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Figure 1: Gauge figure results. In this study, people were shown one of six different renderings of a shape: (a) a shaded image, (b) a line
drawing made from the shaded image by a person, (c) contours, (d) apparent ridges, and (shown in Figure 7) ridges/valleys and suggestive
contours. Overlaid are representative “gauges” (discs revealing the surface normal) oriented on the images by people in the study, colored
by how far they deviate from the ground truth.

Abstract
This paper investigates the ability of sparse line drawings to depict
3D shape. We perform a study in which people are shown an
image of one of twelve 3D objects depicted with one of six styles
and asked to orient a gauge to coincide with the surface normal at
many positions on the object’s surface. The normal estimates are
compared with each other and with ground truth data provided by a
registered 3D surface model to analyze accuracy and precision. The
paper describes the design decisions made in collecting a large data
set (275,000 gauge measurements) and provides analysis to answer
questions about how well people interpret shapes from drawings.
Our findings suggest that people interpret certain shapes almost
as well from a line drawing as from a shaded image, that current
computer graphics line drawing techniques can effectively depict
shape and even match the effectiveness of artist’s drawings, and that
errors in depiction are often localized and can be traced to particular
properties of the lines used. The data collected for this study will
become a publicly available resource for further studies of this type.
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1 Introduction
Line drawings are used for a variety of applications because they
offer a “minimal” visual representation of a scene with little visual
clutter, they can focus attention on critical areas, and they reproduce
well over a broad range of scales and media. Common experience
tells us that line drawings can be made for a wide range of shapes
such that people generally agree about the shape they see; that

some line drawings are more effective than others at doing this; and
that some shapes are difficult to draw effectively. However, there
is little scientific evidence in the literature for these observations.
Moreover, while a recent thread of the computer graphics literature
devoted to automatic algorithms for line drawings is flourishing,
to date researchers have had no objective way to evaluate the
effectiveness of such algorithms in depicting shape.

In this paper, we investigate how accurately people interpret
shapes depicted by line drawings. At first, this goal seems dif-
ficult to achieve. Aside from asking sculptors to craft the shape
they see, how can we know what shape is in a person’s mind?
Koenderink et al. [1992] have proposed several strategies for ex-
perimentally measuring perceived geometry, based on collecting
the results of many simple questions. This paper describes such
a study, based on the gauge figure protocol, in which the subject is
asked to rotate a gauge (see Figure 3) until it appears to be tangent
to the surface, providing a perceived surface normal. Previous stud-
ies using gauge figures and other related methodologies have used
photorealistic images of shiny and diffusely shaded objects. With
photographs, researchers find that people perceive shape accurately
(up to a family of shapes related by the bas-relief ambiguity).

This paper offers substantial evidence that people can interpret
shapes accurately when looking at drawings, and shows this for
drawings made by both artists and computer graphics algorithms.
Not all drawings are equally effective in this regard. We offer evi-
dence that viewers interpret individual lines as conveying particular
kinds of shape features (e.g. ridges, valleys, or inflections). Where
different line drawing algorithms place different lines, the algo-
rithms may be more or less effective at conveying the underlying
shape. This paper offers both statistical and anecdotal data regard-
ing the performance of various algorithms and drawings created by
hand, with the goal of informing future development of computer
graphics algorithms.

The results presented herein have been made possible by two re-
sources unavailable in earlier research. Last year, Cole et al. [2008]
published a dataset containing line drawings made by artists. This
dataset provides us with a set of drawings for a variety of shapes,
along with registered 3D models and viewpoints that serve as
ground truth. The other enabling resource for this study is the
Amazon Mechanical Turk, which has allowed us to distribute the



potentially tedious gauge figure task out to more than 500 subjects.
Via this service we have collected more than 275K gauge samples
distributed over 70 images. While this paper begins to analyze this
data, there is more to learn from it. We therefore make the data
available to other researchers for further analysis.

This paper makes the following contributions:
• We show that different people interpret line drawings roughly

as similarly as they interpret shaded images.
• We demonstrate that line drawings can be as effective as pho-

torealistic renderings at depicting shape, but that not all line
drawings are equally effective in this regard.

• We provide new evidence that mathematical descriptions of
surface features are appropriate tools to derive lines to convey
shape in drawings.

• We offer a publicly available data set of gauge figures placed
over a variety of drawings of 3D shapes; we believe this to be
the largest gauge figure data set recorded to date.

2 Related Work
We use the data of [Cole et al. 2008] in a perceptual study of line
drawings, and draw upon a range of work in computer graphics,
computer vision, and the psychophysics of shape perception in our
methods and analyses.

