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Figure 1. A noisy model before (left) and after (right) anisotropic gradient-domain smoothing.

Abstract

This paper describes an implementation of gradient-domain processing for editing the geom-
etry of triangle meshes in 3D. We show applications to mesh smoothing and sharpening and
describe anisotropic extensions that enable edge-aware processing.

1. Introduction

Gradient-domain processing is a well-established technique for editing the content
of RGB images. Formulated as the minimization of an energy function that com-
bines value- and derivative-fitting terms, it provides a simple method for adjusting
the content of an image and has been used for operations like smoothing, sharpening,
stitching, dynamic range compression, and color correction [Fattal et al. 2002; Pérez
et al. 2003; Levin et al. 2004; Agarwala et al. 2004; Agarwala 2007; Bhat et al. 2008;
Kazhdan et al. 2015].
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In this work we describe a simple and unified extension of this approach to the
signals defined over triangle meshes in 3D. In particular, when the signal is taken to
be the x-, y-, and z-coordinates of the mesh vertices, our implementation supports
the processing of the geometry itself. In doing so, we combine earlier work in both
isotropic smoothing [Taubin 1995; Desbrun et al. 1999] and anisotropic smoothing
[Clarenz et al. 2000; Bajaj and Xu 2003; Andreux et al. 2014], as well as work in
gradient-domain stitching for fusing surfaces [Yu et al. 2004].

Unifying these approaches in a common setting, we provide a single formulation
for solving a wide class of geometry-processing problems. As we show, the extension
of the approach to the anisotropic setting requires a simple modification of the well-
known formulas for computing the mass and stiffness matrices [Dziuk 1988; Pinkall
and Polthier 1993], modifying the traditional per-element assembly by incorporating
a constant metric-tensor with each triangle to define integration and differentiation.

1.1. Related Work

Extensions of 2D diffusion techniques to the smoothing of surface geometry began
with the seminal work of Taubin [1995], which was later formulated as a semi-implicit
time-step of a diffusion PDE, ∂tρ = ∆gρ, in the work of Desbrun et al. [Desbrun et al.
1999]. The advantage of this formulation was that smoothing was formulated in terms
of the metric-dependent Laplace-Beltrami operator, ∆g. Modifying the Riemannian
metric, g, this approach could be extended to anisotropic diffusion to support feature-
aware smoothing [Clarenz et al. 2000; Bajaj and Xu 2003; Andreux et al. 2014].

In more recent work, Chuang and Kazhdan [2011] describe an equivalent for-
mulation that expresses a smoothed surface as the minimizer of the sum of interpo-
lation and smoothness energies, E(ρ) = ‖ρ − ρ0‖2g + ‖∇ρ‖2g. Using the observa-
tions of [Clarenz et al. 2000; Bajaj and Xu 2003], Chuang and Kazhdan show that
the energy-minimization formulation can also be used to support anisotropic diffu-
sion through the modification of the Riemannian metric. Following the approach for
image-processing [Bhat et al. 2008], the authors further extend the approach by re-
placing the Dirichlet energy, ‖∇ρ‖2g, with a more general gradient-domain energy
term, ‖∇ρ− ~V ‖2g, that allows explicit prescription of target gradient values.

In their work, Chuang and Kazhdan implemented the processing using a multigrid
formulation defined by restricting regularly spaced 3D B-Splines to the surface. Here
we discretize the system using the ubiquitous “hat” basis functions (e.g., [Dziuk 1988;
Pinkall and Polthier 1993]) and derive an implementation that uses standard direct
solvers (e.g., [Chen et al. 2008; Guennebaud et al. 2010]).

There are two advantages to formulating geometry-processing in terms of mini-
mizing a gradient-domain energy rather than through a diffusion PDE:

1. The energy minimization formulation supports a wider class of surface edits,
including smoothing (as in [Desbrun et al. 1999; Clarenz et al. 2000; Bajaj
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and Xu 2003; Andreux et al. 2014]), gradient-domain stitching (as in [Yu et al.
2004]), and sharpening [Chuang and Kazhdan 2011].

2. Though both approaches give the same linear system, the derivation using en-
ergy minimization is simpler since it only requires computing first-order deriva-
tives. In contrast, using the diffusion PDE requires first defining the second-
order Laplace-Beltrami operator (including differentiation of the metric tensor)
and then eliminating second-order terms using Stokes’ Theorem.

