
Fast High-Quality Line Visibility

Forrester Cole
Princeton University

Adam Finkelstein
Princeton University

Figure 1: Examples of models rendered with stylized lines. Stylized lines can provide extra information with texture and shape, and are more
aesthetically appealing than conventional solid or stippled lines.

Abstract

Lines drawn over or in place of shaded 3D models can often pro-
vide greater comprehensibility and stylistic freedom that shading
alone. A substantial challenge for making stylized line drawings
from 3D models is the visibility computation. Current algorithms
for computing line visibility in models of moderate complexity are
either too slow for interactive rendering, or too brittle for coherent
animation. We present a method that exploits graphics hardware
to provide fast and robust line visibility. Rendering speed for our
system is usually within a factor of two of an optimized rendering
pipeline using conventional lines, and our system provides much
higher visual quality and flexibility for stylization.
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1 Introduction

Stylized lines play a role in many applications of non-photorealistic
rendering (NPR) for 3D models (Figure 1). Lines can be used alone
to depict shape, or in conjunction with polygons to emphasize fea-
tures such as silhouettes, creases, and material boundaries. While
graphics libraries such as OpenGL provide basic line drawing ca-
pabilities, their stylization options are limited. Desire to include
effects such as texture, varying thickness, or wavy paths has lead
to techniques to draw lines using textured triangle strips (strokes),
for example those of Markosian, et al. [1997]. Stroke-based tech-
niques provide a broad range of stylizations, as each stroke can be
arbitrarily shaped and textured.

A major difficulty in drawing strokes is visibility computation.
Conventional, per-fragment depth testing is insufficient for drawing
broad strokes (Figure 2). Techniques such as the item buffer intro-
duced by Northrup and Markosian [2000] can be used to compute
visibility of lines prior to rendering strokes, but are much slower
than conventional OpenGL rendering and are vulnerable to alias-
ing artifacts. While techniques exist to reduce these artifacts, they
induce an even greater loss in performance. This paper presents a
new method for testing visibility that removes the primary cause of
aliasing in current techniques, and brings performance much closer
to that of conventional rendering by moving the entire line visibility
and drawing pipeline onto graphics hardware.

The specific contributions of this paper are:

• The description of an entirely GPU-based pipeline for hidden
line removal and stylized stroke rendering.

• The introduction of the segment atlas as a data structure for
efficient and accurate line visibility computation.

Applications for this approach include any context where interac-
tive rendering of high-quality lines from 3D models is appropriate,
including games, design and architectural modeling, medical and
scientific visualization and interactive illustrations.

2 Background and Related Work

The most straightforward way to augment a shaded model with
lines using the conventional rendering pipeline is to draw the poly-
gons slightly offset from the camera and then to draw the lines,
clipped against the model via the z-buffer. This is by far the most
common approach, used by programs ranging from CAD and archi-
tectural modeling to 3D animation software, and because it lever-
ages the highly-optimized pipeline implemented by graphics cards
it imposes little overhead over drawing the shaded polygons alone.
Unfortunately the lines resulting from this process admit only min-
imal stylistic control (color, fixed width, and in some implementa-
tions screen-space dash patterns).

Another general strategy combines visibility and rendering by sim-
ply causing the visible lines to appear in the image buffer, for ex-
ample the techniques of Raskar and Cohen [1999] or more recently
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Figure 2: Naive depth testing per-fragment vs. precomputed visibil-
ity. When drawing wide lines, only lines that lie entirely outside the
model will be drawn correctly (b and d). Lines a, c, e are partially
occluded by the model, even when some polygon offset is applied.
Visibility testing along the spine of the lines (red dots) prior to ren-
dering strokes solves the problem.

Lee et al. [2007], both work at interactive frame rates by using hard-
ware rendering. For example, the Raskar and Cohen method draws
back-facing polygons in black, slightly displaced towards the cam-
era from the front-facing polygons, so that black borders appear at
silhouettes. Such approaches also limit stylization because by the
time visibility has been calculated, the lines are already drawn.

To depict strokes with obvious character (e.g. texture, wobbles,
varying width, deliberate breaks or dash patterns, tapered endcaps,
overshoot, or haloes) Northrup and Markosian [2000] introduced
a simple rendering trick wherin the OpenGL lines are supplanted
by textured triangle strips. The naive approach to computing vis-
ibility for such strokes would be to apply a z-buffer test to the tri-
angle strips describing strokes – a strategy that fails where many
of the strokes interpenetrate the model (Figure 2). Therefore, NPR
methods utilizing this type of stylization generally need to com-
pute line visibility prior to rendering the lines. Line visibility has
been the subject of research since the 1960’s. Appel [1967] in-
troduced the notion of quantitative invisibility, and computed it
by finding changes in visibility at certain (typically rare) loca-
tions. This approach was further improved and adapted to NPR
by Markosian et al. [1997] who showed it could be performed at
interactive frame rates for models of modest complexity.

