
Data Distribution Strategies
for High-Resolution Displays

Han Chen, Yuqun Chen, Adam Finkelstein,
Thomas Funkhouser, Kai Li, Zhiyan Liu,

Rudrajit Samanta, and Grant Wallace

Princeton University

Abstract

Large-scale and high-resolution displays are increasingly being used for next-generation
interactive 3D graphics applications, including large-scale data visualization, immersive
virtual environments, and collaborative design. These systems must include a very high-
performance and scalable 3D rendering subsystem in order to generate high-resolution im-
ages at real-time frame rates.

We are investigating how to build such a system using only inexpensive commodity com-
ponents in a PC cluster. The main challenge is to develop scalable algorithms to partition
and distribute rendering tasks effectively under the bandwidth, processing, and storage con-
straints of a distributed system. In this paper, we compare three different approaches that
differ in the type of data transmitted from client to display servers: control, primitives, or
pixels. For each approach, we describe our initial experiments with a working prototype
system driving a multi-projector display wall with a PC cluster. We find that different ap-
proaches are suitable for different system architectures, with the best choice depending on
the communication bandwidth, storage capacity, and processing power of the clients and
display servers.

1 Introduction

We are moving into a new era of computing in which interactions with data are
available across time and space withubiquitous display devices. The reasons for
this era are simple: rapid improvements in CPU performance, storage density, and
network bandwidth, and the commoditization of display devices. The traditional
way of using computers and networks has been to spend most of the CPU cycles on
solving technical problems and manage business transactions. Nowadays, more and
more CPU cycles and network bandwidth are spent on interactions including cre-
ating sophisticated content, transforming information, and presenting information
for humans to browse and visualize.

Preprint submitted to Elsevier Science

Within the next decade, new generation displays, such as Light Emitting Plastics
(LEP) and Organic Light Emitting Devices (OLED), will become commercially
viable commodity components. These devices will be very inexpensive and they
may be attached to walls, windows, furniture and arbitrarily shaped objects. They
might literally cover the surfaces of an entire room, a floor, or even an entire build-
ing. Their deployment will introduce an interesting new technical problem: “how
should we architect computer systems to drive so many pixels?”

Consider the case of a building covered by “digital wallpaper.” It may have over 100
million square inches of surface area on the walls, ceilings, and floors, which could
accommodate around 500 gigapixels of display imagery (at 72 dpi). If each image
is updated 30 times per second, then the display system must be capable of updat-
ing 15 terapixels per second, or 500,000 times more pixels per second than cur-
rent display devices. Fortunately, in most reasonable scenarios, not all the displays
need to be updated at full resolution, or at video frame rates, all at once. Instead,
a few displays showing feedback to user interaction will require fast refresh rates,
while most other displays can be updated less frequently and/or at lower resolution.
Meanwhile, the displays not visible to any user can be left blank. The challenge is
to design a rendering system powerful enough and flexible enough to drive a large
number of pixels spread over multiple displays in a dynamic environment.

The traditional approach to high-performance and high-resolution rendering is to
use a large, tightly-integrated graphics computer connected to multiple video out-
puts. The Power Wall at the University of Minnesota and the Infinite Wall at the
University of Illinois at Chicago are examples, each driven by an SGI Onyx2 with
multiple InfiniteReality graphics pipelines. The main drawback of this approach is
that it is very expensive, sometimes costing millions of dollars.

In the Scalable Display Wall Project at Princeton University [10], we take a differ-
ent approach. Rather than relying upon a tightly integrated graphics subsystem, we
combine multiple commodity processors connected by a network to construct a par-
allel rendering system capable of driving multiple displays with scalable rendering
performance and resolution. The main theme of this approach is that inexpensive
and high-performance systems can be built using a multiplicity of commodity parts.
Our current system, shown in Figure 1, comprises 24 projectors arranged in a 6 by
4 grid to form a seamless image over an 18’ by 8.5’ rear projection screen. The
resolution of each projector is 1024 by 768, and thus the cumulative resolution of
the entire wall is 6K by 3K (18M pixels). Each projector is driven by a commodity
PC connected to a network (Ethernet and/or Myrinet [3]). The system also con-
tains PCs for tracking user input, synthesizing sounds for 14 speakers, and running
applications. The total cost of the system is around $200K.