2.1 Lines and Interpretation

A range of lines on the surface that convey shape can be defined in
terms of the geometry of the surface and viewer. The two funda-
mental lines of this type are discontinuities in depth—occluding
contours [Koenderink 1984; Markosian et al. 1997; Hertzmann
and Zorin 2000], and discontinuities in surface orientation—sharp
creases [Markosian et al. 1997; Saito and Takahashi 1990]. Both
are classical elements in line drawings [Willats 1997], and are com-
monplace in non-photorealistic rendering systems. In this paper,
we study line drawings which contain contours along with one of
the following three line types: (1) suggestive contours, (2) ridges
and valleys, and (3) apparent ridges. Suggestive contours [DeCarlo
et al. 2003; DeCarlo et al. 2004] are places where occluding con-
tours appear with a minimal change in viewpoint. Lines along
ridges and valleys are formed by local extrema of surface curva-
ture along one of the principal curvature directions [Interrante et al.
1995; Thirion and Gourdon 1996; Pauly et al. 2003; Ohtake et al.
2004] and might be considered a generalization of sharp creases
to smooth surfaces. Apparent ridges [Judd et al. 2007] are a vari-
ant of ridges and valleys, which are extrema of a view-dependent
curvature that takes foreshortening into account. In future work,
we hope to investigate other types of lines, including demarcating
curves drawn in black [Kolomenkin et al. 2008], and highlight lines
drawn in white [Lee et al. 2007; DeCarlo and Rusinkiewicz 2007].
Note that for the current study we specifically exclude hatching or
texture lines, focusing instead on “sparse,” shape conveying lines.

Research in computer vision offers a number of precedents for
conceptualizing the process of understanding line drawings [Waltz
1975; Malik 1987]. This research emphasizes that reconstructing
a 3D scene accurately involves recognizing qualitatively what each
line depicts as well as inverting the geometry of line formation.
In polyhedral scenes, each line segment has a consistent labeling
across its entire length: it is either a convex or concave edge,
or an occluding edge. Waltz [1975] showed how the set of
possible globally consistent labelings could be inferred efficiently
by constraint satisfaction from local possibilities to label junctions
where lines meet. Malik [1987] extends this approach to drawings
of piecewise smooth surfaces that contain occluding contours or
creases, where labels are not necessarily consistent along the
length of each line. The interpretations these algorithms find
seem reasonable to people, but we do not know how the human

perceptual system solves this problem. Even so, these ideas have
found their way into effective interfaces for sketch-based modeling
[Kaplan and Cohen 2006].

2.2 Psychophysical Measurements of Shape

In order to understand the shape perceived when people look at a
line drawing, we rely on the gauge figure technique from visual
psychophysics to obtain local estimates of surface orientation at
a large number of points spread over a picture [Koenderink et al.
1992; Koenderink et al. 2001]. A gauge figure is simply a circle
and a line in 3D, parameterized by slant (orientation in depth) and
tilt (orientation in the image plane). When properly adjusted, it
resembles a “thumb tack” sitting on the surface: its base sits in the
tangent plane, and its “pin” is aligned with the outward-pointing
surface normal. See Figure 3 for an example. Gauge studies can
document not only shape interpretation but also the priors, bias,
and information used by the human visual system. For instance,
the direction of illumination affects the perceived shape [O’Shea
et al. 2008; Caniard and Fleming 2007], and specular reflections
can improve the perception of shape [Fleming et al. 2004]. Most
gauge figure studies consider diffuse imagery. The only precedent
for gauge figure study with line drawings is [Koenderink et al.
1996], who presented a single shape rendered as a silhouette, a
hand-crafted line drawing, and a shaded picture, and found that the
percept was better from the line drawing than the silhouette, and
nearly as good as the illuminated version.

To interpret our results, we draw on the larger context of psy-
chophysical research. For example, since people can successfully
and consistently locate ridges and valleys on diffusely rendered sur-
faces in stereoscopic views [Phillips et al. 2003], it seems likely
that the visual system represents these features explicitly. Also, per-
ceived shape is likely an interaction between the global organization
of line drawings and inherent biases of the visual system [Langer
and Bülthoff 2001; Mamassian and Landy 1998], such as prefer-
ences for convexity over concavity in certain kinds of imagery.

A final wrinkle concerns the inherent underdetermination of
depth from imagery. Given a shaded image, the 3D surface is
determined only up to an affine transformation: individual points
on the surface can slide along visual rays as long as planarity
is preserved. This is the bas-relief ambiguity [Belhumeur et al.
1999]. Thus, to show the veridicality of human percepts of diffuse
images, it is necessary to correct for this ambiguity [Koenderink
et al. 2001]. In cases where human perception is highly noisy or
inaccurate, however, a bas-relief correction is problematic. Because
the correction uses the best fit between subjects’ percepts and the
true scene geometry, it can produce a misleading result when a good
fit cannot be found.

