
Adaptive Cutaways for Comprehensible Rendering of Polygonal Scenes

Michael Burns
Princeton University

Adam Finkelstein
Princeton University

Figure 1: From left to right, the hull of a galleon is cut away to reveal cannons on the interior. Changing camera updates the cutaway shape,
exemplified by the leftmost exposed cannon. A further row of cannons is exposed, and the camera is zoomed in.

Abstract
In 3D renderings of complex scenes, objects of interest may be
occluded by those of secondary importance. Cutaway renderings
address this problem by omitting portions of secondary objects so
as to expose the objects of interest. This paper introduces a method
for generating cutaway renderings of polygonal scenes at interac-
tive frame rates, using illustrative and non-photorealistic rendering
cues to expose objects of interest in the context of surrounding ob-
jects. We describe a method for creating a view-dependent cutaway
shape along with modifications to the polygonal rendering pipeline
to create cutaway renderings. Applications for this technique in-
clude architectural modeling, path planning, and computer games.

Keywords: Cutaway diagram, NPR, visibility, distance transform

1 Introduction
With advances in 3D modeling, processing, and rendering capabil-
ities, challenges brought by model complexity increasingly involve
comprehension. Complex scenes may contain hundreds or thou-
sands of objects, many in close proximity to each other and often
nested within other objects. Challenges include visual clutter, navi-
gation, and occlusion. This paper addresses the occlusion challenge
by offering a method for exposing hidden objects of interest while
preserving contextual information of the scene.

The problem of occlusion occurs in many interactive scenarios
with changing camera and dynamic scene structure. In modeling
complex scenes like buildings with interiors, it is often difficult to
position and view objects in building interiors, as objects are easily
occluded by walls and other objects. In VR and gaming, camera
views that are far away from a character are limitedly effective be-
cause once a character enters or moves behind any type of opaque
structure, they are no longer visible.

One strategy for revealing objects of interest occluded by objects
of secondary importance (secondary objects) is to simply omit the
latter. Unfortunately, this strategy also removes information about

objects’ placement, or context, in the scene. Artists have addressed
this problem in the past by creating cutaway illustrations that selec-
tively omit portions of secondary objects in the area in front of the
objects of interest, relative to the viewpoint. Such illustrations give
the impression that secondary objects have been cut by knife so as
to remove occluding material and expose objects of interest.

Our goal is to create cutaway renderings of complex, dynamic
polygonal scenes under changing viewpoint at interactive frame
rates, allowing one to effectively visualize objects of interest in the
context of their surroundings. Cutaways that automatically expose
individual pieces of furniture, whole room interiors, or characters
moving through buildings could ease problems with camera place-
ment and provide enriched visualization experiences.

There are several challenges associated with creating cutaway
illustrations. One challenge is in determining the regions of 3D
space that occlude objects of interest in a scene. This region may
be represented by a cutaway surface that defines the boundary be-
tween occluding and non-occluding regions. Previous work has de-
scribed image-based cutaway surface generation techniques using
signal processing algorithms or geometry-based techniques using
CSG algorithms, but have suffered from non-interactivity in either
changing viewpoint or dynamic object geometry.

Another challenge is the visualization of cut surfaces, which lie
at intersections of the cutaway surface with interiors of secondary
objects that are cut away. Put another way, cut surfaces are inte-
rior surfaces of solid objects that are made visible by the cutaway
action. Volumetric rendering naturally renders interior materials of
solid objects that have been exposed by the cutaway so no special
care needs to be taken in cutaways of volumetric material. Previous
efforts in polygonal rendering have created explicit cutaway surface
geometry that can be rendered with CSG stencil buffer techniques,
which can be expensive for changing cutaway shape.

To address these challenges, we introduce a flexible image-
space cutaway surface generation algorithm based on jump flood-
ing [Rong and Tan 2006] to generate a depth-image representation
of the cutaway surface at interactive frame rates. We then intro-
duce augmentations to the polygonal rendering pipeline to remove
occluding material and to render exposed cut surfaces. We also
introduce non-photorealistic rendering techniques to provide addi-
tional context information for secondary objects. We present results
that show how these techniques can be used to effectively expose
objects of interest along with the contextual placement and structure
of secondary objects in complex, dynamic 3D scenes.