As compared to traditional rendering systems, our architecture has several advan-
tages. First, we use commodity hardware components, and thus the system is less
expensive, more flexible, and tracks technology better than other systems with cus-

2

Fig. 1. Princeton Scalable Display Wall, shown schematically above.

tom hardware. Second, we use a network for communication among processors,
which provides modularity, flexibility, and scalability. For instance, heterogeneous
processors and display devices can be added to the system independently, while the
communication capacity of the system scales at the rate of commodity networking
improvements. Finally, the images displayed are composed of multiple sub-images
corresponding to frame buffers of different computers. This characteristic provides
a natural image-parallel decomposition of the rendering computation, enabling very
high-resolution displays. The primary challenge is to construct rendering strategies
that work effectively within the processing, storage, and bandwidth characteristics
of commodity components.

In this paper, we investigate research issues in using multiple commodity com-
ponents to construct a high-performance system driving multiple networked dis-

3

play devices. The goal of our study is to characterize the processing, storage, and
communication requirements of several possible system architectures. We consider
options ranging from a network of “smart displays” (where each display device
has considerable local processing, storage, and communication capabilities) to a
network of servers attached to remote “dumb displays” (where each display has
only a small buffer and a low-power processor). In the former case, processing is
distributed, and the main research issue is synchronization. In the latter case, pro-
cessing is centralized, and the research issue is efficient distribution of data.

2 Taxonomy of Data Distribution Strategies

Perhaps the most critical systems problem for ubiquitous, heterogeneous, high-
resolution display environments will be the transmission problem: how do we get
the bits to the pixels? A simple taxonomy of solutions to this problem segments
various approaches with respect to what form of data is transmitted between com-
ponents of the system: control, primitives, or pixels. We are investigating these
approaches in the context of the Display Wall Project, and have implemented a
number of applications in each category, as described in Sections 3–5. But first,
this section provides a brief overview.

Conventional applications running on a single desktop workstation generally be-
have as follows. The user controls the application through some form of user inter-
face (e.g. the mouse). Control events from the user interface cause the application
to generate new display primitives (e.g. new text appears in some window, or tri-
angles representing a new view of a 3D object). The graphics subsystem rasterizes
these primitives into a frame buffer. Finally, the frame buffer appears on the display.

For such an application to run across multiple networked commodity components,
we must consider how to distribute data among the components and how to syn-
chronize execution. One possible programming model is client-server. For instance,
each user could interact with a client while servers manage the displays. In this sce-
nario, there are three stages at which the client-server communication may occur
(as shown in Figure 2), leading to three different forms of data being transmitted
over a network:

• Control (synchronized execution):A copy of the application runs on each dis-
play server. The client handles user-interface events, and sends control informa-
tion (for example synchronization events, or changes in view) to each display
server. In this model, the network requirements are typically minimal. However
the storage and processing demands at the server are significant because the bulk
of the application as well as the graphics rendering pipeline runs there.
• Primitives: In this model, the user interface and application live on the client

side. The application sends 2D or 3D graphics primitives over the network to

4

the display server, which rasterizes and displays them. In this scheme, network
requirements depend on scene complexity. At the client side, the processing and
storage demands are those of a conventional application. Ateachserver ma-
chine, the rendering requirement is that of the full scene, unless some form of
view-dependent culling is performed. Ideally, a load balancing scheme would
distribute the rendering load at each server machine.
• Pixels:Here the application and full rendering pipeline run at the client side. The

client ships pixels (typically compressed as JPEG images or MPEG streams) to
the server, and thus the network demand is proportional to display resolution. At
the display, the server simply decodes the pixels and thus requires little storage
and processing power. On the other side, if a single client workstation runs an ap-
plication that drives the entire high-resolution display, the rendering demands on
the client are huge for dynamic applications. However, if many such applications
each cover a portion of the wall, the client load is manageable.