2.3 Evaluation of Effectiveness in NPR

The psychophysical results we present offer fine-grained informa-
tion about the effectiveness of NPR displays. Previous perceptual
studies in NPR have largely focused on three areas: user preference,
cognitive effort and task performance. User preferences for partic-
ular visual styles [Isenberg et al. 2006] show for example that users
can find computer-generated imagery appealing even when it does
not look like what a human artist could produce. To assess cognitive
effort, experiments can use methodologies such as eye-tracking to
confirm that people’s attention is drawn to locations where detail
is placed in a meaningful way [Santella and DeCarlo 2004; Cole
et al. 2006]. Finally, researchers assess the overall effectiveness of
stylized renderings by measuring performance on tasks like facial
expression recognition [Wallraven et al. 2007] and recognition of
facial caricatures [Gooch et al. 2004]. Stylization typically comes
with a boost in performance (recognition speed), provided the infor-
mation remains clear in the picture. As measured by the ability of
subjects to identify a set of objects, one can determine that shading



leads to the best performance, followed by contours, followed by
texture [Winnemöller et al. 2007]. One can also measure the effec-
tiveness of cognitive models of assembly instructions and rendering
style [Agrawala et al. 2003], by assessing people performing a real
assembly task.

Previous evaluations let designers of systems make decisions
about rendering style to achieve certain effects, recognition rates
and user performance. For instance, in the illustrative rendering
style used in the video game Team Fortress 2 [Mitchell et al. 2007],
characters are rendered to make individuals and team membership
more recognizable. By contrast, our study is designed to tease
out general relationships between algorithms for depiction and
interpretation of shape.

3 Study
The study is designed to determine how viewers interpret line draw-
ings and shaded images of the same shapes, and how consistent
those interpretations are. The study is also designed to be broad
enough to allow general conclusions about the effectiveness of line
drawings. To achieve these goals, several issues must be decided:
what images and drawings to show, how to sample each image with
gauges, and how to structure the presentation to each participant so
that a large amount of quality data can be gathered.

3.1 Subject Matter

One of the chief subjects of interest for this study is the effective-
ness of line drawings by artists compared to computer generated
line drawings. To compare human and computer generated draw-
ings we use the dataset collected by Cole et al. [2008].

Besides offering artists’ drawings registered to models, the
dataset includes a useful range of 3D shapes. Intuitively, it seems
that the usefulness of a line drawing varies with the type of shape
depicted. For example, boxy shapes with hard edges are easy to
depict with lines, while smoothly varying shapes are more difficult.
We test this intuition by using the 12 models from the Cole dataset.

The study includes six different rendering styles: fully shaded,
occluding contours only, apparent ridges [Judd et al. 2007], geo-
metric ridges and valleys [Ohtake et al. 2004], suggestive contours
[DeCarlo et al. 2003], and a binarized human artist’s drawing. Con-
tours are included in all the computer-generated drawings. The
shaded image was created using global illumination and a com-
pletely diffuse BRDF with the eucalyptus grove HDR environment
map [Debevec 1998]. For the cubehole model, the suggestive con-
tour and apparent ridge styles are identical to the contour only and
ridge and valley images, respectively, and are therefore omitted.

We endeavored to represent each drawing style as kindly as
possible. For computer generated drawings, we smoothed the
model and chose thresholds to produce clean, smooth, continuous
lines. For the human drawings, we chose the subjectively best
drawing available for the model (Figure 6). Our choice of view for
each model was dictated by the view of the best drawing. Example
computer-generated and human drawings are shown in Figure 2.

3.2 Methodology

We follow the gauge placement protocol described by Koen-
derink et al. [1992]. Participants are shown a series of gauges
in random order and asked to place each gauge correctly before
moving on to the next. The participants have no control over the
position of the gauge, only its orientation. Each gauge is drawn as
a small ellipse representing a disc and a single line indicating the
normal of the disc. The gauges are superimposed over the drawing
images and colored green for visibility (Figure 3). To avoid cueing
the participants to shape, the gauges do not penetrate or interact
with the 3D model at all. The initial orientations of the gauges are
random.

ridges and valleys suggestive contours

artist’s drawing shaded

Figure 2: Example prompts. Each style was represented by a clean,
sparse, drawing, or a full-color shaded image.

Participants were shown a simple example shape that is not
included in our dataset in the instructions. The shape had examples
of good and bad placement (Figure 3). Each time the participant
started a session, they were allowed to practice orienting gauges on
the example shape before moving on to the actual task. Participants
were asked to orient the gauge by dragging with the mouse, and to
advance to the next gauge by pressing the space bar. Participants
were shown the total number of gauges to place in the session and
the number they had placed so far.

The placement of gauges for each shape is determined in advance
and is the same across the different rendering styles. We place
gauges in two ways: evenly across the entire model, and in tight
strings across areas of particular interest.

The evenly spaced positions are generated by drawing positions
from a quasi-random Halton sequence across the entire rectangular
image, and rejecting samples that fall outside the silhouette of
the shape. All 12 models have at least 90 quasi-random gauge
positions. Four representative models – the flange, screwdriver,
twoboxcloth, and vertebra – have 180 positions in order to better
understand how error is localized.