2 Related Work
Previous work to address this visibility challenge may be broadly
separated into volumetric and polygonal rendering methods.

Figure 2: A cutaway illustration is shown beneath a plot of depth
values for a single row of pixels (white dotted line). Material from
the secondary object (blue) is removed to expose the objects of in-
terest (green and red), which define the shape of the cutaway. Solid,
dashed, and dotted lines in the plot correspond to visible pixels,
cutaway surface, and camera rays, respectively

Volumetric rendering. Context-preserving volume rendering
[Bruckner et al. 2006], opacity peeling [Rezk-Salama and Kolb
2006], and the Clearview system [Krüger et al. 2006], generate
visualizations by ghosting and fading outer layers of material to
reveal inner structures, sometimes incorporating user-specification
of regions of interest. User-defined regions have been exposed in
peel-away [McGuffin et al. 2003; Correa et al. 2006] and exploded
visualizations [Bruckner and Gröller 2006]. Contextual cutaway
views have been used in medical imaging applications, to expose
an ultrasound plane embedded within a volume [Burns et al. 2007].

Importance-driven volume rendering [Viola et al. 2004] intro-
duces fully automatic object and view-dependent cutaway surface
generation by using signal processing on the depth buffer, and
introduces multiple rendering styles for the material in the cut-
away region, experimenting with transparency, screening, and other
density-reducing effects. Our work takes a similar approach with
respect to the cutaway representation but abandons the use of
Borgefors’ chamfer distance transform approximation [Borgefors
1986] for a more flexible jump flooding algorithm [Rong and Tan
2006], which allows greater explicit and adaptive control over the
cutaway shape. Jump flooding was introduced as a parallelizable
algorithm to create 2D distance transforms and Voronoi diagrams.

Polygonal rendering. Early cutaway work [Feiner and Selig-
mann 1992] used z-buffer and image processing techniques to cre-
ate images where occluding surfaces in front of objects of inter-
est were replaced by semi-transparent representations. Nested 3D
objects have been displayed using simple static geometric cutouts
[Diepstraten et al. 2003] defined by the intersection of two or more
half-spaces and breakaway views defined by inflated convex hulls
of objects. Predefined shape cutaways [Liang et al. 2005], where
the cut is influenced by a user-specified shape, have been used in
medical imaging applications to mimic the cuts a surgeon might
make in the course of an operation. Other techniques incorpo-
rate user-specification of the cutting surface [Coffin and Hollerer
2006] to create 3D geometric cutting volumes and use CSG render-

ing techniques to render cut surfaces. Recent work on interactive
illustrative cutaways [Li et al. 2007] introduces a flexible and ro-
bust illustration system for static scenes based on cutaway views
that depends heavily on user-specification of geometry types for all
objects in a scene and, due to high computational overhead, is non-
interactive for changing cuts and moving to arbitrary viewpoints.

3 Object-Defined Cutaways
Previous work on view-dependent cutaways has been unable to
achieve interactive frame rates for dynamic scenes under changing
viewpoint. In this scenario, occlusion of objects may change from
one frame to the next, requiring the cutaway action to be updated
per-frame. In order to minimize computation per frame, we have
chosen a cutaway style that avoids both expensive analysis of high-
level scene structure and extensive processing of secondary objects,
instead focusing processing time on a cutaway shape determined
only by the objects of interest. We have also chosen an image-
based cutaway representation (Section 3.1) and computation that
scales well with scene and model complexity and adds only a small
overhead to the overall scene rendering time. Such limited process-
ing results in a style that may violate traditional cutaway principles,
particularly in the shape of cuts in objects of secondary importance,
but still facilitates cutaway illustrations that exhibit several funda-
mentally desirable properties (Section 3.2).

3.1 Depth Image Cutaway Representation

At the heart of our cutaway rendering algorithm is the depth image
representation of the cutaway surface. Previous work [Viola et al.
2004] uses a chamfer distance transform approximation [Borgefors
1986] to create a depth image of a basic cutaway surface. This
requires rendering the back hulls of objects of interest into a depth
buffer, reading this buffer to the CPU to be processed by the cham-
fer algorithm, then writing the buffer back to video memory.