User Interface

Application

Rendering

Display

Pixels

User Interface

Application

Rendering

Display

Control

User Interface

Application

Rendering

Display

Primitives

C
lie

nt
S

er
ve

r

Synchronized
Execution

Primitive
Distribution

Pixel
Distribution

Fig. 2. Network transmits data at three different stages in the rendering pipeline.

In the following sections, we describe our initial experiments with these three ap-
proaches. Our experiments are based on a working prototype system driving a
multi-projector display wall. We expect that different approaches are suitable for
different system architectures, with the best choice depending on the communica-
tion bandwidth, storage capacity, and processing power of the clients and display
servers. Our goal is to characterize the processing, storage, and communication
requirements of each approach leading to an understanding of how to construct
efficient and scalable display systems.

3 Synchronized Execution Model

One method of running an application on a tiled display wall is to use a synchro-
nized program execution model. In this model, a duplicate instance of the appli-
cation is run on each server. The only difference between the instances being run
comes from the environment information, such as which server in the tiled display

5

they represent. The motivation for this model is to minimize communication over
the network. Only control messages need to be sent over the network. These are
messages such as synchronization events and user input, and tend to require little
bandwidth.

In the synchronization model, a synchronization boundary is established such that
within this boundary all the instances assume identical behavior. We’ve experi-
mented with having this boundary at both the system level and at the application
level. With the synchronization boundary at the system level, each server produces
identical graphics primitives and the graphics accelerator is used to do tile spe-
cific culling such that only the primitives that fall within a server’s screen area are
rendered (see figure 3). This technique is especially useful if source code for the
application is not available. If the synchronization boundary is moved to the ap-
plication level, more optimizations are possible. A view-dependent software layer
can restrict itself to generating tile specific primitives (rather than generating all the
primitives for the scene). An example of the second scenario is a scene graph render
program that organizes the scene data in a hierarchy of objects. Given a tile-specific
view frustum, the program can remove the objects that fall completely outside the
frustum. Such an approach can improve processing performance as well as data
transfer performance.

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Operating Environment

Scene Management

scene description

Scene Rendering

Graphics Subsystem

graphics primitives

to the projector

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Operating Environment

Scene Management

scene description

Scene Rendering

Graphics Subsystem

graphics primitives

to the projector

synchronization level

Fig. 3. Synchronized application execution with tile specific clipping

We’ve implemented a synchronization framework for both the system and applica-
tion level [5]. The framework consists of barrier synchronizations that are set up on
certain function calls. One server acts as a coordinator and broadcasts the result of
the function call to all other servers. At the system level we use DLL replacement
to intercept and synchronize on frame buffer swaps, timer calls and I/O operations.
At the application level we’ve implemented a simple API including calls such as
SynchronizeResult() which performs a barrier synchronization and distribution of
results.

Using the synchronization framework, we’ve collected performance information on

6

Fig. 4. Cars application running in synchronized execution mode

several applications including Cars (from WorldUp Toolkit, figure 4), Atlantis (Sil-
icon Graphics demo), and Isoview (isosurface visualization tool). Our results show
that the synchronization communication overhead is small, less than 500 bytes per
frame. For immediate mode 3D graphics applications we’ve achieved speedups of
between 1.2 and 4.2 as compared to a client-server approach (such as primitive dis-
tribution, see section 4 table 1). The amount of speedup is affected by the number of
primitives and the per-primitive computation time. In general the synchronization
model performs well when there are many primitives and the per-primitive com-
putation time is low. When per primitive computation time is high, there is often
little or no speedup because a client server approach can overlap network commu-
nication with computation. Our experiments have also shown that application level
synchronization perform significantly better than system level synchronization. In
the Atlantis application we were able to get an overhead reduction of 50% in the
computation of shark poses and graphics primitives.

