
Partial Visibility for Stylized Lines

Forrester Cole
Princeton University

Adam Finkelstein
Princeton University

Figure 1: Anti-aliased line visibility. Left pair: Aliasing in the visibility test for lines (visualized over black) causes breaks and other artifacts
in the rendered lines (drawn on beige model). Right pair: Supersampling and ID peeling removes these artifacts from the rendered lines.

Abstract

A variety of non-photorealistic rendering styles include lines ex-
tracted from 3D models. Conventional visibility algorithms make
a binary decision for each line fragment, usually by a depth test
against the polygons of the model. This binary visibility test pro-
duces aliasing where lines are partially obscured by polygons or
other lines. Such aliasing artifacts are particularly objectionable in
animations and where lines are drawn with texture and other styl-
ization effects. We introduce a method for anti-aliasing the line visi-
bility test by supersampling, analogous to anti-aliasing for polygon
rendering. Our visibility test is inexpensive using current graph-
ics hardware and produces partial visibility that largely ameliorates
objectionable aliasing artifacts. In addition, we introduce a method
analogous to depth peeling that further addresses artifacts where
lines obscure other lines.

Keywords: NPR, Line Drawing, Visibility, Hidden Line Removal

1 Introduction

Common to many non-photorealistic rendering (NPR) techniques
is the use some form of stylized lines. Such lines may include static
3D features such as creases and texture boundaries, as well as view-
dependent features such as silhouettes, suggestive contours and
suggestive highlights. Using the conventional graphics pipeline,
such features may be drawn as solid, straight lines in 3D, and their

visibilty can be resolved using the standard z-buffer algorithm (typ-
ically offset slightly relative to the polygons to disambiguate visi-
bility where the lines and polygons are colocated). However, the
z-buffer approach cannot be used for lines drawn with stylization
effects such as varying thickness, over- or under-shoot, wavy path,
and texture (e.g., Figure 6) because such effects cause the lines to
be drawn in areas of the image near but not exactly identical to the
location where visibility should be tested. Therefore, algorithms for
drawing stylized lines from 3D models generally compute visibility
for the lines prior to rendering them.

Typical line visibility algorithms generate a binary decision for ev-
ery line fragment. Unfortunately such tests are subject to aliasing,
leading to rendering artifacts such as those shown on the left in Fig-
ure 1. This paper describes an anti-aliasing approch to line visibility
that results in partial visibility at every line fragment and, as shown
on the right, largely ameliorates aliasing artifacts in the rendered
lines. The specific contributions are:

• The notion of rendering lines with partial visibility as a mech-
anism for anti-aliasing.

• An algorithm for computing partial visibility of lines by
super-sampling from an item buffer.

• The use of ID peeling in an item buffer to improve render-
ing quality where lines overlap in image space, and provid-
ing a quality-performance tradeoff when readback of the item
buffer becomes expensive.

2 Background and Related Work

For an overview of line visibililty approaches, especially with re-
gard to silhouettes, see the survey by Isenberg et al. [2003]. One
general strategy combines visibility and rendering by simply caus-
ing the visible lines to appear in the image buffer, for exam-
ple the techniques of Raskar and Cohen [1999] or more recently
Lee et al. [2007], both of which worked at interactive frame rates



by using hardware rendering. These approaches limit stylization
because by the time visibility has been calculated, the lines are al-
ready drawn. On the other hand, explicit computation of line visibil-
ity has been the subject of research since the 1960’s. For example,
Appel [1967] introduced the notion of quantitative invisibility (QI),
and computed it by finding changes in visibility at certain (typically
rare) locations. This approach was further improved and adapted to
NPR by Markosian et al. [1997] who showed it could be performed
at interactive frame rates for models of moderate complexity.

Appel’s algorithm and its variants can be difficult to implement
and are somewhat brittle when the lines are not in general posi-
tion. Thus, Northrup and Markosian [2000] adapted the use of an
item buffer (which had previously been used to accelerate ray trac-
ing [Weghorst et al. 1984]) for the purpose of line visibility, call-
ing it an “ID reference image” in this context. Several subsequent
NPR systems have adopted this approach, e.g. [Kalnins et al. 2002;
Kalnins et al. 2003; Cole et al. 2006], and the algorithm described
in this paper also builds on this strategy. Kaplan [2007] described a
method for computing QI using an item buffer, and we believe we
could compute “partial” QI by combining his method with ours.