The chamfer distance transform on a binary image B approx-
imates a Euclidean 2D distance transform, which determines the
minimum distance d at each pixel p = (x, y) to an active pixel in B:

d(p) = min
q∈B
‖q− p‖ (1)

Note that this is equivalent to maximizing the following function,
where dmax is a maximum value for d, and d(p) = dmax would indi-
cate that p corresponds directly to an active pixel in B:

d(p) = max
q∈B

(dmax − ‖q− p‖)

By using a floating point input image I initialized with variable
depth values z(p) instead of dmax, and scaling the chamfer kernel
by m, the chamfer algorithm maximizes the following function:

d(p) = max
q∈I

(z(p)− m‖q− p‖) (2)

The surface defined by this function resembles the effect of an in-
finitely wide drill bit with slope m to the image plane passing over
each pixel p and drilling down along the z-axis to the depth z(p).
This surface can also be thought of as the rear hull of cones with
slope m to the image plane anchored along the z-axis and positioned
over each pixel at the depth z(p). A z-aligned cone with slope m to
the image plane makes an angle θ = tan m to the z-axis.

3.2 Basic Cutaway Surface

The surface defined by Equation 2 can represent a cutaway, by using
an input image I with depth values from the objects of interest. The
image I is initialized with the value of the near-plane depth (zero
in OpenGL), and the rear hulls of objects of interest are rendered
into the image so they “punch into” the near-plane, as shown in
Figure 3(a). Calculating the surface with m = tan−1

θ results in a
cutaway surface that makes an angle θ to the viewing vector, in an
orthographic projection (Figure 3(b)). The cutaway action discards

(a) Orthographic Initialization (b) Orthographic Cutaway (c) Perspective Cutaway

Figure 3: Depth plots with an orthographic camera are shown immediately after initialization (a) and after calculation of the cutaway
surface (b), which makes an angle θ to the view vector. With a perspective camera (c), calculation from post-projection input depths creates
a similar result. Un-projecting the depth values to world space shows that basic qualities of the cutaway shape are maintained.

portions of secondary objects with depth less than that of the sur-
face (in front of the surface). Such a cutaway surface exhibits the
following useful properties:

• The surface is view dependent so portions of secondary objects
that occlude objects of interest can be detected, and discarded.

• Portions of secondary objects can be discarded in various
amounts depending on their z-distance from the object of in-
terest, allowing viewing of nested structures.

• The amount of material discarded can be controlled by the angle
θ of the cutaway as desired, providing a balance between the
amount of material removed and the ability to locate the objects
within nested structures.

• The shape of the cutaway hugs the silhouettes of the objects of
interest, reducing the amount of material that has to be removed
in order to expose an object.

• Multiple objects of interest can define a single cutaway surface,
with the cutaway surface exposing all objects of interest jointly.

In a perspective projection, the modified distance transform of
post-projection depth values generates a surface with slightly dif-
ferent, but still useful, geometric properties. Since linear surfaces
are preserved in the perspective transformation, the surface is still
conical with linear edges but instead of the cone axes being aligned
along the z-axis, they are aligned along the viewing rays, as shown
in Figure 3(c). The precise angle of each cone is no longer con-
stant, since the slope m of a line can change depending on its depth
and projected position during the perspective transform. However,
the surface generated still exhibits all of the properties enumerated
above, so the transform remains valuable for creating a cutaway
surface in perspective projection scenarios.

4 Rendering Methods
In order to create view-dependent cutaway renderings, we use a
multi-pass rendering pipeline that consists of three main steps. In
the first step, the rear hulls of objects of interest are rendered into
a depth buffer, which is then processed to create a depth image
representation of a cutaway surface. The basic cutaway definition
has been described in Section 3, but further refinements, as well as
computation details, are described in Section 5. In the second step,
the secondary objects of the scene are rendered and clipped against
the cutaway depth image, and the objects of interest are rendered
completely (Section 4.1). In a final step, lines are composited to
give additional information about the shape of cut surfaces (Sec-
tion 4.2) and structures of partially clipped objects (Section 4.3).