In general we’ve found that synchronized execution can be an efficient model for
programming a tiled display. This is especially true when the computational abili-
ties of the render servers (including processor and memory) outpace the available
network bandwidth. It also induces little extra latency (only for communication of
small, uncompressed control messages), and thus it is the most appropriate distri-
bution method for systems that require low-latency interactive response, such as
head-tracked augmented reality systems.

4 Primitive Distribution Model

A second option for distributing graphics applications is to distribute the graphics
primitives over the network. In such a scenario, one or more clients run the ap-
plications which perform all the user interface and processing tasks. Then 2D or
3D primitives are sent over the network to the displays. The servers are required

7

to be able to decode and render this stream of 2D or 3D primitives. This model
allows the application to run in a single location, avoiding redundant computation
and distributing only the graphics rendering workload.

In order to make programming using this model easier, we can implement tech-
niques that allow programs designed for a single desktop to run unmodified. Two
approaches have been implemented to test this model : aVirtual Display Driver
(VDD) for 2D primitives and aDistributed OpenGL(DGL) layer for 3D primi-
tives. The VDD is implemented as a device driver for Windows 2000. It reports to
the operating system the existence of a large (virtual) display. Standard Windows
applications may then run and display to this device. As Windows requests the dis-
play driver to render 2D primitives, the VDD records these requests and broadcasts
them to the servers. The DGL layer works in a similar way but is implemented as a
dynamically linked library that replaces the original OpenGL library. In both cases
the servers run a program that receives and decodes the incoming stream of 2D (in
the VDD case) or 3D (in the DGL case) commands and passes them to the local
graphics hardware.

Previous approaches have been implemented for both 2D and 3D cases, but they
have generally been aimed at the single display, multiple clients case. One of the
most commonly used 2D systems is the X-Window protocol [14]. In order to trans-
fer 3D primitives as well, the GLS [7] was introduced. The WireGL system from
Stanford [4] is another protocol for distributing OpenGL calls to a network of
render servers. In WireGL, several optimizations are introduced to sort primitives
among multiple projectors and to reduce the number of state changes required to be
transmitted over the network while keeping the current state on each of the servers
accurate and up to date.

In order to reduce both bandwidth and rendering overheads, we can choose to cull
primitives by their screen space extent. In the interception layers, we can check
which regions of the tiled display a particular primitive overlaps and then send
network messages only to those servers instead of broadcasting the graphics com-
mands. In order to do this, the client must transform the stream of primitives to
screen space coordinates and then check against the tiles assigned to each server.
Considering the current rendering rates of commodity graphics accelerators, a sin-
gle client cannot keep up with a cluster of servers. In order to make the client sort
primitives interactively, we perform amortized transformations by grouping a num-
ber of consecutive primitives in the sequence. If we group too few primitives, the
client will be the bottleneck. On the other hand if we group too many, the servers
will be required to do a large amount of redundant work due to the high primitive-
tile overlap. These two situations are shown schematically in Figure 5. The ideal
point in this tradeoff depends on a number of factors such as the primitive size and
client speed. Our system is able to dynamically choose an ammortization factor
that tries to create the best balance possible between client overhead and server
rendering overhead.

8

Application

 More Exact
 Overlap
Classification

Message
Encoding

Network
 Send

 Rendering

Message
Decoding

Network
Receive

Network

Client

Server

(a) More exact overlaps.

Application

 Less Exact
 Overlap
Classification

Message
Encoding

Network
 Send

 Rendering

Message
Decoding

Network
Receive

Network

Client

Server

(b) More approximate overlaps.

Fig. 5. More approximate overlap classifications shift the processing burden from the client
to the servers.

To evaluate the performance of the DGL layer we have tested a number of appli-
cation binaries compared to the System Synchronization and Application Synchro-
nization setups (Figure 6 shows the Isoview Application). The times, bandwidth
and memory requirements are shown in Table 1. As can be seen, the data trans-
ferred over the network and frame times are generally worse in the DGL case.
However, since the application is not run at every server, it saves processing time
and has significantly less memory requirements on the servers for most cases.