Appel’s algorithm and its variants can be difficult to implement
and are somewhat brittle when the lines are not in general posi-
tion. Thus, Northrup and Markosian [2000] adapted the use of an
item buffer (which had previously been used to accelerate ray trac-
ing [Weghorst et al. 1984]) for the purpose of line visibility, call-
ing it an “ID reference image” in this context. Several subsequent
NPR systems have adopted this approach, e.g. [Kalnins et al. 2002;
Kalnins et al. 2003; Cole et al. 2006]. For an overview of line
visibility approaches (especially with regard to silhouettes, which
present a particular challenge because they lie at the cusp of visibil-
ity), see the survey by Isenberg et al. [2003]. Any binary visibility

test, including the item buffer approach, will lead to aliasing arti-
facts, analogous to those that appear for polygons when sampled
into a pixel grid. To ameliorate aliasing artifacts Cole and Finkel-
stein [2008] showed how to adapt to line drawing the supersampling
and depth-peeling strategies previous described for polygons, intro-
ducing the notion of partial visibility for lines.

While the item buffer approach can determine line visibility at in-
teractive frame rates of moderate complexity, it is slow for large
models. Moreover, computation of partial visibility – which signif-
icantly improves visual quality, especially under animation – im-
poses a further burden on frame rates. Our current method provides
high-quality hidden line removal (with or without partial visibility)
at interactive frame rates for complex models.

3 Algorithm

Our algorithm begins with a set of lines extracted from the model.
Most of our experiments have focused on lines that are fixed on the
model, for example creases or texture boundaries. However, our
system also supports the extraction of silhouette edges from a pool
of faces whose normals are interpolated (e.g. the rounded top of
the clevis on the left in Figure 1). Our goal is to determine which
portions of these segments are visible.

Our line visibility pipeline has three major stages, illustrated in Fig-
ure 3: line projection and clipping (Section 3.1), creation of the
segment atlas (Section 3.2), and visibility testing (Section 3.3). All
stages execute on the GPU, and all data required for execution re-
sides in GPU memory in the form of OpenGL framebuffer objects
or vertex buffer objects. The input to the algorithm is a set of N line
strips (which we call paths), each divided into one or more seg-
ments. The output of the algorithm is a segment atlas containing
per-sample visibility information for each segment. Finally, after
visibility has been determined via this pipeline, there are two gen-
eral strategies for rendering the lines, as described in Section 3.4.

3.1 Projection and Clipping

The first stage of the visibility pipeline begins with a set of can-
didate line segments, projects them, and clips them to the viewing
frustum. Ideally, we would use the GPU’s clipping hardware to clip
each segment. However, in current graphics hardware the output
of the clipper is not available until the fragment program stage, af-
ter rasterization has already been performed. We therefore use a
fragment program to project and clip the segments. The input to
the program is a six-channel framebuffer object packed with the
3D coordinates of the endpoints of each segment (p,q) (Figure 3a).
This buffer must be updated at each frame with the positions of any
moving line segments. The output of the program is a nine-channel
buffer containing the 4D homogeneous clip coordinates (p′,q′) and
the number of visibility samples l (Figure 3b). The number of visi-
bility samples l is determined by:

l = d||p′w−q′w||/ke (1)

where (p′w,q′w) are the 2D window coordinates of the segment end-
points, and k is a screen-space sampling rate. The factor k trades off
positional accuracy in the visibility test against segment atlas size.
We usually set k = 1 or 2, meaning visibility is determined every
1 or 2 pixels along each line; there is diminishing visual benefit in
determining with any greater accuracy the exact position at which
a line becomes occluded.

A value of l = 0 is returned for segments that are entirely outside
the viewing frustum. Segments for which l ≤ 1 (i.e., sub-pixel sized
segments) are discarded for efficiency if not part of a path, but oth-
erwise must be kept or the path will appear disconnected.
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Figure 3: Pipeline. (a) The 3D line segments (pi,qi) are stored in
a table. (b) A fragment program projects and clips each segment
to produce (p′i,q

′
i), and determines a number of samples li propor-

tional to its screen space length. (c) A scan operation computes
the atlas positions s from the running sum of l. (d) Sample posi-
tions v are interpolated from (p′,q′) and written into the segment
atlas at offset s. Visibility values α for each sample are determined
by probing the depth buffer (e) at v, and are used to generate the
final rendering (f). Note the schematic colors used throughout for
the blue-yellow and pink-green segments.