Four densely sampled lines of gauges (gauge strings) are also
included in the study, one each on the flange, screwdriver, twobox-
cloth, and vertebra. The gauge strings consist of 15 gauges spaced
by 5 pixels along a straight line in screen space.

good bad

Figure 3: Instructional example. Images such as these were
included in the instructions for the study. Left: good setting. Right:
bad setting.



3.3 Data Collection

Previous studies of this type have included small numbers of
highly motivated subjects. Each subject in the 2001 study by
Koenderink et al. [2001], for example, was asked to perform
approximately twelve hours of work, an impractical amount of time
for any but a tiny number of subjects. In previous studies, the
authors often provided all the data themselves. Our study has many
subjects, but each is asked only a small number of questions. Rather
than relying on the motivation of our subjects, we rely upon the
robust statistics of many participants.

We used the Amazon Mechanical Turk as the source of partici-
pants in our study. The Mechanical Turk is a internet service that
allows requesters (such as researchers) to create small, web-based
tasks that may be performed by anonymous workers. Each worker
is typically paid between $0.05 and $0.25 to complete a task. The
number of workers on the service is such that particularly attractive
tasks are usually completed within minutes. Unfortunately, work-
ers on the Mechanical Turk are generally interested in work that
takes around 5-10 minutes. This restriction dictates the number
of gauges that we can present to a single participant. We found
empirically that workers completed tasks at a satisfactory rate for
up to 60 gauges in a session, but with more gauges workers became
likely to give up on our task without completing it.

We asked each worker to set each gauge twice in order to
estimate their precision. Setting reliability provides a measure
of the perceptual naturalness or vividness of the observer’s shape
interpretation [Fulvio et al. 2006]. If the observer clearly and
consistently perceives a specific shape in a line-drawing, then
setting reliability will be high. If the percept is weak, and the
observer has to “guess” to some extent, then reliability will be
low. We showed each worker two sets of the same 30 gauges
(60 gauges total), shuffled randomly and presented back-to-back.
For simplicity, the sets of 30 are defined as consecutive sets in
the Halton sequence for the 90 or 180 evenly spaced gauges. The
statistics of each set of 30 are thus approximately equal.

To avoid training effects, each participant is allowed to see only
a single style for each model. A participant is allowed repeat the
study until they have performed the task once for each set of gauges.
There are 52 distinct sets of 30 gauges across the 12 models, so a
participant could perform the study up to 52 times.

Each worker is randomly assigned a stimulus from the available
images each time they begin a new session. To favor more
uniform sampling across the dataset, we weight more heavily the
probability of receiving stimuli for which there is already little data,
as follows. Out of the set of available stimuli we select randomly
with probability proportional to 1/ki + 1 where ki is the number of
participants who have already successfully completed stimulus i.

Participants were told that the estimated time for completion was
5-10 minutes. The maximum time allowed for each session was one
hour. The average time spent per session was 4 minutes.

In total, 560 people participated in our study and positioned a
total of 275K gauges. The most active 20% of workers (115 people)
account for approximately 75% of all data. The median number of
sessions an individual performed was 4, but the median for the most
active 20% was 28. The average time all individuals spent setting a
gauge was 4 seconds.

3.4 Data Verification

Since we have no way of ensuring workers do a good job, we have
to be careful to filter obviously bad data. Since we are asking for
information about interpretation, however, there are no definitively
wrong answers. We therefore base our rejection criteria on the
reliability with which the worker positions each gauge.

We assume that if a worker is making a good faith effort,
each duplicate set of gauges will be aligned in roughly the same
orientation. Since each gauge is presented in a random orientation,

a worker who simply speeds through our task will provide gauge
settings distributed randomly across the hemisphere. Therefore, a
worker’s data is rejected if fewer than 70% of the duplicate gauges
are set within 30 degrees of each other. These numbers were
found empirically during pilot testing and remove grossly negligent
workers without removing many good faith workers.

During pilot testing, we also noticed that through guile or misun-
derstanding some workers oriented all gauges in a single direction
(usually directly towards the screen). This data passes our consis-
tency check, but is useless. We therefore add an additional check,
whereby a worker’s data is discarded if the standard deviation of all
gauge positions in a session is less than 5 degrees.

In all, approximately 80% of the data that we gather passes our
two criteria and is included in the dataset. Each gauge in the study
had an average of 15 opinions (two measurements of each). The
minimum number of opinions was 9, and the maximum was 29.

3.5 Perspective Compensation

The dataset of Cole et al. [2008] includes drawings made from a
camera with a vertical field of view of 30 degrees. The gauges,
however, are drawn with an orthographic projection, to avoid any
possible cues to the underlying shape. In order to compare the
workers’ gauge settings to ground truth, we must compensate for
this difference by computing the ground truth gauge settings in the
orthographic camera space.

The compensation method is as follows: create gauges for the
ground truth normals, project the ellipses of those gauges by the
camera projection matrix, reconstruct slant and tilt values from the
projected ellipses, and finally reconstruct a normal from slant and
tilt in the same way as the gauges set by the participants. Our
comparisons against ground truth are made against these projected
ground truth normals.