4.1 Cutting Polygons

For a given cutaway surface depth image, we would like to ren-
der only portions of secondary objects behind the cutaway surface.
Since current graphics hardware does not support more than one
depth buffer test, we implement this in a fragment shader by com-
paring a fragment’s depth with the cutaway depth value at the frag-
ment’s location in screen space, discarding fragments appropriately.
This clipping is shown in Figure 4(a) and results in a hollow ap-
pearance to solid objects, as no additional fragments are rendered
to represent the cut surfaces.

This problem can be addressed by the following simple observa-
tion. For a scene composed of non-intersecting water-tight models,
partial clipping of models always exposes their interiors. Pixels
from these interiors can be detected as coming from back-facing
triangles of the model being clipped. Thus, in order to give the ap-
pearance of rendered cut surfaces, one can simply shade fragments
from back-facing triangles using normals derived from the cutaway
shape, as shown in Figure 4(b). This gives the appearance of solid
objects being carved away along the cutaway surface and aids in
the perception of the cutaway shape.

Only secondary objects are clipped by the cutaway, and objects
of interest are rendered without clipping. The cutaway nature dic-
tates that secondary objects never occlude objects of interest, so
objects of interest may be rendered in a second pass.

4.2 Cut Surface Outline

The rendering of cut surfaces gives the impression of solid objects
being carved away by the cutaway surface. This carving creates 3D
ridges on partially clipped secondary objects that are distinct from
ridges defined by the object geometry alone. In a non-photorealistic
rendering scenario, one may render lines to accentuate ridges and
creases on object geometry. In order to complete these renderings,
one may render the ridges generated by the carving action.

These ridges are located on image-space boundaries of the cut
surfaces rendered in Section 4.1. Cut surfaces can be outlined by
recording fragments from back-facing triangles in a separate binary
channel and processing this image on the GPU to highlight or mark
pixels on the binary image boundaries. Figure 4(c) shows how these
outlines correspond to the ridges formed by the clipping, and aid
visual perception of the cut surface locations.

This image-space operation can fail to work in situations where
the clipped object has little separation between front and back-
facing surfaces and the cutaway surface is very steep relative to
the camera. In order to address this problem, back-facing frag-
ments are clipped to a cutaway surface that is slightly narrower,

(a) Clipping only (b) With cut surface (c) With outlines (d) With ghost lines (e) With faded ghost lines

Figure 4: Rendering effects: Walls of the cut secondary shape appear hollow (a), so a “cut surface” is rendered (b) and outlined (c) to give
the walls a solid appearance. “Ghost lines” indicating removed structures are rendered (d) and faded (e) to reduce visual clutter.

such that at least one back-facing fragment is exposed where a sur-
face is clipped. This surface is created by a dilation operation on
the cutaway depth image that finds the minimum value in a 1-pixel
neighborhood. The resulting dilated cutaway depth image is used
to clip back-facing fragments when detecting cut surface outlines as
well as when rendering cut surfaces in Section 4.1 for consistency.

4.3 Ghost Lines

Feature lines such as contours or creases help show the structure
of an object. Rendering such lines without the corresponding poly-
gons often provides an impression of the structure, while largely
preventing the object from occluding objects behind it. When por-
tions of secondary objects are carved away, we can allow some of
these ghost lines to extend into the cutaway region, to show how
the structure of the carved object exists towards the interior of the
cutaway. Lines are drawn up to a user-specified distance in front of
the cutaway surface in order to prevent visual clutter and are faded
out to avoid abrupt termination, as shown in Figure 4(e).

5 Locally Controlled Cutaway Surface
A fast computation method (Section 5.1) can be used to provide
local control over the cutaway surface, to address several visual
shortcomings of the basic cutaway surface (Sections 5.2-5.5).

