom, sorts these six lists and selects points
from the top of each. For the Forma Urbis Romae data considered
in that paper, the set of constraining points is of nearly measure
zero, and sorting is essential for a stable alignment. For less patho-
logical data sets, however, sorting leads to “clumping” of the sam-
ples and is less effective than sampling the probability distribution.

Our final probability function consists of the product of pfeature

and pstability. The function is normalized, integrated into a cumula-
tive distribution function, then numerically inverted to transform
a uniform random variable into samples to be selected (i.e., the
“inversion method” for importance sampling). A separate locally
weighted ICP is run for each feature point fi, and the nearest point
on the target range scan is selected as the correspondence to fi. Fig-
ure 6 shows the results of aligning a pair of scans for two different
feature points. Note that the points used for ICP are selected in the
vicinity of the feature points, leading to lower alignment errors in
those regions, and therefore more accurate correspondences.

Our feature correspondence algorithm adds little to the total
computation time, relative to the time that would be required for
rigid-body registration. Because an initial overall alignment of each
pair of range scans is performed first, it takes only a few iterations
of ICP (taking a few milliseconds) to perform each weighted align-
ment. The most expensive parts of the ICP, building k-D trees and
computing the overlapping region between each pair of meshes, are
computed only once per pair. Per-vertex normals and curvatures are
generated and smoothed (to remove noise) as a preprocess, so this
computation is performed only once per range scan.

3.3 Global Point Positioning

For a given feature i, we denote the location of its correspondence
on mesh m by fm

i . In order to compute a consistent alignment, we
need to find a “global position” gi for each feature point, based on
the known correspondences fm

i . Moreover, we must find global po-
sitions that do not induce unnecessary warp, as in Figures 5 and 7.
Intuitively, for any mesh m, the mutual arrangement of all feature
locations fm

i should differ as little as possible from the spatial ar-
rangement of the corresponding gi. If all correspondences are cor-
rect, and there exists a rigid-body alignment of all scans, then these
spatial arrangements should be identical; in the presence of a low
frequency warp this will be almost true, with nearby features main-
taining their spatial arrangement better than distant ones.

Two simple (albeit inadequate) heuristics for computing the po-
sition of each gi, illustrate the relationship between each gi and the
corresponding fm

i . The first places each gi at the location where the
feature was originally selected. By this, we mean that if feature i
was initially chosen among the vertices of mesh m, then gi = fm

i .
Unless the range scans were perfectly aligned to start with, this will
result in mutually inconsistent positions for the gi, and we will have
a situation akin to Figure 5. Alternatively, we could set the position
of gi to be the average over all fm

i . This too will fail, since even
nearby features have correspondences on different sets of range
scans (Figure 7), again resulting in mutually global positions.

Instead, guided by the intuition that global point positions should
be affected by their geometric configuration relative to neighboring
features, we optimize for the gi by attempting to preserve their rela-
tive distances, as computed within each mesh. This is in some ways



similar to the approach of Laplacian mesh coordinates [Sorkine
et al. 2004], in which each vertex is represented relative to its neigh-
bors. Conceptually, we consider placing a “spring” with non-zero
rest length between all pairs of features i and j. Assuming feature i
was originally selected on mesh m and feature j on mesh n, we set

this rest length to be 1
2 (|fm

i − fm
j |+ |fn

i − fn
j |) (Figure 8).
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Figure 7: Mutually consistent global feature positions must be selected to

prevent unnecessary warp from being introduced. Here the average position

for each feature was used; these are not mutually consistent because the

green feature has no correspondence on the bottom scan.

f 1
3

f 1
2

f 1
5

f 2
1

f 2
4

f 2
3

f 2
1

f 1
5

f 1
2

f 1
3

f 2
4

g4

g1

g2

g5

g3

f 2
3

Scan 1

Scan 2

Scan 1

Scan 2

Figure 8: Above: Global feature points are attached to each other by springs

whose desired length is based on distances along range scans. Since the red

(f2), green (f3) and magenta (f5) features are all associated with the top scan,

the rest length of the springs attaching them is the actual distance between

the features. However the rest length of the springs attaching f3 to the blue

(f1) and brown (f4) ones is based on the distance from the green feature’s

correspondence on the bottom scan. Below: Point positions are adjusted to

minimize the total spring energy, ensuring that the aligned meshes will have

minimal warp.