Fig. 6. Isoview Displaying Visible Woman Dataset Using DGL Layer

Primitive-based approaches are useful in a number of situations. First, they are ap-
propriate for applications that require a significant amount of processing time that
cannot easily be parallelized. Second, they enable application binaries to run with-
out modifications. Third, they require relatively simple display servers (they need
to only decode a command stream and render 2D or 3D primitives), which helps
make the display system cost-effective and easy to maintain. While bandwidth and
latency are higher than the case where the application is run in parallel among the
servers, distributing primitives helps to avoid redundant computations by the appli-
cation.

9

Applcation Parameter Dist System App

GL Sync Sync

Polygons (K) 200 200 -

Cars Data size (KB) 99.2 0.47 -

Frame time (ms) 370 325 -

Memory (MB) 4 73 -

Polygons (K) 94.6 94.6 94.6

Atlantis Data size (KB) 3300 0.24 0.19

Frame time (ms) 147.6 86.2 57.9

Memory (MB) 10 6 6

Polygons (K) 645.2 645.2 645.2

Isoview Data size (KB) 46500 0.82 0.47

Frame time (ms) 20163 16825 4798

Memory (MB) 4 100 100

Table 1
Comparison of bandwidth, memory requirements and frame times for applications using
Distributed GL, System-level synchronization and Application-level synchronization. In-
formation shown is per frame, averaged over a number of frames.

5 Pixel Distribution Model

The third option is to send pixels to the displays. The main motivations for this
approach are its generality and its simplicity. Since each display requires only a
image/video decoder, its processing and storage needs are simplified (as compared
to the cases where control or primitive data are sent to the display), and the com-
munication requirements are more predictable (they are related to the resolution
of the display rather than the complexity of the underlying primitive data). The
challenge is to distribute and decode the large bandwidth of pixel data required for
high-resolution displays. In this section, we describe the results of our investiga-
tion with a parallel MPEG decoder using commodity PC components. The difficult
question we address is how to partition and distribute data among the PCs.

MPEG-2 video stream defines a hierarchy of syntactical elements –Sequence,
Group of Picture(GOP),Picture, Slice, andMacroblock[8], and any of them could
be chosen as the unit of work for parallelization. Unfortunately, none of them suf-
fices in itself for decoding ultra-high-resolution video streams in a PC cluster based
tiled display system. In a coarse granularity parallelization [2,9] (e.g., sequence,
GOP, picture, or slice), the splitting cost is very low, but the communication cost
is high, because decoding servers need to communicate with each other for both
referencing previous frames and redistributing decoded pixels. In a fine granularity
parallelism (e.g., macroblock level), the communication cost is low and distributed,
but the splitting cost is high, because MPEG-2 video stream does not provide byte-
aligned start code for macroblocks. The splitter becomes a bottleneck when the
number of servers increases. There are also ways to parallelize a decoder function-
ally [1], however, these methods only work well for a shared memory SMP, and do

10

not scale.

We use a hierarchical decoding system to achieve scalable high resolution decod-
ing. It consists of one or two levels of splitters and a set of decoding servers(see
Figure 7). The splitters divide the input stream into macroblocks and send them to
the decoders, while the decoders decompress the pixels and display them. For rela-
tively low-resolution video streams (such as DVD or HDTV), a single macroblock-
level splitter is adequate. For high-resolution videos, the system uses a root splitter
to split an input video stream at picture level and pass pictures to multiple second-
level splitters, which split pictures at macroblock level to feed decoding servers.
We call the decoding method 1-k-(m,n) system for a hierarchy of one single root
picture splitter,k second-level macroblock splitters, andm×n decoding servers in
a tiledm×n-projector display wall system. When only one splitter is used, we call
it a 1-(m,n) system.