5.1 Cutaway Surface Computation

Jump flooding, as presented by Rong and Tan [2006], is a GPU-
based version of a parallelizable algorithm for calculating exact
2D distance transforms by minimizing Equation 1. This algorithm
operates in O(n2 log n) time, by performing log n passes over an
n-by-n image. By replacing Equation 1 with Equation 2 in the
jump flooding algorithm, we are able to generate the basic cutaway
surfaces described in Section 3. As described in Section 6, this
operates significantly faster than the Chamfer approximation, while
producing a surface free of approximation artifacts.

Computation begins by rendering the objects of interest into a
buffer, encoding the screen-space coordinates and depth at each
pixel. The "greater than" depth function is used so fragments fur-
thest from the camera, comprising the rear hulls, are stored. For
an n-by-n image, the algorithm executes log n iterations over the
buffer, with a single per-iteration parameter k = n/2i for iteration i.

As described in Section 3 a cutaway surface can be defined as the
maximum of a cutaway function C(p, q) at p for all q in the image.
In the case of the basic cutaway surface (Equation 2) we have:

C(p, q) = z(p)− m‖q− p‖
For each iteration and pixel p, the stored depth and coordinates at
p, which are the maximum found depth and its coordinate loca-

tion, is compared to C(p, q) evaluated for the 8 candidate points
q ∈ {(px + {k, 0,−k}, py + {k, 0,−k}) − p}. The updated maxi-
mum depth and its coordinate location are stored at p for the next
iteration. At the completion of log n iterations, the depth at p is
the maximum value of C(p, q) for all q over the image. Evaluating
C(p, q) exactly each time avoids approximation artifacts and allows
definition of the cutaway function per pixel, affording local control.

5.2 Perspective Compensation

In a perspective projection, the cutaway surface performs reason-
ably well, but because the slope m to the image plane is applied
in screen space, a fixed slope m can cause cutaways of very differ-

Fixed angle Perspective compensation

Figure 5: Perspective compensation. Left column: In perspective,
it is difficult to choose a single cutaway angle that works well at dif-
ferent distances. Top to bottom: An angle appropriate for a middle
distance appears too wide from far away, and too narrow from close
up. Right column: With perspective compensation (Section 5.2), the
angle chosen for the upper image is appropriate in the other views.

(a) Global angles (b) Per-object angles

Figure 6: Local control of cutaway angle. Using a single wide cut-
away angle (a) exposes the three radiators of interest in the house,
but discards too much secondary material, resulting in a floating
radiator in the center of the image. Using different angles for each
radiator (b) results in a more effective illustration. (Section 5.3)

ent widths (angles) in model space, depending on the depth of the
anchor point p. This effect is shown in Figure 5, where the cut-
away becomes very wide when zoomed out and very narrow when
zoomed in. The perspective error can be drastically reduced by
applying a scaling factor to the slope, −(PMsz + z(p)) where PMsz
is the z-scaling factor of the projection matrix, which is defined un-
der OpenGL as PMsz = (znear + z f ar) / (znear − z f ar). This scaling
factor is accurate for the projection of a line passing through the z-
axis, and the error of the approximation is larger for lines anchored
at p further away from the screen center. Thus we have:

m(p) =
−(PMsz + z(p))

tan θ
(3)

5.3 Local Angles

The ability to define the cutaway function per pixel also allows us
to define the cutaway angle for each pixel. In practice, it is most
useful to define a cutaway angle per object or group of objects of
interest and use this information to define a cutaway angle per pixel.
Figure 6 shows this effect with different angles for each radiator.

5.4 Edge Compression

A limitation of this image-based approach is that objects of interest
that are offscreen do not contribute to the onscreen cutaway surface.
This is acceptable for single images as carving secondary objects to
reveal objects of interest that are not on screen makes little sense.
However, when objects move on or off screen in interactive or ani-
mated scenarios, a noticeable discontinuity can occur where objects
are suddenly carved away, as shown in Figure 7.