Mathematically, we form an error metric for each point pair:

Ei j = ∑
m

wi j

(

|gi −g j|− |fm
i − fm

j |
)2

, (3)

where the weighted sum is taken over all meshes m such that either:

• Both features i and j were originally selected on mesh m, or

• Feature i was selected on m and feature j has a valid correspon-
dence fm

j on m.

The overall energy function is the sum of all the pairwise functions.
To minimize it, we initialize each gi to be the average of all valid fm

i ,
then move one point at a time using gradient descent. Despite the
simplicity of this approach, we have found it to be efficient and ro-
bust (in particular, it is more stable than Newton’s method), though
of course it is not guaranteed to converge to a global minimum.

3.4 Outlier Rejection

Our global point positioning approach shares the drawback of all
least-squares methods: it is sensitive to outliers. Incorrect corre-

spondences, which occur most commonly in flat areas, lead to in-
correct springs and poor feature positioning. Therefore, we imple-
ment aggressive pruning of outlier correspondences, based on the
error and stability information we obtain from ICP, both in isola-
tion and in relation to nearby features.

The first stage of outlier rejection is based on absolute error
thresholds. If the unweighted ICP we perform between a pair of
scans before computing correspondences fails (due to lack of stabil-
ity or insufficient overlap), we do not record any correspondences
between that pair of meshes. We also reject any correspondence (1)
whose RMS ICP error (point-to-plane distance) is above a thresh-
old (30 mm), (2) which is more than 50 mm from the average fea-
ture location, or (3) whose stability (as reported by locally-weighted
ICP — Equation 2) is lower than 0.001. These thresholds are only
designed to eliminate egregious correspondences, and are therefore
set to be large relative to the mesh sample spacing.

After optimizing feature point locations, we do additional prun-
ing of points based on aggregate error. The first step is to thin out
feature points, so that no two features are closer than some thresh-
old to each other. Starting from each remaining feature point, we
find all other feature points within this distance, and discard all
but the one with lowest spring energy. This helps prevent high-
frequency artifacts due to positioning errors, but more importantly
it reduces the running time of computing thin-plate splines. The ap-
propriate threshold to use depends on the sampling density and size
of the dataset. For Digital Michelangelo data we use a minimum
distance of 8 mm, while for small datasets such as the penguin we
allow points to be closer — about 2.5 mm.

Next we discard features which move too far relative to their
nearby features on the same mesh. For each mesh m, we consider
the list of features with correspondences on that mesh. For each
of these features fm

i , we find the 8 nearest features (again with cor-
respondences on the mesh), and calculate the median distance d
between the feature locations on mesh m and their global positions.
If |gi − fm

i | > 4d, we discard feature i. After all of these pruning
steps we re-optimize the locations of the remaining feature points.

3.5 Warping with Thin-Plate Splines

Once the global features are positioned, all range scans must be
warped to align to them. That is, we compute the warp that maps
all the fm

i on scan m to their global positions gi, and apply that warp
to the entire scan. (Since these warps are computed independently
for each scan, we drop m from our notation in this section, referring
instead to fi.) The nature of the warp can be complex, difficult to
model, and vary between data sets. For instance, calibration error,
lens distortion, combining input from different sensors, and object
movement all cause different kinds of warp. Each of these is diffi-
cult to model on its own, and we would like to handle all of them
seamlessly. As in a number of other non-rigid alignment systems,
such as [Brown and Rusinkiewicz 2004] and [Chui and Rangara-
jan 2003], we turn to the thin-plate spline. However, we extend the
use of the thin-plate spline to global registration by mapping each
feature point onto its global position.