0101101…1101

S
pl

itt
er

Decoder Display

Display

Display

Decoder

Decoder

Bitstream

W
or

k
U

ni
ts

C
om

m
un

ic
at

io
n

P
ix

el
re

di
st

rib
ut

io
n

Fig. 7. A Generalized Parallel Decoder for PC Cluster

Results of experiments with this distributed MPEG decoder are shown in Table 6.
We used 8 MPEG-2 video streams resolution ranging from 720×480 to 3,840×2,800
to test the performance and scalability of the system. Each stream contained 240
frames. (Figure 8 is a screenshot of the parallel decoder showing stream sis30.) The
number of second-level splitters was chosen in order to keep the decoders running
at their maximum speed. From the numbers in the rightmost column, we can see
that the two-level system achieves a near linear acceleration in the rate at which
pixels can be decoded, and thus it scales very well. The bandwidth requirements of
each splitter and decoder are also well within the range of current commodity net-
works. For instance, in the experiment with the 1-4-(4,4) system decoding stream
orion100, the send and receive bandwidths ranged from 4 to 5 MB/s for each splitter
and from 0.6 to 4.5 MB/s for each decoder.

Overall, we observe that the bandwidth and latency required for pixel data is far
more than for control data but less than for primitive data. The per-server commu-
nication and processing requirements are almost constant regardless of the overall
resolution. The overall performance of the system is able to scale as the network
switching capability increases. However, the processing demand and latency for
video encoding on the client are problematic. Currently, distributing pixel data is
most appropriate for pre-captured content.

11

Fig. 8. Parallel MPEG-2 Decoder Showing “Seen In Shadow”

Table 2
Performance of the Hierarchical Decoder

Stream Screen # Frames/ Mpixels/

Name Resolution Config Nodes Sec Sec

Matrix 720×480 1-(1,1) 2 105.0 36.3

Fish 1,280×720 1-(2,1) 3 87.4 80.5

CBS 1,920×1,080 1-2-(2,2) 7 74.0 154

SIS30 2,000×1,500 1-2-(3,2) 9 60.2 181

Orion40 2,880×1,440 1-2-(3,2) 9 45.3 188

Orion60 2,880×2,160 1-3-(3,3) 13 43.0 268

Orion80 3,840×2,160 1-3-(4,3) 16 38.9 323

Orion100 3,840×2,800 1-4-(4,4) 21 38.9 418

6 Conclusion and Future Work

As we move to an era in which all surfaces in the work environment may potentially
be high-resolutiondisplaymedia, a critical problem emerges: how can we transmit
the data to those display surfaces. This paper investigates protocols for transmitting
data from three levels of the graphics rendering pipeline: control, primitives, and
pixels. Not surprisingly, transmission of different forms of data places different
demands on the system. We hope that the observations and data present in this
paper help future designers of high-resolution display systems in choosing data
distribution strategies suitable for their system architectures.

This work suggests several areas for future research:

Compression: In Section 5, we describe a scheme for parallel software decom-

12

pression and rendering of an MPEG stream. In our experiments, the MPEG streams
were all pre-compressed offline and saved to a disk. However, in order to use this
display environment for remote computing, we need to also provide the accompa-
nying dynamic compression scheme, and incorporate it into the rendering pipeline.
One simple method might be to read the frame buffers of the rendering machines
in real time by intercepting the DVI (digital) output from their graphics cards and
compressing and transmitting this data. When the source of the pixels is 2D or 3D
primitive rendering, there may be further opportunities for efficient compression,
either based on compression of primitives (e.g., [6]) or based on primitive-guided
pixel compression (e.g., [15]). A difficult challenge will be to achieve high com-
pression rates while meeting the latency requirements of an interactive system.

Load balancing: Another interesting issue for future work is dynamic allocation
of rendering processors to display surfaces. In this paper, we have only considered
scenarios in which one rendering processor is dedicated to each display device.
But, then, if the rendering load is not uniformly distributed over all display de-
vices (e.g., all the primitives reside in one small region of one wall), or if we have
more graphics processors available than there are display devices, this simple, static
allocation does not achieve optimal performance. In related work, we have devel-
oped dynamic load balancing algorithms for PC clusters, including ones based on
sort-first [13,12] and hybrid sort-last [11] architectures. However, further work is
required to develop effective load balancing methods for remote applications.