3.6 Compensation for Ambiguity

Koenderink et al. [2001] found that different subjects’ perceptions
of photographs of shape were related by bas-relief transformations
[Belhumeur et al. 1999]. As Koenderink did, we can factor
out this transformation separately for each person before making
comparisons between different peoples’ responses.

The bas-relief transform for an orthographic camera look-
ing down the z-axis maps the surface point [x, y, f (x, y)] to
[x, y, λ f (x, y) + µx + νy], given parameters for depth scaling
(λ ) and shearing (µ, and ν). To determine the best fit for a subject’s
set of gauges, we need to find values of µ, ν and λ that best map
the subject’s settings to the ground truth.

Given a set of bas-relief parameters, we can transform a set
of normal vectors (re-normalizing them after the transformation).
Thus, using a non-linear optimization procedure (which we initial-
ize to the identity, λ = 1 and µ = ν = 0), we find the bas-relief
parameters that minimize the L1 norm of angular differences be-
tween the (normalized) transformed normals and the ground truth.
We found the use of the L1 norm to be robust to spurious gauges.

4 Results
Our data allows us to investigate several broad questions. First,
how closely do people’s interpretations of the stimuli match the
ground truth shape? Second, how similar are two different peoples’
interpretations of the same stimulus? Third, when compared with
a shaded image, how effective are the line drawings in depicting
shape? Fourth, are there particular areas for each model that cause
errors in interpretation, and if so, can we describe them?

4.1 How well do people interpret shaded objects?

Before examining the results for line drawings, we investigate how
well our participants were able to interpret the objects under full



shading. We expect that people will perform most accurately on the
shaded prompts, so the results for these prompts provide a natural
way to determine how successfully the average Mechanical Turk
worker performed our task.

Across all the shaded prompts, the mean error from ground truth
is 24 degrees, with a standard deviation of 17 degrees. After bas-
relief fitting, mean error is 21 degrees, with a standard deviation of
16 degrees. Histograms of the errors for each style before and after
bas-relief fitting are shown in Figure 4a and c. For comparison, a
worker placing gauges randomly in each of the same tasks would
have a mean error of 66 degrees, with a standard deviation of 31
degrees. After bas-relief fitting, random data would have a mean
of 42 degrees with a standard deviation of 19 degrees. A worker
rotating all gauges to face the camera (a situation we mark as
bad data) would have a mean error of 42 degrees before bas-relief
fitting, and 40 degrees after.

The reliability or precision with which the participants posi-
tioned gauges can be measured by comparing against the median
vector for that gauge. If a gauge has n settings vi, the median vector
is the vector vk that minimizes the total angular distance to every
other vi. Given the median vectors for each gauge, we can plot the
error from the median (Figure 4b and d). In the case of the shaded
prompts, the mean error from the median vector was 16 degrees,
with standard deviation 14 degrees. These numbers do not change
significantly with bas-relief fitting.

The scatter plots in Figure 5 give an alternate visualization of the
distribution of errors for the shaded prompts. The orientations are
shown using an equal-area azimuthal projection, so the area of each
ring matches the area of the corresponding slice of the hemisphere.
If the participants were placing gauges randomly, the points would
appear uniformly distributed across the disk. The participants’
settings, however, are clustered towards the center of each plot: for
error from ground, 75% of the samples are within 31 degrees, or
14% of the area of the hemisphere, while for error from the median,
75% are inside 23 degrees, or 8% of the area of the hemisphere.

There is variation in the accuracy and precision with which
workers placed gauges when seeing the shaded models, suggesting
that some models were more difficult to interpret than others even
under shading (Tables 1 and 2). The models for which the viewers
had most difficulty are the smooth, blobby shapes such as the
lumpcloth and the vertebra. For the obvious shapes such as the
cubehole, however, the viewers interpreted the shape very closely to
ground truth, lending confidence that viewers were able to perform
the task successfully and that errors from ground truth in the
line drawings are not simply the effect of negligent or confused
participants.

4.2 How similarly do people interpret line drawings?

A simple way to examine how similarly our participants interpreted
the line drawings is to compare statistics of the distributions around
the median vectors at each gauge. We find that when seeing the
line drawings, our participants set their gauges nearly as close to
the other participants’ as when seeing the shaded image (Figure 4b
and d, Table 2). This result suggests that the participants all had
roughly similar interpretations of each line drawing, and positioned
their gauges accordingly.