2. Gradient-Domain Processing

Given a 2D manifoldM ⊂ R3, a scalar function f :M→ R, and a tangent vector-
field ~v : M → TM, the goal of gradient domain-processing is to solve for the new
function, g :M→ R that minimizes the energy [Bhat et al. 2008]:

E(g) = α

∫
M

[f(p)− g(p)]2 dp+ β

∫
M
‖~v(p)−∇g(p)‖2 dp. (1)

Using the Euler-Lagrange formulation, the minimizer is the solution to the system:

(α− β∆) g = α · f − β · div(~v) (2)

where div(~v) is the divergence of ~v and ∆ is the (negative semi-definite) Laplace-
Beltrami operator, ∆f = div(∇f).

2.1. Applications

The above gradient-domain formulation has proven to be a powerful tool for editing
signals and has been used in a number of applications. For example, when setting the
constraint vector field to be a multiple of the gradient, ~v = λ · ∇f , one gets:

• Smoothing (λ < 1): This encourages a solution that is close to the input but
with less pronounced changes in value. In the extreme case that λ = 0, the
solution g is equivalent to the result of performing an implicit time-step of
diffusion on the signal. And, in the particular case that the signal consists of the
x-, y-, and z-coordinates of the surface, this gives a (semi)-implicit time-step
of mean-curvature flow (Figure 2 (left)).

• Sharpening (λ > 1): This encourages a solution that is close to the input
but with more pronounced changes in value. This has the effect of amplify-
ing changes in the signal value, effectively acting as an unsharp masking filter
(Figure 2 (right)).
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λ = 0 Input λ = 2

Figure 2. An input mesh (center) and the results obtained with gradient-domain smoothing
(left) and gradient-domain sharpening (right).

2.2. Discretization

To discretize Equation (2) over a triangle meshM = (V, T ), we must choose bases
for the spaces of scalar fields and vector fields. In our implementation we follow the
standard approach. We define the space of scalar fields to be the span of piecewise-
linear “hat” basis functions, associating the space of scalar fields with R|V|. And, we
define the space of vector fields by first choosing an arbitrary frame for each triangle
and then taking the span of the piecewise-constant vector fields, associating the space
of vector fields with R2|T |.

Letting {φφφν}ν∈V and {(~t2τ ,~t2τ+1)}τ∈T denote the bases for these two spaces,
we can define discrete mass, stiffness, and divergence operators:

Mij =

∫
M
φi · φj , Sij =

∫
M
〈∇φi,∇φj〉, Dij =

∫
M
〈∇φi, ~ωj〉.

This gives a discretization of Equation (2) as

(αM + βS)g = αMf + βDv,

where f ∈ R|V| are the coefficients of the target scalar field, v ∈ R2|T | are the
coefficients of the target vector field, and g ∈ R|V| are the coefficients of the solution.

As the mass and stiffness matrices are sparse symmetric and positive (semi-)definite,
the system can be solved using a sparse Cholesky factorization (e.g., using either the
Eigen [Guennebaud et al. 2010] or the CHOLMOD [Chen et al. 2008] package).

2.3. Edge-Aware Gradient-Domain Processing

One standard way to compute the coefficients of the system matrices is using finite-
element assembly. Specifically, noting that the scalar (respectively, vector) basis
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functions are strictly linear (respectively, constant) within each triangle, the integrals
defining the matrix coefficients can be computed by computing the definite integrals
over each triangle and summing the individual contributions. (For more details, we
refer the reader to the appendix.)

The advantage of this decomposition is that it allows us to replace the metric in-
duced by the embedding of a triangle in 3D with a user-specified metric. As an exam-
ple, Figure 1 shows the results obtained when performing gradient-domain smooth-
ing where we have scaled the metric on each triangle by

(
1 + ε · (κ21 + κ22)

)
, with

(κ1, κ2) the principal curvatures estimated at the triangle. This has the effect of in-
creasing distances in regions of high curvature, making it harder for the diffusion to
propagate across sharp features, thereby resulting in edge-aware smoothing.

More formally, when we (uniformly) scale a region by a factor σ, this impacts
Equation (1) in two ways. First, the area over which the integral is computed is
multiplied by a factor of σ2, so that both the value- and gradient-integrals scale in
the same way. Second, scaling a region by σ scales the gradient of a function by
1/σ, so the gradient-integral is additionally scaled by 1/σ2. Taken in combination,
scaling by a factor of σ scales the value-integral by σ2 and leaves the gradient-integral
unchanged. Thus, when the scale factor σ is greater than one, this gives more weight
to value interpolation and when it is less than one, it gives more weight to gradient
interpolation.