Other data paths: In this paper, we focus on transmission of data from an appli-
cation to a display. However, other data paths face similar challenges. For example,
for applications whose data sets are larger than fit in memory, we must consider the
path from disk to application memory. This work is likely to involve parallel disk
farms, caching schemes, and data migration. As another example, we could con-
sider paths in which video data tracking user input is transmitted from the cameras
to the application (e.g., for teleconferencing). This data path replaces the computer
graphics pipeline with the computer vision pipeline, yet faces many similar chal-
lenges.

References

[1] A. Bala, D. Shah, U. Feng, and D. K. Panda. Experience with software MPEG-2
video decompression on an smp pc. InProceedings of the 1998 ICPP Workshop on
Architectural and OS Support for Multimedia Applications/Flexible Communication
Systems/Wireless Networks and Mobile Computing, pages 29–36, 1998.

[2] A. Bilas, J. Fritts, and J. P. Singh. Real-time parallel MPEG-2 decoding in software.
In Proceedings of the 11th International Parallel Processing Symposium, Apr 1997.

[3] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.

13

Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-per-second local area
network. IEEE MICRO, 15(1):29–36, February 1995.

[4] Ian Buck, Greg Humphreys, and Pat Hanrahan. Tracking graphics state for networked
rendering. InEurographics/SIGGRAPH workshop on Graphics hardware, pages 87–
98, August 2000.

[5] Yuqun Chen, Han Chen, Douglas W. Clark, Zhiyan Liu, Grant Wallace, and Kai
Li. Software environments for cluster-based display systems. InFirst IEEE/ACM
International Symposium on Cluster Computing and the Grid, May 2001.

[6] Michael F. Deering. Geometry compression.Proceedings of SIGGRAPH 95, pages
13–20, August 1995.

[7] C. Dunwoody. The OpenGL stream codec : A specification.

[8] S. Eckart and C. E. Fogg. ISO/IEC MPEG-2 software video codec. InProc. Digital
Video Compression: Algorithms and Technologies 1995, pages 100–109. SPIE, 1995.

[9] M. K. Kwong, P. T. Peter Tang, and B. Lin. A real time MPEG software decoder using
a portable message-passing library.Mathematics and Computer Science Division
ANL, Preprint MCS-P506-0395, Apr 1995.

[10] Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark, Perry Cook, Stefanos Damianakis,
Georg Essl, Adam Finkelstein, Thomas Funkhouser, Timothy Housel, Allison Klein,
Zhiyan Liu, Emil Praun, Rudrajit Samanta, Ben Shedd, Jaswinder Pal Singh, George
Tzanetakis, and Jiannan Zheng. Early experiences and challenges in building and
using a scalable display wall system.IEEE Computer Graphics and Applications,
pages 29–37, July 2000.

[11] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh. Hybrid sort-
first and sort-last parallel rendering with a cluster of pcs. InEurographics/SIGGRAPH
workshop on Graphics hardware, pages 99–108. ACM Press, August 2000.

[12] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh. Sort-first
parallel rendering with a cluster of pcs. InSIGGRAPH 2000 Technical sketches,
August 2000.

[13] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li, and Jaswinder Pal
Singh. Load balancing for multi-projector rendering systems. InSIGGRAPH ’99.
Proceedings 1999 Eurographics/SIGGRAPH workshop on Graphics hardware, Aug.
8–9, 1999, Los Angeles, CA, pages 107–116. ACM Press, 1999.

[14] Robet W. Scheifler and James Gettys. The X window system.ACM Transactions on
Graphics, 5(2):79–109, April 1986.

[15] Dan S. Wallach, Sharma Kunapalli, and Michael F. Cohen. Accelerated MPEG
compression of dynamic polygonal scenes.Proceedings of SIGGRAPH 94, pages
193–197, July 1994.

14