Any binary visibility test, including the item buffer approach, will
lead to aliasing artifacts, analogous to those that appear for poly-
gons when sampled into a pixel grid. The classic polygon alias-
ing artifacts are the “jaggies” that appear along the boundaries of a
polygon, where the polygon covers only a fraction of a pixel. Con-
siderable effort has been devoted to antialiasing for polygons [Fo-
ley et al. 1990]. A common strategy for addressing such artifacts is
to supersample, for example with the use of the A-buffer [Carpen-
ter 1984]. This paper demonstrates that such methods, originally
developed for polygons, can be adapted to anti-alias line visibility
with a similar quality-performance tradeoff.

This paper also describes ID peeling, which is based on the depth
peeling approach described by Everitt [2001]. Depth peeling was
originally used to correctly render transparent objects without depth
sorting. As described in Section 3.2, the ID peeling can be adapted
to allow the item buffer to store more than one line per pixel.

Finally we note that partially visible lines have already been used
for various stylistic effects in NPR. For example Winkenbach and
Salesin [1994] and Hertzmann and Zorin [2000] controlled line
density among hatching lines by varying line weight and opacity.

3 Algorithm

The basis of our line rendering pipeline is the item buffer method
of Northrup and Markosian [2000]. An item buffer is an off-screen
buffer that contains visibility information for a set of 3D lines. To
create an item buffer, the polygonal model is first drawn into the
depth buffer. Each individual line is then drawn into the color
buffer with a unique color (as in Figure 1), while testing against
the model’s depth buffer. For a model M, a set of 3D lines L, and
associated colors C, the item buffer is created as follows:

def drawItemBuffer(M, L, C):
set color mask = false, depth mask = true
draw M
set color mask = true, depth mask = false
draw each l in L, colored by C

Lines are drawn with depth mask (writing to the depth buffer) dis-
abled to prevent z-fighting between lines. Drawing the item buffer
without depth writing usually does not cause additional visual arti-
facts, because when all lines are drawn in a similar style, it is usu-
ally not possible to tell which line is in front and which is behind.

Figure 3: 9× Supersampling. Black lines are pixel boundaries, gray
lines are subpixel sample boundaries. The edges of a fully visible
line are dark red. Red subpixel samples fall within this line. Even
though the line is fully visible, no single pixel (black box) contains
nine red samples.

Each pixel of the item buffer contains the unique color of a single
visible line fragment at that pixel. While efficient and fairly accu-
rate, this approach suffers from two major flaws, one general and
one peculiar to the item buffer. The general flaw is that an item
buffer has limited resolution, and cannot be trivially anti-aliased
due to the special meaning of the line colors. Any visibility algo-
rithm (e.g. raytracing) suffers from this restriction, and our super-
sampling implementation also generalizes to visibility approaches
besides the item buffer. The particular flaw is that only a single line
color can exist as a given pixel, even if more than one line frag-
ment is visible at that pixel. This restriction is due to the limited
size of the graphics card’s framebuffer, and ID peeling is a way to
circumvent this hardware restriction.

3.1 Supersampling

The conventional approach to anti-aliasing for rendering is to take
several sub-pixel samples and average their colors to obtain the final
pixel color. This approach fails in the case of the item buffer, how-
ever, because color is used to encode the line indices. Averaging
two colors results in a spurious line index. In order to supersample
the item buffer, we need an aggregating operation that preserves the
proper line indices.

Our approach is first to render the item buffer at high resolution –
between two and six times the full-screen resolution. This can be
done by either increasing the screen resolution and drawing the
lines with width equal to the supersampling factor (width 2 for 2×2
supersampling), or drawing multiple copies of the item buffer with
subpixel offsets. We chose the latter, because although drawing the
geometry multiple times can degrade performance, we have noticed
that thick lines in OpenGL behave unpredictably and may vary from
platform to platform. Subpixel offsets also allow the possibility of
jittered supersampling with random offsets, though we have not im-
plemented such a scheme.

A fully visible line fragment may lie across the subpixel samples of
multiple adjacent pixels (Figure 3). If each pixel contains n sam-
ples, we label each sample from 1..n. A fragment’s visibility is



Figure 2: Aliasing at visibility changes. Item buffer aliasing and overwriting at changes in visibility can cause obvious artifacts in stylized
lines (left). For a single item buffer (enlarged solid yellow), the pink edge interferes with the aqua edge as it transitions from visible to
invisible. A hypothetical second item buffer layer (enlarged dotted yellow) could recover the pixels overwritten by other lines. With both
supersampling and ID peeling the aqua line is intact and the pink line is partially visible on top of it (right: two layers of item buffer enlarged
in orange).

determined by the number of sample labels covered in a 3x3 pixel
neighborhood around the fragment. For example, if n = 4 and the
line covers samples 1,3 in one pixel and samples 2,4 in an adjacent
pixel, the fragment has full visibility. Because of the neighborhood
check, this test can overestimate the visibility of a line fragment by
up to one pixel.