This could be addressed with a cutaway buffer much larger than
the screen buffer, so objects outside the rendered screen could still
contribute to the cutaway surface, but this would lead to an undesir-
able increase in processing time and memory requirements. Given
local control over the cutaway function, this problem can be miti-
gated by adjusting the effective angles such that pixels near the edge
of the screen have a cutaway with a very narrow angle and pixels
sufficiently away from the edge of the screen use their normal angle.
Given screen space coordinates for p in the range (−1, 1) and a size
of the screen edge region r, this can be accomplished by defining:

θe(p) = θ(p) clamp
[0...1]

(
1− |px|

r

)
clamp
[0...1]

(
1− |py|

r

)

(a) Uniform cutaway (b) Edge compression

Figure 7: Edge compression. Top to bottom: Camera pans left.
When the green object of interest exits the screen, it normally causes
a temporal discontinuity in the cutaway shape (a). With edge com-
pression (Section 5.4), the cutaway shape becomes progressively
smaller towards the edge of the screen, mitigating the temporal
discontinuity and preventing visual pop.

We have found that r = 0.1 provides a smooth and balanced transi-
tion for objects entering and exiting the screen.

5.5 Directional Constraints

Figure 8(a) shows an undesired artifact of cutaways from objects
positioned on a floor, where the floor exhibits a distractingly large
cut surface. This artifact happens on any large and flat surface
that enters the cutaway interior nearly parallel to the edge of the
cutaway, as the surface is only slightly carved away. This artifact
occurs for common views when objects of interest are situated on
top of large secondary objects, such as the floor.

This can be addressed by investigating an angle φ(p), the max-
imum angle of cutaway to avoid clipping a surface with normal n̂.
With the (global) normal of the floor direction n̂, and the normalized
view vector v̂(p):

φ(p) =
π

2
− arccos (v̂(p) · n̂)

Based on this angle, which may be negative when the floor is
viewed from below, a suitable cutaway angle can be calculated to
minimize undesirable carving of the floor. The cutaway angle θ

can be clamped to φ for camera positions above the floor (positive
φ) and quickly transition from zero to θ once the camera passes
below the floor plane (negative φ). Thus we have:

θ f (p) = clamp
[0...φ(p)]

θe(p) + θe(p) smoothstep
[0... π

18]
(−φ(p))

Application of this angle to the cutaway directly would shrink the
cutaway in all screen-space directions as the floor becomes more
perpendicular to the camera. However, the cutaway should only be
shrunk in screen-space directions where it may cut into the floor.
This can be addressed by using θ f for directions of the cutaway
opposite the projected screen direction of the floor normal n̂pro j and
θe for other directions. This is accomplished by establishing α as
the coherence between the screen space direction of q to p and the
projected floor normal and using α to interpolate between cutaway

(a) Cut floor (b) Directional constraint

Figure 8: Directional constraint. (a) Objects of interest directly on
the floor can cause a cutaway surface to intersect the floor, even
when viewed from above. (b) With a directional constraint, the
cutaway surface avoids the floor. (Section 5.5)

angles θe and θ f . Thus the final cutaway function, where me(p) and
m f (p) are generated by Equation 3 from θe(p) and θ f (p):

α = clamp
[0...1]

(
(q− p)
‖q− p‖

· n̂pro j

)
C(q, p) = z(p)− ((1− α) me(p) + αm f (p)) ‖p− q‖

Figure 8(b) shows the resulting effect where the cutaway no longer
creates large distracting patches of cut surface and adjusts itself
with respect to the floor and camera directions.

6 Results

All models shown in figures in this paper render at interactive frame
rates and may be seen in motion in the accompanying video. The
performance numbers in Table 1 show the efficiency of our al-
gorithm for models of various sizes. In the middle row we see
the efficiency of the jump flood algorithm for the cutaway sur-
face computation. Viola et al. [2004] calculated a similar kind
of cutaway surface for volumetric data using the chamfer distance
transform approximation, so we include this algorithm for compar-
ison. Our tests indicate a significant performance advantage for
the GPU-capable jump flood algorithm. Overall, this algorithm
does not impose a substantial performance overhead over standard
polygonal rendering. The performance numbers were measured on
an NVIDIA GeForce 8800 GTS 512 with a framebuffer size of
640× 480 and a cutaway buffer size of 512× 512.