Anisotropic filtering

We can also support anisotropic geometry processing by separately scaling along the
principal curvature directions. For example, Figure 3 shows an input model (center),
and the results obtained by only allowing the smoothing to occur across regions of
negative (left) and positive (right) curvature. To preserve the positively curved fea-

Negative curvature smoothing Input mesh Positive curvature smoothing

Figure 3. An input mesh (center), results obtained by smoothing across regions of negative
curvature (left), and results obtained by smoothing across regions of positive curvature (right).
At the insets show, only smoothing along regions of negative curvature preserves the convex
features while only smoothing along regions of positive curvature preserves the concave.
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tures we “stretch” the metric along directions of positive curvature, supressing the
effects of diffusion along these directions. This is done by setting the scale factor
associated to ith principal curvature direction to be

1 + ε ·max(0, κi)
2.

Similarly, we preserve the negatively curved features by “stretching” the metric along
directions of negative curvature, setting the scale factor to be

1 + ε ·min(0, κi)
2.

Naive Sharpening Isotropic smoothing
+ Sharpening

Edge-aware smoothing
+ Sharpening

Input mesh Isotropic smoothing Edge-aware smoothing

Figure 4. An input mesh (top left), results obtained by performing naive sharpening (bottom
left), the results obtained by first performing isotropic smoothing (top center) and then sharp-
ening (bottom center), and the results obtained by first performing edge-aware smoothing (top
right) and then sharpening (bottom right).
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2.4. Two-pass Filtering

As shown in the work of Taubin [1995], effects like band-pass filtering can be sim-
ulated by first running a smoothing pass to filter out the noise, followed by a sharp-
ening pass (with a narrower filter) to re-introduce the detail within a particular band.
We leverage this approach to support detail enhancement on noisy meshes. As shown
in Figure 4, when the input (top left) is noisy, a naive sharpening pass accentuates
the noise in the geometry as well as the features (bottom left). This problem can be
resolved by first running an isotropic smoothing pass to remove the noise (top center)
and then running a sharpening pass on the smoothed geometry (bottom center). Us-
ing our framework, we can further preserve the sharp detail by performing edge-aware
smoothing in the first pass (top and bottom right).

3. Evaluation

We implemented our system using the publicly available Eigen and CHOLMOD
solvers, using both the default and MKL-backed implementations of Eigen. For
Eigen, we used the “LLT” factorization. For CHOLMOD, we used the default set-
tings. (The implementation is publicly available at [Kazhdan 2016]). Table 1 sum-
marizes the model sizes, running times, and memory usage for processing the models
shown in Figures 1–4. For most evaluations, the CHOLMOD solver out-performs the
two implementations of Eigen. It is also the case that the MKL-backed implemen-
tation of Eigen out-performs the default implementation, with more noticeable gains
for large systems.

Eigen Eigen + MKL CHOLMOD
Figure Vertices Time Memory Time Memory Time Memory

1 656K 33.4 971 14.6 1025 11.9 920
2 173K 4.3 228 4.3 263 3.2 224
3 81K 2.5 114 2.0 126 1.5 117
4 947K 91.9 1561 20.9 1524 22.7 1240

Table 1. Size, running time (seconds), and memory usage (megabytes) for processing the
models shown in Figures 1–4 using different implementations the Cholesky factorization.

A more fine-grained analysis is shown in Table 2 which decomposes the linear
solve time as the sum of symbolic factorization, numerical factorization, and back-
substitution. It is interesting to note that although the MKL-based implementation is
faster than the default Eigen implementation, its back-substitution time is noticeably
slower. Thus, in scenarios where one needs to repeatedly solve the same system over
and over again, it is not necessarily the case that the MKL-based implementation
provides the better solution.
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Figure Eigen Eigen + MKL CHOLMOD
1 14.4 + 12.4 + 0.7 3.1 + 0.6 + 4.4 3.1 + 1.8 + 0.6
2 1.4 + 1.0 + 0.1 1.0 + 0.2 + 1.3 0.8 + 0.4 + 0.1
3 0.9 + 0.7 + 0.1 0.5 + 0.1 + 0.6 0.4 + 0.2 + 0.1
4 41.7 + 39.2 + 1.1 4.3 + 1.0 + 6.0 9.4 + 2.5 + 0.9

Table 2. Fine-grained running times (seconds) for solving the linear systems associated with
processing the models shown in Figures 1–4. The running times are decomposed as the sums
of the symbolic factorization, numerical factorization, and back-substiution times.