To get a more complete picture of the differences between the
error distributions, we perform the Wilcoxon / Mann-Whitney non-
parametric test for comparing the medians of two samples. This
test yields a p-value. The full pair-wise comparisons of all error
distributions are visualized in the inset of Figure 6. The colors
match the colors in the legend of Figure 4. Black indicates
a p-value > 0.05, meaning that we can not disprove the null
hypothesis that those two distributions are the same. We find a
statistically significant difference in error between most pairs of
line drawings. This result suggests that while the interpretation of

(a) error from ground, before fit (b) error from median, before fit

(c) error from ground, after fit (d) error from median, after fit

Figure 4: Angular error distributions across all shapes (angle /
frequency). Errors from ground truth and from the median are
shown before bas-relief fitting (a, b) and after (c, d). Note that the
errors for the shaded prompts were considerably lower on average.
Compared with errors from ground truth, the deviations from the
medians are consistent across styles.

error from ground error from median

Figure 5: Distribution visualization for shaded prompts. Errors for
1000 randomly sampled settings. Left: errors from ground truth
(blue distribution in Figure 4c), right: errors from median (blue
distribution in Figure 4d). Radial distance is magnitude of error,
compass direction is direction on the screen. Errors are roughly
uniform in all directions, and errors from ground truth are larger
than errors from the median.

each drawing was similar across viewers, the viewers usually had
different interpretations for each drawing.

4.3 Do line drawing interpretations match ground truth?

Unlike precision, the accuracy with which our participants inter-
preted shape from the line drawings varies considerably with the
type of drawing and the model (Figure 6, Table 1). In general,
the performance of the occluding contours alone was considerably
worse than the other drawing types, while the performance of the
other drawing types (apparent ridges, ridges and valleys, sugges-
tive contours, and the human drawing) were roughly comparable,
though still often statistically significantly different.

The types of surfaces in the model have a large effect on the
accuracy of interpretation. For the cubehole, which is largely made
up of flat surfaces joined with ridges, the error from ground truth for
all but the contours drawing is small: approximately 15 degrees on
average. For the vertebra and cervical models, which are smooth
and not obviously good candidates for line drawings, the errors
for the best drawings are much larger: 35-40 degrees on average.



cubehole rockerarm flange screwdriver twoboxcloth femur

tooth bumps lumpcloth pulley cervical vertebra

Figure 6: Distributions of angular errors from ground truth for all models. Colors and axes are as in Figure 4 (x-axis: error, 0− 100 degrees,
y-axis: frequency). Above the graphs are the human artists’ drawings used for the models. Inset in each graph is a visualization of the p-
values for significance (black: p-value > 0.05) of difference between distributions, where the colors correspond to the styles in the histogram.
The table for the cubehole is incomplete and therefore omitted. Images are ordered by the mean error for the human artist’s drawing.

In these cases, even the human artists were unable to effectively
convey the shape with only lines.

Examining the statistical significance between distributions, in
almost all cases we find that the lit image did provide a statistically
significant improvement over any line drawing, suggesting that
some information is lost in the translation from model to line
drawing. A notable exception is the flange model, for which the
errors in the shaded and ridges and valleys versions are not reliably
different (for a visualization, see Figure 1).

4.4 Is error from ground truth localized?

Beyond the aggregate statistics for each model, we can inspect the
individual gauges to immediately determine if error is localized in
a few important places, or if it is evenly spread across the model.
If it is highly localized, then it may be interesting to examine
high error areas in detail and attempt to form theories for why the
errors occurred. In order to answer this question convincingly, we
chose four representative models and scattered 180 (rather than 90)
gauges on their surfaces.

Figure 7 shows gauges for the four representative models: the
flange, screwdriver, twoboxcloth, and vertebra. It is immediately
apparent from the plots that the errors from ground truth are not
uniformly spread across the models, but rather exist in hotspots that
vary with the style of drawing. For example, on the flange model
we see heavy error in the suggestive contours drawing around the
outer rim and the neck of the model. For the screwdriver, error
is localized in the handle area. Error in the twoboxcloth model
is localized around the folds near the front of the shape, whether
lines are drawn there (suggestive contours, upper image) or not
(apparent ridges, lower image). Error in the vertebra is large almost
everywhere, even for the human artist’s drawing, but relatively low
in the flat area near the back of the model.

4.5 How can the local errors be described?

Once we have established that error is often localized in particular
areas of each model, we can closely examine these areas by placing
gauge strings. We chose four areas of interest, one on each of
the four representative models in Figure 7. The median vectors
for each gauge string, colored by error from ground truth, are
visualized in the left and middle columns of Figure 8 (the images

Model S H AR RV SC C
cubehole 12 18 - 14 - 26
rockerarm 15 21 19 21 23 26
screwdriver 20 25 31 29 27 34
flange 21 26 25 22 32 32
pulley 21 29 27 29 29 30
bumps 22 29 27 27 36 36
femur 22 28 25 25 26 25
tooth 22 32 30 28 29 32
twoboxcloth 23 25 25 26 26 32
vertebra 24 38 42 35 37 42
cervical 25 37 35 35 37 38
lumpcloth 26 27 28 29 28 27
average 21 28 29 27 30 32

Table 1: Mean error in degrees from ground truth for each model
and style. Values shown are after bas-relief fitting. Rows are or-
dered by the mean error of the shaded prompt. Columns correspond
to styles: S, shaded, H, human drawing, AR, apparent ridges, RV,
ridges and valleys, SC, suggestive contours, C, contours only.