Figure 9 shows a series of pictures from the exterior of an office
building with rooms selected for viewing. The goal of the images
is to show the location and nearby structures of the rooms within
the context of the building. Unlike in previous images shown, the
cutaway surface is defined not by the objects of interest, the fur-
niture in each room, nor the walls of the room itself, but by an
invisible shape that is only rendered to the cutaway surface. In the
case of these two rooms, a simple box that spans almost the extent
of each room is sufficient to create this effect, along with rendering
the enclosed furniture as objects of interest.

House Galleon Building
Triangles (K) 76 301 530
Lines (K) 45 92 286
Chamfer (fps) 10 10 10
Jump Flood (fps) 60 60 60
Model (fps) 46 17 11
With Cutaway (fps) 41 16 10

Table 1: Model sizes and frame rates for the house, galleon, and
building models shown in Figures 10, 1, and 9, respectively. Cham-
fer denotes the frame rate for approximating the cutaway surface
using a 5 × 5 chamfer kernel, whereas the Jump Flood algorithm
can compute the surface more accurately and quickly, and permits
local adjustments described in Section 5. Rendering the full model
is generally the bottleneck; calculation of the cutaway surface and
additional rendering effects impose a relatively small overhead.

Our algorithm has a low cost per-frame and does not rely on posi-
tional structural information of the scene, making it suitable for use
in both off-line and interactive animations. Figure 10 shows several
frames of an animation with a radio-controlled car driving into and
around a house, where the RC car and the kitchen counter are the
objects of interest. When multiple objects of interest are near each
other, they both contribute to the cutaway surface in that region. We
see as the car passes near and in front of the counter that it creates
a surface which reflects both the shape of the counter and the shape
and position of the car. When the car is sufficiently far away from
the counter, the cutaway surfaces are effectively separate. Note that
objects of interest never cause each other to be cut; rather they both
contribute to the cutaway surface. Thus, they can be rendered in
one pass using regular depth-testing amongst themselves, and may
occlude each other.

Because the cutaway surface tends to be smooth, it is often suf-
ficient to use a cutaway buffer with resolution lower than that of
the screen, since a linearly interpolated low-resolution depth-image
of the cutaway surface closely approximates the high-resolution
equivalent. We typically use a buffer size of 512 × 512 at screen
sizes up to 1024 × 768 and find this to be sufficient. As it is an
image-space algorithm, aliasing can and does occur, especially at
low resolutions, but in most cases is not significantly noticeable.

7 Conclusions, Limitations and Future Work

This paper introduces a method for creating cutaway illustrations
for revealing objects of interest in complex polygonal scenes.
The cutaway shape is dynamic, smoothly responding to animated
scenery and changes in view. We describe methods for creating
the cutaway shape as well as several non-photorealistic rendering
effects at interactive frame rates. The methods described in this
paper have several limitations that could inspire future research:

Framebuffer/resolution. The in-frame nature of these algo-
rithms lead to several related artifacts. First, as mentioned in Sec-
tion 5.4, only onscreen objects of interest contribute to the cutaway
shape, necessitating the edge compression method to avoid tempo-
ral artifacts. Second, the calculation of the cutaway shape occurs
at a specific resolution, so objects of interest with very thin com-
ponents can induce aliasing in the cutaway shape. Ideally, such
objects would be replaced with a surrogate invisible object with
an appropriate level of detail (LOD) as in Figure 9. We believe
that a fruitful area for future work would be automatically finding
surrogate shapes of an appropriate LOD, perhaps using methods
inspired by those of Li et al. [2007].

Shape of cutout. The shape of the cutout surface is dictated au-
tomatically by the placement of the objects of interest in the scene
(relative to the camera) and a user-given angle parameter (possibly
per-object). Some applications might benefit from greater user-

Figure 9: Stand-in object of interest. Left to right: A simple box, invisible, denotes a boardroom in an office building as the object of interest.
A box representing a break room (yellow) is added. A different camera position and a wider cutaway angle expose the upper floors.

Figure 10: Animated objects of interest: The radio-controlled car approaches a kitchen counter. The cutaway shape blends smoothly as the
car moves, with the two distinct cutaway shapes in the leftmost image merging as the car enters the cutaway region of the counter.

control of the cutout shape, for example the ability to change the
“eccentricity” of the cutout or to bias the cutout direction so that it
is not heading as directly towards the camera.