4. Conclusion and Future Work

In this work we have described an extension of the image-based gradient-domain-
processing paradigm to the processing of surface geometries. We have shown that the
associated linear systems are not difficult to formulate and can be easily adapted by
modifying the underlying Riemannian metric. Leveraging existing direct solvers, we
show that this provides a simple tool for removing noise and exaggerating detail in
3D meshes, while constraining the editing process to be edge-aware.

In future work, we would like to consider two different extensions of this ap-
proach. We would like to explore the effects of replacing the Laplace-Beltrami op-
erator by the Hessians of other deformation energies, as proposed by Hildebrandt et
al. [2012]. Such an approach could have the advantage of using an operator whose
lower frequency eigenvectors better respect the extrinsic features of the geometry,
providing an alternate means for performing edge-aware smoothing. And, more gen-
erally, we would like to explore the spectral properties of the anisotropic operators in
the context of manifold harmonics [Vallet and Lévy 2008].

A. Appendix: Matrix Assembly

In this appendix we describe how to compute the coefficients of the system matrix.
As we construct the system matrices using finite-element assembly, we focus on com-
puting the per-triangle contributions. For a given triangle τ ∈ T , we assume that
τ is parameterized over the unit right triangle T (the triangle in R2 with vertices
{v0 = (0, 0),v1 = (1, 0),v2 = (0, 1)}), and that we are given a symmetric positive
definite matrix gτ ∈ R2×2 describing the constant metric over T. For example, given
a 3D triangle with vertices {v0, v1, v2} ⊂ R3, the metric tensor defined by the 3D
embedding is

gτ =

(
〈v1 − v0, v1 − v0〉 〈v1 − v0, v2 − v0〉
〈v2 − v0, v1 − v0〉 〈v2 − v0, v2 − v0〉

)
.
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A.1. Mass Matrix

Given the hat functions {φφφi : T → R}, with φφφi the linear function on T satisfy-
ing φφφi(vj) = δij , the coefficients of the mass matrix, Mτ ∈ R3×3, are defined by
integrating the products of the basis functions over the triangle, relative to the metric:

Mτ
ij =

∫
T
φφφi ·φφφj dgτ .

Using the fact that the area of the triangle is one half the square-root of the determinant
of the metric tensor, this gives

Mτ =
√

det(gτ )

 1/6 1/12 1/12

1/12 1/6 1/12

1/12 1/12 1/6

 .

A.2. Gradient Matrix

Given a linear function on T, we define the gradient as the cotangent vector-field (i.e.,
the differential). This allows us to define the gradient operator in a metric-independent
fashion. In particular, we set {~t1 = v1−v0,~t2 = v2−v0} to be vectors spanning the
tangent space of T. Then the cotangent space is spanned by the dual vectors {~t∗1,~t∗2}
and the gradient matrix, G ∈ R3×2, is defined by taking finite-differences:

G =

(
−1 1 0

−1 0 1

)
.

A.3. Divergence Matrix

By Stokes’ Theorem, the coefficients of the divergence matrix, Dτ ∈ R2×3, is defined
by integrating the dot-product of a cotangent vector field, ~t∗i , with the gradient of a
hat basis functions,∇φφφj :

Dτ
ij =

∫
T
〈~t∗i ,∇φφφj〉gτ dgτ .

Using the fact that the metric tensor gτ can be interpreted as a map from the tangent
space to its dual, and that the inverse (gτ )−1 is the map from the dual to the primal,
this gives

Dτ =
√

det(gτ ) ·Gt ◦ (gτ )−1.

A.4. Stiffness Matrix

Finally, the stiffness matrix, Sτ ∈ R3×3, is defined by taking the divergence of the
gradient:

Sτ =
√

det(gτ ) ·Gt ◦ (gτ )−1 ◦G =
1√

det(gτ )
·Gt ◦

(
gτ11 −gτ10
−gτ01 gτ00

)
◦G.
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In the case that gτ is defined by the 3D embedding, this gives the standard cotangent-
Laplacian [Dziuk 1988; Pinkall and Polthier 1993].
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PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM Transactions
on Graphics (SIGGRAPH ’03), 313–318. URL: http://doi.acm.org/10.1145/
882262.882269. 44

PINKALL, U., AND POLTHIER, K. 1993. Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics 2, 15–36. URL: http://dx.doi.org/10.
1080/10586458.1993.10504266. 45, 53

TAUBIN, G. 1995. A signal processing approach to fair surface design. In Proceedings of
the 22nd Annual Conference on Computer Graphics and Interactive Techniques, ACM,
New York, SIGGRAPH ’95, 351–358. URL: http://doi.acm.org/10.1145/
218380.218473. 45, 50
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