Here we briefly summarize the properties of the thin-plate spline,
originally introduced by Duchon [1977]. It is a non-rigid, globally
smooth function that is easily computable, separable into affine and
non-affine components, and contains the least possible non-affine
warping component to achieve the mapping. By the last statement,
we mean that the sum of squares of all second order partial deriva-
tives is minimized. So, if S : Rn → R is an n-dimensional thin-
plate spline, the bending energy,

J =
∫

(

∑
i, j

S
2
fif j

)

df1 . . . dfn (4)

is minimal. Note that since affine transformations are linear, they
contribute no error under this metric.



Duchon proves that, for two corresponding point sets
F = (f1 . . . fn)

t and G = (g1 . . . gn)
t , there is a unique function S

such that S (fi) = gi and whose bending energy is minimal. Fur-
thermore, this function takes the form Ax + WK(x), where x is
a point written in homogeneous coordinates, A is an affine trans-
formation, W is a fixed n-dimensional row vector of non-affine
warping parameters constrained to WFt = 0, and K(x) is an n-
dimensional column vector where K(x)i is the Green’s function

U(|x− fi|). In our case (minimizing second order partials in R3), U
is simply |x− fi|; the constant factor is implicitly folded into W .

Thin-plate splines need not be interpolating. Instead, they can
minimize the energy functional [Duchon 1977; Wahba 1990]

Eλ =
1

n
∑ |gi −S (fi)|

2 +λJ (5)

The spline will not be interpolating in this case, but for any fixed λ ,
there will still be a unique minimum, of the form described above.

For the interpolating case, the thin-plate spline specification pro-
vides a linear system of equations. For the approximating case,
[Wahba 1990, eqs. 2.4.23 and 2.4.24] derives a similar system of
equations by rewriting Equation 5 in matrix form, performing a QR
decomposition on S , and simplifying:

AF +W (K +nλ I) = G

WFt = 0
(6)

where K is n×n and Ki j = U(|fi − f j|).
Because we would like very precise alignments (since multiple

measurements of rigid objects should align precisely), the spline
must be heavily weighted toward interpolation. For this reason we
must rely on accurate correspondences to produce a good align-
ment. Nevertheless, we set λ to a very small value (10−10), because
doing so improves the numerical stability of Equation 6 when many
point pairs are used.

4 Results

We present alignment results from a variety of sources. The Dig-
ital Michelangelo scanner acquires range scans up to 50 cm long,
with a warp of several millimeters. The commercially available
NextEngine and Minolta Vivid scanners have much lower warp for
a similar resolution, but acquire commensurately smaller viewing
volumes. We also show applications of our methods to a photomet-
ric stereo dataset, which exhibits a different and much larger warp.

4.1 Digital Michelangelo Scanner

Michelangelo’s David: Figure 10 shows closeups of the head of
Michelangelo’s David, created with global rigid-body alignment,
and with our non-rigid alignment. Figure 9 shows cross sections
of the range scan positions for each range scan at the right edge
of the eye after ICP alignment and after our non-rigid alignment,
as well as histograms of alignment error under rigid and non-rigid
alignments. The original data set for David’s head is 1406 range
scans, and the final model contains 28 million vertices when merged
at 0.25 mm precision with VRIP [Curless and Levoy 1996].

The most obvious difference between the rigid and non-rigid
models is the reduction in merging artifacts and smoothing due to
misalignment. This is especially apparent in areas of high detail,
such as the closeup of David’s hair shown in Figures 10(e) and
10(f). Here, some of the chisel marks between locks of hair are
badly smoothed in the rigid-body version, while others are nearly
obliterated. The non-rigid version is sharper and clearer. More
subtly (and counter-intuitively), rigid-body alignment can distort
shapes, as it has in the pupil of David’s right eye (Figure 10(a)).
This occurs because the merging process follows different mis-
aligned range scans in different areas. With nonrigid alignment this
artifact is removed, and the local shape is better preserved.
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Figure 9: Alignment error plots for David’s head. The line plots at right

show the depths of the aligned range scans along the marked line on David’s

eye. The larger spread on the rigid scans (above) compared to the non-

rigid ones (below) causes the smoothing and artifacts seen in figure. At

the lower left are histograms of alignment error under rigid-body and non-

rigid registration. The rigid-body alignment histogram reveals a long tail

of misalignments by several millimeters, which corresponds to the greater

spread of range scans seen in the depth plots.