While not a specific contribution of our method, we note that per-
forming projection and clipping in this manner makes it very easy
to rapidly extract silhouette edges from a portion of a mesh whose
normals are interpolated, such as the rounded top of the clevis on
the left in Figure 1. During clipping, neighboring face normals may
be checked for a silhouette edge condition (one front-facing and one
back-facing polygon). If the edge is not a silhouette, it is discarded
by setting l = 0. This method is similar to the approach of Brabec
and Seidel [2003] for computing shadow volumes on the GPU.

3.2 Segment Atlas Creation

The segment atlas is a table of segment samples. Each segment
is allocated l entries in the atlas, and each entry consists of a clip
space position v and a visibility value α (Figure 3d). The interpo-
lated sample positions v are created by drawing single-pixel wide

lines into the atlas, using the conventional OpenGL line drawing
commands. A fragment program performs the interpolation of p′
and q′ and the perspective division step to produce each v, simulta-
neously checking the visibility at the sample (Section 3.3).

Before the segment atlas can be constructed, we need to determine
the offset s of each segment into this data structure, which is the
running sum of the sample counts l (Figure 3c). The sum is cal-
culated by performing an exclusive scan operation on l [Sengupta
et al. 2007]. Once the atlas position s is computed, each segment
may be drawn in the atlas independently and without overlap.

The most natural representation for the segment atlas is as a very
long, 1D texture. Unfortunately, current GPUs do not allow for
arbitrarily long 1D textures, at least as targets for rendering. The
segment atlas can be mapped to two dimensions by wrapping the
atlas positions at a predetermined width w, usually the maximum
texture width W allowed by the GPU (W = 4096 or 8192 texels is
common). The 2D atlas s is given by:

s = (s mod w,bs/wc) (2)

The issue then becomes how to deal with segments that extend out-
side the texture, i.e., segments for which (s mod w)+ l > w. One
way to address this problem is to draw the segment atlas twice, once
normally and once with the projection matrix translated by (−w,1).
Long segments will thus be wrapped across two consecutive lines in
the atlas. Specifically, suppose L is the largest value of l, which can
be conservatively capped at the screen diagonal distance divided by
k. If w > L, drawing the atlas twice is sufficient, because we are
guaranteed that each segment requires at most one wrap. Drawing
twice incurs a performance penalty, but as the visibility fragment
program is usually the bottleneck (and is still run only once per
sample) the penalty is usually small.

For some rendering applications, however, it is considerably more
convenient if segments do not wrap (Section 3.4). In this case, we
establish a gutter in the 2D segment atlas by setting w =W−L. The
atlas position is then only drawn once. This approach is guaranteed
to waste W − L texels per atlas line. Moreover, this waste exac-
erbates the waste due to our need to preallocate a large block of
memory for the segment atlas without knowing how full it will be-
come. Nevertheless, the memory usage of the segment atlas (which
is limited by the number of lines drawn on the screen) is typically
dominated by that of the 3D and 4D segment tables (which must
hold all lines in the scene).

3.3 Visibility Testing

As mentioned in Section 3.2 the visibility test for each sample is
performed during rasterization of the segments into the segment
atlas. The visibility of a sample is computed by comparing the pro-
jected depth value of the sample with the depth value of the near-
est polygon under the sample, much like a conventional z-buffer
scheme. As noted by Cole and Finkelstein [2008], aliasing in the
visibility test for lines can cause severe visual artifacts, especially
under animation. Unlike the item buffer approach, the segment at-
las method is not vulnerable to interference among lines, making a
multi-layered segment atlas unnecessary. However, there are still
two potential sources of aliasing error: aliasing of the per-sample
depth test, and aliasing in the depth buffer with respect to the origi-
nal polygons. Both these sources of aliasing can be addressed with
supersampling.

During the drawing of the atlas, a fragment program computes
an interpolated homogeneous clip space coordinate for each sam-
ple and performs the perspective division step. The resulting clip
space z value is then compared to a depth buffer of the scene poly-
gons. Using a single test for this comparison produces aliasing
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Figure 4: Aliasing in visibility test. Results for varying number of
samples and scale of depth buffer. (a) 1 sample, 1x depth buffer.
(b) 16 samples, 1x depth buffer. (c) 1 sample, 3x depth buffer. (d)
16 samples, 3x depth buffer. Red box in (e) indicates location of
magnified area in the Falling Water model.