Model S H AR RV SC C
cubehole 11 15 - 12 - 17
rockerarm 11 13 13 14 13 8
lumpcloth 14 16 16 13 15 14
femur 15 17 16 17 16 15
pulley 15 16 15 16 15 15
flange 16 18 19 16 21 20
screwdriver 16 17 16 15 17 13
bumps 17 18 16 18 14 13
twoboxcloth 17 16 18 18 18 20
tooth 18 22 21 21 21 21
cervical 19 17 18 18 13 12
vertebra 19 20 18 22 20 18
average 16 17 17 17 17 16

Table 2: Mean error in degrees from median orientations for each
model and style. Values shown are after bas-relief fitting. Rows are
ordered by the mean error of the shaded prompt. Columns are same
as Table 1. Note that, unlike the errors from ground, errors from
median are sometimes lowest for the occluding contours drawing.



ridges and valleys contours only ridges and valleys artist’s drawing

suggestive contours artist’s drawing suggestive contours shaded

Figure 7: Plots of error of median vector from ground truth for four representative models. Each pair shows a different finding from our
study. Flange: lines are sometimes interpreted as ridges or valleys regardless of position, leading to errors when lines lie on suggestive
contours. Screwdriver: without additional lines, the screwdriver appears as a cylindrical solid (contours only), but a skilled artist can depict
the inflection points in the handles (artist’s drawing). Twoboxcloth: errors in the folds appear both with lines (ridges and valleys) and without
(suggestive contours). Vertebra: some shapes are difficult for even a skilled artist to depict. In such cases, the shaded image is significantly
superior (though not perfect). Red box: area of interest shown in detail in Figure 8.

are shown magnified for clarity, but the prompts were the same
as for the random grids). Surface curvature can be estimated by
differentiating along the string and is shown in the right column of
Figure 8. Because our model of bas-relief ambiguity is global, we
do not apply a bas-relief transformation to the gauge string data.
Global fitting applied only to a small patch of local data is not well
constrained, and can erroneously flatten the surface (set λ = 0) if
the gauge settings are inaccurate.

Looking at the gauge strings in detail, we can conjecture what
types of shape interpretation errors occur with each drawing style.
Flange: The errors on the flange model suggest that lines can be
interpreted as representing particular geometic features, regardless
of their exact location. The neck area of the flange is roughly
a surface of revolution and includes a ridge and valley across
the circumference of the shape. When presented with the ridge
and valley drawing (Figure 8b), viewers interpreted the shape
about as accurately as the shaded version. They were also quite
consistent with each other, except where the gauge string crosses
the valley line. When presented with the suggestive contour version
(Figure 8a), however, viewers did poorly. It appears that viewers
often interpreted the two suggestive contour lines as a ridge and
a valley. The median absolute deviation for the suggestive contour
gauge string is between 10-30 degrees, however, suggesting that the
viewers held strongly differing opinions.
Screwdriver: The gauge string on the screwdriver lies across
an inflection point in the surface. Without a line to depict the
inflection point (Figure 8d), the change in curvature is lost – the
surface appears as an area of uniform positive curvature, similar to
a cylinder. The human artist managed to depict the inflection point
effectively (Figure 8c). Both these interpretations are relatively
reliable: median absolute deviation for each gauge in both drawings
is 10 degrees or less.
Twoboxcloth: The fold on the front of the twoboxcloth provides
a counterexample to the misidentification effect on the neck of the

flange. Here, viewers interpreted both the the suggestive contour
drawing (Figure 8e) and the ridge and valley drawing (Figure 8f)
roughly correctly, though they performed better on the suggestive
contour drawing. The median orientations indicate that viewers
intepreted the ridge and valley drawing roughly as a triangle, with
gauges oriented similarly on either side of the middle ridge. In
the suggestive contour example, the viewers interpreted the lines
correctly as inflection points, leading to a more accurately rounded
shape. Viewers were roughly equally reliable in both of these
interpretations.

Vertebra: The string on the vertebra is an example where the
artist appears to have included a ridge line and an inflection point
line (Figure 8h), but the depiction is not successful. Viewers
interpreted the shaded image (Figure 8g) roughly correctly, but
the drawing is completely misinterpreted. Viewers were also
relatively unreliable when interpreting the artist’s drawing: the
median absolute deviation for the drawing gauges is between 10-
20 degrees, approximately double the value for the shaded image.

5 Conclusion

This study allows us to comment on several issues in line drawings
and depiction that have previously been speculative. In particular,
we now have a partial answer to our original question: how well do
line drawings depict shape? Further work is necessary, however, to
answer other pertinent questions, such as how best to place lines for
shape depiction, and the relationship between the aesthetic quality
of a drawing and its effectiveness in depiction.