We sampled 0.0075% of the range scan vertices to use as fea-
tures, resulting in 16499 feature points, of which 5832 were re-
tained for global registration. Much of the sample rejection comes
during the point thinning stage, so that increasing the sampling rate
would not improve alignment quality. Correspondence required 78
hours of CPU time, distributed across 60 nodes of a cluster (1.5
hours of wall clock time), while global point positioning required
an additional 30 minutes on a single processor.

Forma Urbis Romae: Figure 1 shows piece 033 from the Forma
Urbis Romae data set [Levoy et al. 2000]. Because the only fea-
tures available on the top of these scans are 1/2 mm-deep incisions,
alignment is particularly tricky. Furthermore, scans taken at an an-
gle so as to capture both the top and sides of the pieces cannot
generally capture the incision due to self-occlusion; instead these
scans contain holes with noisy boundaries. Because no full model
of this piece previously existed, we have generated four different
versions using our algorithms, ranging from a classic rigid-body
alignment to the full non-rigid treatment. For Figures 1(a) and 1(c)
we disabled locally weighted ICP; a single unweighted ICP align-
ment is computed for each pair of range scans, but no additional
locally weighted ICPs are performed before reading off correspon-
dences. This is similar to the pairwise alignments/correspondences
computed in other multiview rigid-body algorithms. Similarly, for
Figures 1(a) and 1(b), we did not compute thin-plate spline trans-
forms. Instead, we perform our usual global point positioning, but
compute only the best rigid-body alignment of each scan.

As is evident in Figures 1(a) and 1(b), rigid-body alignment leads
to substantial misalignment of the top, resulting in surface rough-
ness. Harder to see are the phantom incisions due to misalignment,
which show up in both rigid-body alignments and when locally
weighted ICP is removed. Some of these are circled in 1(c). We
have found that the top is consistently better with weighted ICP
correspondences and thin-plate spline alignments. The top edges
are also cleaner due to better alignment of the sides with the top.

The parameters for aligning this model are only slightly different
than those used for David’s head. Because there are only a tenth as
many scans, we used ten times the sampling rate to achieve a similar
feature density (0.075%). Also, as discussed in Section 3.2, the top
surface of these fragments required taking only the highest-stability
points for ICP, while the non-pathological edges and bottom used
the (more robust) stability sampling. Correspondences required 48
CPU hours, while global registration took 27 minutes.

Awakening: This model (Figure 11) consists of 1836 range scans.
While this is less than 50% more scans than David’s head, the
model is much larger, with a lower degree of overlap. As with



the other models, our non-rigid alignment improves the sharpness
while reducing artifacts in areas of high detail such as the face and
thigh. Correspondences required 51.5 CPU hours, and global align-
ment required 1 hour.

4.2 Other 3-D Scanners

While the Digital Michelangelo scanner achieves high resolution
for its working volume, and consequently has especially large de-
formations, the problem is not limited to this scanner. As shown in
figure 2, the commercially-available NextEngine Desktop 3D Scan-
ner and Minolta Vivid 910, both based on laser triangulation, con-
tain small yet measurable deformation, and we expect that other
commercial scanners do as well. Once again, the non-rigid align-
ments reduce the alignment error (Figure 12). While these deforma-
tions are tenths of millimeters rather than millimeters, the working
volume is also an order of magnitude smaller.

We have also tested our methods on datasets produced by scan-
ners not based on the principles of triangulation. In particular, the
penguin dataset in Figure 13 was captured using photometric stereo
[Woodham 1980], which estimates the surface normals based on
observations of a surface under multiple lighting conditions. These
normals are integrated to obtain surface geometry, and any small
bias in the normals, such as that due to interreflection, accumulates
to produce warped geometry. Here too, non-rigid alignment can
help. Figure 13 shows the penguin model scanned using photomet-
ric stereo and aligned using rigid and non-rigid alignment. While
Nehab et al. [2005] have demonstrated the ability to correct for this
bias by combining photometric normals with triangulation data, our
methods can work with the biased normal scans directly.