(Figure 4a). Adding additional probes in a box filter configuration
around the sample gives a more accurate occlusion value for the
line sample (Figure 4b). Additional depth probes are cheap, but not
free. The impact of increased sampling is more visible in complex
scenes, with large segment atlases (see Table 1).

Any number of depth probes will not produce an accurate result if
the underlying depth buffer has aliasing error. While impossible to
eliminate entirely, this source of aliasing can be reduced through
supersampling of the depth buffer by increasing the viewport reso-
lution. Since typical applications are seldom fillrate bound for sim-
ple operations like drawing the depth buffer, increasing the size of
the buffer typically has little impact on performance outside of an
increase in memory usage. While simply scaling the depth buffer
without adding additional depth probes for each sample produces
a marginal increase in image quality (Figure 4c), combining depth
buffer scaling and depth test supersampling largely eliminates alias-
ing artifacts (Figure 4d).

3.4 Stroke Rendering

After visibility is computed, all the information necessary to draw
strokes is available in the projected and clipped segment table and
the segment atlas. The most efficient way to render the strokes is to
generate, on the host, a single quad per segment. A vertex program
then positions the vertices of the quad relative to (p′,q′), taking into
account the pen width and proper mitreing for multi-segment paths.
A fragment program textures the quad with a 2D pen texture, and
modulates the texture with the corresponding 1D visibility values

Figure 5: Variation in style. A different texture may be used for
lines that fail the visibility test (le f t), allowing visualization of
hidden structures. Our method also produces attractive results for
solid, simple styles (right).

Figure 6: Line density control. One reason to read back the segment
atlas to the host is to control screen space line density. Left: no
density control. Right: line density reduction as in [Cole2006].

from the segment atlas. Additional stylization effects such as line
overshoot can be added easily in the vertex program stage (Fig-
ure 5). All results shown in this paper were generated using this
rendering method, with the exception of Figure 6.

In some cases it may be desirable to read back the segment atlas vis-
ibility values for processing on the host. One example could be to
implement a stroke-based line density control scheme (e.g., [Grabli
et al. 2004; Cole et al. 2006]). An example of the latter method for
line density control, implemented in our system as a post-process to
the visible paths, is shown in Figure 6. Reading back and process-
ing the entire segment atlas is inefficient, since for reasonably com-
plex models the vast majority of line samples in any given frame
will have zero visibility. Thus we apply a stream compaction oper-
ation [Horn 2005] to the segment atlas visibility values. This yields
a packed buffer with only visible samples remaining, which is suit-
able for readback to the host. An added benefit of the segment atlas
approach compared to the item buffer approach is that the line sam-
ples in this compacted buffer are ordered by path and segment, and
can therefore be efficiently converted to geometry. By comparison,
the visibility samples in an item buffer are ordered by screen space
position, and must be sorted or otherwise processed before use. For
models of moderate complexity the performance of this rendering
approach is roughly comparable to that of the GPU-rendered ap-
proach described above, with a additional fixed cost of∼ 20 ms per
frame for stream compaction and read-back.

For either rendering strategy described above, the geometry is styl-
ized via 2D images of marks in the style of pen, pencil, char-
coal, etc. We use periodic textures parameterized uniformly in
screenspace. Changes in this paremeterization from frame to frame
influence temporal coherence of the lines, as can be observed in the
accompanying video. Since the emphasis in this paper is on visibil-
ity, we use the simple strategy of fixing the “zero” parameter value
along the length of the stroke at its screen-space center. A more
sophisticated strategy that seeks temporal coherence from frame to
frame was described by Kalnins et al. [2003].



Model # tris # segs OGL IB1 IB2 SA1 SA2
clevis 1k 1.5k 1000+ 87 20 149 149
house 15k 14k 300+ 24 3.4 119 97
ship 300k 300k 42 9.6 0.52 30 26
office 330k 300k 32 7.0 0.35 25 16
ship+s - 500k - - - 20 14
office+s - 400k - - - 22 13

Table 1: Frame rates (fps) for various models rendering methods.
All frames rendered at 1024×768. Timings for clevis and house are
averaged over an orbit of the model. Timings for ship and office are
averaged over a walkthrough sequence (accompanying video). The
“+s” indicates silhouettes were extracted and drawn. OGL: con-
ventional OpenGL lines. IB1: single item buffer [Northrup2000].
IB2: 9× supersampled item buffer with 3 layers [Cole2008]. SA1:
single probe segment atlas (comparable to IB1). SA2: 9 probe seg-
ment atlas with 2× scaled depth buffer (comparable to IB2).