Emphasis. While the technique described here can reveal ob-
jects of interest, the resulting imagery remains as visually cluttered
as the model from which it is rendered. This technique would be
nicely complemented by a method for placing visual emphasis on
the objects of interest. The rendering method of Cole et al. [2006]
draws the attention of the viewer based on a desired per-pixel target
emphasis for lines and surfaces in the scene, typically by evaluating
distance to a single point of emphasis. It would be interesting to ex-
amine ways of creating emphasis values based on a set of spatially
distributed objects of interest.

Acknowledgements

We would like to thank the paper reviewers, the Tiggraph gang,
and Wilmot Li for many helpful suggestions. Many of the models
shown herein are from the Google 3D Warehouse. This work was
sponsored in part by the NSF grant IIS-0511965.

References

BORGEFORS, G. 1986. Distance transformations in digital images.
Comp. Vision Graph. Image Process. 34, 3, 344–371.

BRUCKNER, S., AND GRÖLLER, M. E. 2006. Exploded views for
volume data. IEEE TVCG 12, 5, 1077–1084.

BRUCKNER, S., GRIMM, S., KANITSAR, A., AND GRÖLLER,
M. E. 2006. Illustrative context-preserving exploration of vol-
ume data. IEEE TVCG 12, 6, 1559–1569.

BURNS, M., HAIDACHER, M., WEIN, W., VIOLA, I., AND
GRÖLLER, E. 2007. Feature emphasis and contextual cutaways
for multimodal medical visualization. In Eurographics / IEEE
VGTC Symposium on Visualization 2007, 275–282.

COFFIN, C., AND HOLLERER, T. 2006. Interactive perspective
cut-away views for general 3D scenes. In Proc. of 3DUI 2006,
25–28.

COLE, F., DECARLO, D., FINKELSTEIN, A., KIN, K., MORLEY,
K., AND SANTELLA, A. 2006. Directing gaze in 3D models
with stylized focus. In Proc. of EGSR 2006, 377–387.

CORREA, C., SILVER, D., AND CHEN, M. 2006. Feature aligned
volume manipulation for illustration and visualization. IEEE
TVCG 12, 5, 1069–1076.

DIEPSTRATEN, J., WEISKOPF, D., AND ERTL, T. 2003. Interac-
tive cutaway illustrations. In Proc. of Eurographics 2003, 523–
532.

FEINER, S., AND SELIGMANN, D. D. 1992. Cutaways and ghost-
ing: satisfying visibility constraints in dynamic 3D illustrations.
The Visual Computer 8, 5&6, 292–302.

KRÜGER, J., SCHNEIDER, J., AND WESTERMANN, R. 2006.
Clearview: An interactive context preserving hotspot visualiza-
tion technique. IEEE TVCG 12, 5, 941–948.

LI, W., RITTER, L., AGRAWALA, M., CURLESS, B., AND
SALESIN, D. 2007. Interactive cutaway illustrations of complex
3D models. In Proc. of ACM SIGGRAPH 2007, 31.

LIANG, R., CLAPWORTHY, G., KROKOS, M., AND MAYORAL,
R. 2005. Real-time predefined shape cutaway with paramet-
ric boundaries. Computer Graphics, Imaging and Vision: New
Trends, 2005. International Conference on, 227–231.

MCGUFFIN, M. J., TANCAU, L., AND BALAKRISHNAN, R. 2003.
Using deformations for browsing volumetric data. In Proc. of
IEEE Visualization 2003, 53.

REZK-SALAMA, C., AND KOLB, A. 2006. Opacity peeling for
direct volume rendering. Comp. Graph. Forum 25, 3, 597–606.

RONG, G., AND TAN, T.-S. 2006. Jump flooding in GPU with
applications to voronoi diagram and distance transform. In Proc.
of I3D 2006, 109–116.

VIOLA, I., KANITSAR, A., AND GRÖLLER, M. E. 2004.
Importance-driven volume rendering. In Proc. of IEEE Visual-
ization 2004, 139–145.