The penguin required 25 minutes for correspondence computa-
tion and one minute for global alignment, while the warrior required
1.5 hours for correspondences and 2 minutes for global registration.
Because these models are so much smaller, the feature sampling
rate was increased to 0.1%, the minimum distance between fea-
tures was reduced to 3 mm, and the minimum stability threshold
for correspondences was raised to 0.01.

5 Discussion and Future Work

We have presented an algorithm for global non-rigid alignment of
three dimensional range scans. Our algorithm is robust not only
to noise, but also to non-linear warp caused by scanner calibra-
tion error. We recover accurate feature correspondences using a
locally weighted, stable ICP computation, then obtain a consis-
tent set of range scans using thin-plate spline warps. The resulting
merged models contain more detail than rigidly-aligned versions
when scans contain warp. The algorithm scales well with data size,
requiring running time proportional to the number of overlapping
pairs of scans. Because of its scalability and efficiency, we have
found it to be a practical method for rigid as well as nonrigid align-
ment of models of all sizes.

It is important to be clear about the ways in which our results are
“better” than those produced by rigid-body alignment. Indeed, we
can not claim to produce results whose overall shape is necessarily
closer to the original, since there is just as much uncertainty in the
overall position of the scans. However, by avoiding the loss of high-
frequency detail caused by low-frequency warps, our final meshes
are more precise than those produced using rigid-body alignment.
Moreover, because of the deformation-minimizing properties of
thin-plate splines, our results reflect the minimum non-rigid warp
necessary to compensate for deformation in the data. As imagers
and 3D scanners become more ubiquitous and inexpensive, and as
they are pushed to their resolution and working-volume limits, we
believe that in many situations calibration will become the ultimate
limit on achievable quality. Our algorithm produces results that
maximize the high-frequency fidelity of the result while introduc-
ing minimum deviation from the original data.

There are some areas of the algorithm which will benefit from
further refinement. In certain areas, such as the top of David’s
head, the acquired range scans are simply of poor quality. Large,
flat areas on the sides and bottoms of Forma Urbis fragments are
fundamentally unstable. By incorporating existing confidence data
into our framework, detecting outlier scan regions during the merg-
ing process, and dynamically selecting whether to perform locally
weighted ICP in unstable regions, we can improve the final mesh
quality in these areas. Doing so would likely reduce high frequency
error further at the expense of simplicity.

There is also room for improvement in the outlier rejection it-
self. In particular, we believe it would be better to reject correspon-
dences which large spring energy relative to their neighbors or to
other correspondences of the same feature rather than rejecting fea-
ture points themselves. While this is simple to do in our framework,
we have not yet implemented it.
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(c) Rigid Eye (d) Non-Rigid

(e) Rigid Leg (f) Non-Rigid

Figure 11: Michelangelo’s Awakening. Non-rigid alignment yields sharper

detail, especially on the face, while reducing misalignment artifacts such as

on the leg.
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Figure 12: The warrior was scanned using the commercially-available NextEngine 3D Desktop Scanner — a laser triangulation scanner. The central images

show each range scan in a different color under rigid and non-rigid alignment. The large fields of a single color in the rigid alignment indicate biased

misalignment due to warp; the more mottled color of the non-rigid alignment shows that this bias has been removed. The plots at the right show the depths of

each range scan along the marked line.
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Figure 13: This penguin was acquired using photometric stereo, which acquires and integrates a normal field rather than capturing geometry directly. Small

errors and bias in the normal field (due to interreflection, for instance) compound to produce large warps in the geometry. Under rigid-body alignment, these

lead not only to increased blurring, but also to “tears,” two of which are shown here. At the right, we show a depth plot of all range scans under rigid and

non-rigid alignment along the marked line.
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