3.2 ID Peeling

A conventional item buffer holds only a single ID per pixel. In
even simple models, however, multiple lines will often project to
the same item buffer pixel (Figure 2). This problem becomes worse
as the model becomes more complex. For a large number of cases,
however, only a small number of lines will fall on any single pixel
(Table 2). We can exploit this property by adapting the technique
of depth peeling [Everitt 2001].

In depth peeling, multiple layers of depth information are obtained
by rendering the scene multiple times, each time allowing a frag-
ment to pass the depth test only if it is farther from the camera
than the closest fragment at the same position in the previous layer.
Our version is similar, except that instead of using a second depth
test, we allow a line fragment to pass only if its index is lower than
the highest index at the corresponding pixel in the previous layer
(assuming lines are drawn in ascending order). If the maximum
number of lines overlapping a single pixel is n, we can recover the
full visibility information in n passes.

The result is a set of n item buffers that when taken together, provide
complete visibility information for each line (Figure 2).

4 Results

Supersampling and ID peeling together repair most of the visual ar-
tifacts associated with visibility testing using an item buffer (e.g.,
Figures 1 and 2). However, both methods impose a performance
cost. Table 1 shows the effect of supersampling and ID peeling on
framerates for the Falling Water model. The Falling Water model
is a relatively complex model with many parallel and overlapping
lines, so it provides a good “stress test” for our algorithm. Both
supersampling and ID peeling impose a sub-linear performance
cost, though ID peeling dominates. Tripling the number of layers
(from 1 to 3) roughly halves frame rate, while for the same perfor-
mance hit the number of samples may be increased from 1 to 9.

We have found that for almost all models and views, nearly full vis-
ibility information can be recovered with three or four item buffer
layers, though to remove all artifacts under animation more lay-
ers may be required. More layers are also required at high super-
sampling levels, as supersampling tends to increase the item buffer
depth complexity.

Base 4× 9× 16× 25×
1 Layer 17.6 13.6 9.7 7.1 5.3
2 Layers 12.5 9.0 6.1 4.2 3.0
3 Layers 9.8 6.9 4.5 3.1 2.2

Table 1: Frames per second for supersampling and ID peeling.
Timings are from a rotating a full view of the house model from
Figure 1 at 800x600 window resolution. The model has approxi-
mately 10,000 line paths. Tested system had a 2.3GHz Athlon 64
CPU and an NVIDIA 8800GTS GPU.



Model \ Layers: 1 2 3 4 5 6
Box 0.89 0.11 0 0 0 0
House view 1 0.78 0.16 0.05 0.01 0 0
House view 2 0.57 0.24 0.09 0.06 0.02 0.01

Table 2: Fraction of item buffer pixels that overlap multiple lines.
Of the item buffer pixels that touch any line, the vast majority touch
four or fewer lines. The box view is Figure 2b, House view 1 is
Figure 1, and House view 2 is the same view, but zoomed out until
the entire model is visible (see Figure 5). No supersampling was
used for this experiment.

Figure 4: Supersampling Error. The average squared error in visi-
bility against the number of samples taken, for the view in Figure 1.
Error is computed against supersampling at 36x, which is consid-
ered zero error. Eight item buffer layers are used. The knee in the
curve appears at 4× supersampling, and there is little gain after 16×
supersampling.

Table 2 shows the percentage of item buffer pixels that touch one or
more lines. For simple models such as the box, there are no pixels
that contain more than two lines. For complex models such as the
Falling Water, some pixels can overlap many lines, though for the
view shown in Figure 1, 99% of all pixels that overlap any line
overlap three or fewer lines. For a more difficult view, where the
model is zoomed out until it fits entirely on the screen (Figure 5),
91% of all line pixels overlap three or fewer lines. Exceptional
cases exist: for example, one could imagine zooming out until the
entire model fit under a single pixel. In such pathological cases,
however, perfect visibility information is usually not important.

The gain from supersampling generally falls off rapidly after only
four samples, as measured by the average squared difference in vis-
ibility from an image created with 36 samples (Figure 4). Qualita-
tively, we find there are usually small visual differences that can be
detected up to 16 samples, but after that point the visual impact of
additional samples is minimal.

Finally, the accompanying video demonstrates the impact of these
enhancements under animation. An animated cube shows aliasing
artifacts that are addressed first by ID peeling and then by super-
sampling. The next example shows these effects for the more chal-
lenging Falling Water model, which includes many tiny overlapping
lines. We note that in this example, 9× supersampling is used to-
gether with 8 ID layers, resulting in reduced aliasing. However, we
believe that in this case, more sampling would further improve the
result, but would exceed the memory capacity of our graphics card.