4 Results

We implemented the segment atlas approach using OpenGL and
GLSL, taking care to manage GPU-side memory operations effi-
ciently. For comparison we also implemented an optimized con-
ventional OpenGL rendering pipeline using line primitives, and the
item buffer approach of Northrup and Markosian [2000], and the
improved item buffer approach of Cole and Finkelstein [2008]. We
did not use NVIDIA’s CUDA architecture, because the segment at-
las drawing step uses conventional line rasterization and the raster-
ization hardware is unavailable from CUDA.

Table 1 shows frame rates for four models ranging from 1k-500k
line segments. These numbers were generated on a commodity
Dell PC running Windows XP with an Intel Core 2 Duo 2.4 GHz
CPU and 2GB RAM, and an NVIDIA 8800GTS GPU with 512MB
RAM. For small models, our approach pays a moderate overhead
cost, and therefore is at least several factors slower than conven-
tional OpenGL rendering (though absolute speed is still high). For
the more complex models, however, our method is within 50% of
conventional OpenGL, while providing high image quality (SA2).
Our low image quality setting (SA1) is within 75%, and still pro-
vides good quality, though with some aliasing artifacts.

Our method is always considerably faster than the item buffer based
approach, but the most striking difference is when comparing the
high quality modes of each method. The item buffer approach with
9× supersampling and 3 layers, as suggested by [Cole and Finkel-
stein 2008], gives similar image quality to our method with 9 depth
probes and 2× scaled depth buffer. Our method, however, delivers
a performance increase of up to 50× for complex models.

As mentioned in Section 3.1, our method also allows for easy ex-
traction and rendering of silhouette edges on the GPU. The last two
rows of Table 1 show the performance impact for our method when
extracting and rendering silhouettes. The increase in cost is roughly
proportional to the increase in the total number of potential line
segments. We did not implement silhouette extraction for the other
methods, however, silhouette extraction can be a costly operation
when performed on the CPU.

While accurate timing of the stages of our algorithm is difficult
due to the deep OpenGL pipeline, the major costs of the algo-
rithm (∼80-90% of total) lie in the sample visibility testing stage,
depth buffer drawing stage (for complex models), and segment atlas
setup. Projection, clipping, and stroke rendering are minor costs.

Figure 7: Ship model. The ship model has 300k triangles and 500k
total line segments, and can be rendered at high-quality and inter-
active frame rates using our method.

5 Conclusion and Future Work

The proposed algorithm allows rendering of high-quality stylized
lines at speeds approaching those of the conventional OpenGL ren-
dering pipeline. The algorithm provides improved temporal co-
herence and less aliasing (sparkle) than previous approaches for
drawing stylized lines, making it suitable for animation of com-
plex scenes. Compared with previous approaches for computing
line visibility, it is robust and conceptually simple. We believe this
approach will be useful for interactive applications such as games
and interactive design and modeling software, where previously the
performance penalty for using stylized lines has been prohibitive.

Future work in this area may include extending the approach to in-
clude further integration of line density control methods such as
proposed in [Grabli et al. 2004; Cole et al. 2006]. As mentioned in
Section 3.4 our current system allows for such algorithms by read-
ing the visible line paths back onto the CPU and then processing
the visible lines using previous methods. However, we believe that
it will be possible to handle the entire pipeline on the GPU. One
challenge is that these approaches will need to be adapted to deal
with partial visibility of lines.

While not a direct extension of our method, we would also like it
to handle other view-dependent lines such as smooth silhouettes
[Hertzmann and Zorin 2000], suggestive contours [DeCarlo et al.
2003], and apparent ridges [Judd et al. 2007]. Including these line
types at a reasonable performance cost may require an extraction
algorithm that executes on the GPU. In contrast to lines that are
fixed on the model, consistent parameterization of such lines from
frame to frame presents its own challenge [Kalnins et al. 2003].

While currently fast, we believe there are opportunities to further
improve the scalability of our approach. In our implementation,
all segments are recorded explicitly in the segment table, which
we show give interactive performance for models with hundreds
of thousands of segments. Many large models make use of scene
graph hierarchies with instancing – which affords two opportuni-
ties for improved scalability. First, an improvement to the segment
table would allow for line set instancing, which would make more
efficient use of texture memory on-card. Second, hierarchical rep-
resentations can be used to quickly reject sections of the model that
not potentially visible.
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