5.1 Main Findings

For about half the models we examined, the best line drawings
depict shape very nearly as well as the shaded image (difference in
mean errors < 5 degrees). This is true of the cubehole, rockerarm,
flange, twoboxcloth, and femur. In the case of the flange, we did



(a) sug. contours (b) ridges and valleys flange

(c) artist’s drawing (d) contours only screwdriver

(e) sug. contours (f) ridges and valleys twoboxcloth

(g) shaded (h) artist’s drawing vertebra

Figure 8: Gauge strings. Right: curvatures along the string (green:
left image. red: right image. dashed: ground truth. dotted: zero
curvature). Four points of interest were studied in depth by placing
gauge strings. Flange: the curvature valley for suggestive contours
(a) is translated along the string. Screwdriver: the artist’s drawing
(c) depicts inflection points, while the contours drawing (d) does
not. Twoboxcloth: suggestive contours (e) depict a smooth shape,
ridges and valleys (f) depict a pointy shape. Vertebra: the artist’s
drawing (h) fails to depict the shape, while the shaded image (g)
depicts it closely. Note: bas-relief fitting is not used for the strings.

not find a statistically significant difference in errors between the
shaded stimulus and the ridge and valley stimulus, while in the
cases of the other models we did find significant difference, but the
difference was small. These results suggest that viewers interpreted
the shaded and drawn versions very similarly in these cases.

In other cases, such as the cervical and the vertebra, viewers had
trouble interpreting the shaded image (mean error 24-25 degrees),
but were completely lost on the line drawings (mean error 35 to 42
degrees). Such shapes tended to be smooth, blobby, and relatively
unfamiliar to the eye. Viewers could not interpret these shapes
accurately even with a drawing made by a skilled human artist.
This result supports the intuition that certain shapes are difficult
or impossible to effectively depict with a sparse line drawing.

Even when viewers interpreted the shapes inaccurately, however,
their interpretations were similar to each other. For some shapes,
including the rockerarm, cervical, and vertebra, the errors from
ground for the drawings were 50-75% higher than for the shaded
prompt, but the errors from median were similar or slightly lower.
Only for the cubehole model did the average error from median and
from ground match (11 and 12, respectively), suggesting that for
most prompts, the viewers shared a common interpretation of the
shape that differed from ground truth.

This study also indicates that line drawings based on differential
properties of the underlying surface can be as effective in depicting
shape as the drawings made by human artists. The best computer
generated drawing had a slightly lower error than the artist’s draw-
ing in every case except the screwdriver. However, different mathe-
matical line definitions can be effective or ineffective depending on

context. For example, suggestive contours appear to be confusing
in the case of the gauge string on the flange (Figure 8a), but quite
effective in the case of the string on the folded cloth (Figure 8d).
The human artists drew lines in similar locations to the computer
algorithms, but appear capable of selecting the most appropriate
lines in each case.

Finally, these results show that the Mechanical Turk can provide
useful data for perceptual studies based on gauge figures. The
service makes such studies considerably more practical, and should
widen the potential areas for future investigation.

5.2 Limitations and Future Work

The gauge orientation task suffers from several limitations. First,
there is no way to distinguish between errors due to misunderstand-
ing the orientation of the shape and errors due to misunderstanding
the orientation of the gauge. Second, the gauge methodology re-
wards line drawings that register very closely with the ground truth
shape. An artist could depict a shape feature extremely well, but if
the feature appeared 10 pixels from its true location, it would have
high error. It is impossible, therefore, to distinguish a slightly offset
but correct interpretation from a wrong one. Finally, we use only
global bas-relief fitting in our implementation of the gauge figure
study. Todd et al. [1996] suggests that local bas-relief fitting may
give a more accurate model of perception of shape, but we collected
too few settings at each gauge for each viewer (two settings) to
make this approach practical.

We would also like to extend this study to more drawings and
more styles of depiction. Our selection and generation of drawings
is subjective, and while we endeavored to make the best drawings
we could, we had no knowledge a priori what features would
be successful. It is possible that different artists’ drawings, or
slight changes in algorithm parameters, could change our results.
Beyond including more drawings, we would like to include wide-
ranging depiction styles. It is possible, for example, that a different
shading scheme could improve upon even the global illumination
renderings, since viewers had trouble interpreting some of the
shaded prompts.

As with many studies of this type, the results and analysis we
have presented are purely descriptive. A natural area for future
work is to investigate prescriptive results: for example, given a new
shape, we could attempt to predict what lines will depict the shape
most accurately. This study indicates that line definitions such as
ridges and valleys and suggestive contours are effective in some
cases and not in others, but it does not formalize where each type
is effective. Formal rules of this type depend on an interpretation
model of lines, which is an important long-range goal that this
data may help support. Developing such a model would help us
determine how, not just how well, line drawings depict shape.

Finally, artists create drawings to satisfy both functional and
aesthetic goals. A study of this type cannot comment on the
latter; it may be that the best drawings for shape depiction are also
“ugly.” Many factors can contribute to an aesthetic judgment and
these factors are difficult to tease apart, but such data would be of
tremendous value.
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