Figure 5: ID Peeling. Top: the “House 2” view. Bottom: visualiza-
tion of item buffer layers. Colors indicate number of overlapping
lines at each pixel.

5 Conclusion and Future Work

Supersampling and ID peeling together drastically reduce the num-
ber of objectionable visual artifacts when rendering stylized lines.
For interactive applications, most of the benefit can be had by using
only 4× supersampling and 3-4 item buffer layers. For offline ani-
mation, there is no reason not to use many samples and many item
buffer layers to achieve the best possible quality.

There are several directions for future work in this area. First, our
supersampling and ID peeling are currently too slow to achieve the
best possible quality at interactive rates. While we were conscious
of performance when creating our implementation, we left several
possibilities for further optimization open.

For complex models and high supersampling rate, drawing the en-
tire set of lines once per sample can become expensive. In these
cases, it may be advantageous to draw a single, scaled-up item
buffer and deal with the vagaries of thick line drawing.

The major and relatively fixed cost of the item buffer algorithm is
the readback from the GPU and the processing on the CPU. Deeper
layers of ID peeling tend to contain very few non-zero pixels. It
may be possible to gain efficiency by using a hierarchical represen-
tation such as a quadtree where empty branches can be pruned.

In the longer run, our goal is to move the entire line visibility pro-
cessing pipeline onto the GPU and avoid CPU-side processing as
much as possible. Current graphics hardware should contain the
functionality necessary to achieve this, but mapping the item buffer
algorithm onto the GPU efficiently remains a challenge.



Figure 6: Guggenheim Museum. In typical views of complex models, there exist lines at the cusp of visibility (e.g., the rings of the tower).
Top left: conventional item buffer visualization. Top right: resulting image. Bottom pair: 9× supersampling and 5 ID peeling layers.

References

APPEL, A. 1967. The notion of quantitative invisibility and the
machine rendering of solids. In Proceedings of the 22nd national
conference of the ACM, 387–393.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface
method. SIGGRAPH Comput. Graph. 18, 3, 103–108.

COLE, F., DECARLO, D., FINKELSTEIN, A., KIN, K., MORLEY,
K., AND SANTELLA, A. 2006. Directing gaze in 3D mod-
els with stylized focus. Eurographics Symposium on Rendering
(June), 377–387.

EVERITT, C., 2001. Interactive order-independent transparency.
Technical report, NVIDIA Corporation, May 2001. Available at
http://www.nvidia.com/.

FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F.
1990. Computer graphics: principles and practice (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, 517–
526.

ISENBERG, T., FREUDENBERG, B., HALPER, N.,
SCHLECHTWEG, S., AND STROTHOTTE, T. 2003. A
Developer’s Guide to Silhouette Algorithms for Polygonal
Models. IEEE Computer Graphics and Applications 23, 4
(July/Aug.), 28–37.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: drawing

strokes directly on 3d models. In Proceedings of SIGGRAPH
2002, 755–762.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND
FINKELSTEIN, A. 2003. Coherent stylized silhouettes. ACM
Transactions on Graphics 22, 3 (July), 856–861.

KAPLAN, M. 2007. Hybrid quantitative invisibility. In NPAR
’07: Proceedings of the 5th international symposium on Non-
photorealistic animation and rendering, 51–52.

LEE, Y., MARKOSIAN, L., LEE, S., AND HUGHES, J. F. 2007.
Line drawings via abstracted shading. ACM Transactions on
Graphics 26, 3 (July), 18:1–18:5.

MARKOSIAN, L., KOWALSKI, M. A., GOLDSTEIN, D.,
TRYCHIN, S. J., HUGHES, J. F., AND BOURDEV, L. D. 1997.
Real-time nonphotorealistic rendering. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques, 415–420.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic silhou-
ettes: a hybrid approach. In NPAR ’00: Proceedings of the 1st
international symposium on Non-photorealistic animation and
rendering, 31–37.

RASKAR, R., AND COHEN, M. 1999. Image precision silhouette
edges. In SI3D ’99: Proceedings of the 1999 symposium on
Interactive 3D graphics, ACM Press, New York, NY, USA, 135–
140.

WEGHORST, H., HOOPER, G., AND GREENBERG, D. P. 1984.
Improved computational methods for ray tracing. ACM Trans-
actions on Graphics 3, 1 (Jan.), 52–69.

WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-
generated pen-and-ink illustration. In Proceedings of SIG-
GRAPH 1994, 91–100.


