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Two Fast Methods for High-Quality Line Visibility
Forrester Cole and Adam Finkelstein

Abstract—Lines drawn over or in place of shaded 3D models can often provide greater comprehensibility and stylistic freedom than
shading alone. A substantial challenge for making stylized line drawings from 3D models is the visibility computation. Current algorithms
for computing line visibility in models of moderate complexity are either too slow for interactive rendering, or too brittle for coherent
animation. We introduce two methods that exploit graphics hardware to provide fast and robust line visibility. First we present a simple
shader that performs a visibility test for high-quality, simple lines drawn with the conventional implementation. Next we offer a full
optimized pipeline that supports line visibility and a broad range of stylization options.
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1 INTRODUCTION

Stylized lines play a role in many applications of non-
photorealistic rendering (NPR) for 3D models. Lines can be
used alone to depict shape, or in conjunction with polygons to
emphasize features such as silhouettes, creases, and material
boundaries. While graphics libraries such as OpenGL provide
basic line drawing capabilities, their stylization options are
limited. Desire to include effects such as texture, varying
thickness, or wavy paths has lead to techniques that draw lines
using textured triangle strips (strokes), for example those of
Markosian, et al. [1]. Stroke-based techniques provide a broad
range of stylizations, as each stroke can be arbitrarily shaped
and textured.

A major difficulty in drawing strokes is visibility computa-
tion. Conventional, per-fragment depth testing is insufficient
for drawing broad strokes, because the strokes are partially
occluded by the model itself (Figure 2). Techniques such as the
item buffer introduced by Northrup and Markosian [2] can be
used to compute visibility of lines prior to rendering strokes,
but are much slower than conventional OpenGL rendering and
are vulnerable to aliasing artifacts. While techniques exist to
reduce these artifacts [3], they induce an even greater loss in
performance.

This paper presents two methods that exploit graphics hard-
ware to draw strokes efficiently and with high-quality visibility
testing:

1) Spine test shader. This simple method can be used
in a conventional line drawing pipeline with minimal
modification, but supports a limited range of stylization.

2) Segment atlas. This method carries a higher implemen-
tation cost that the spine test shader, but provides stored
visibility values can be used for stylization, as well as
to properly handle curved strokes.

Both methods rely on a conventional depth buffer to determine
visibility, but provide support for supersampling in both the
depth buffer and the lines themselves (Figure 5). Both methods
provide a similar level of visibility quality and speed.

The major difference between the methods is that the segment
atlas method stores visibility information in an intermediate

datastructure (the segment atlas), while the spine test method
does not. The spine test method is a single-pass approach
that computes stroke visibility at the same time as the final
stroke color. The segment atlas method, by contrast, computes
and stores the visibility information for all strokes prior to
rendering. Computing visibility prior to rendering provides the
option to filter or otherwise manipulate the visibility values,
allowing effects such as overshoot, haloing, and detail elision.
An additional benefit is the ability to properly parameterize
strokes with multiple segments, such as curved strokes (e.g.,
the top of the clevis shape in Figure 1 left).

This article expands on an earlier paper by the same authors [4]
that introduced the segment atlas method. The spine test
method is introduced for the first time in this article, and offers
a simpler, more conventional alternative to the segment atlas
method. This article also expands upon the description of the
segment atlas in [4], adding implementation improvements,
further discussion of stylization effects, and a comparison to
the spine test method.

Applications for these approaches include any context where
interactive rendering of high-quality lines from 3D mod-
els is appropriate, including games, design and architectural
modeling, medical and scientific visualization and interactive
illustrations.

2 BACKGROUND AND RELATED WORK

The most straightforward way to augment a shaded model with
lines using the conventional rendering pipeline is to draw the
polygons slightly offset from the camera and then to draw
line primitives, clipped against the model via the z-buffer.
This is by far the most common approach, used by programs
ranging from CAD and architectural modeling to 3D animation
software, because it leverages the highly-optimized pipeline
implemented by graphics cards and imposes little overhead
over drawing the shaded polygons alone. Unfortunately, hard-
ware accelerated line primitives are usually rasterized with a
specialized approach such as described by Wu [5], and allow
only minimal stylistic control (color, fixed width, and in some
implementations screen-space dash patterns).
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Fig. 1. Examples of models rendered with stylized lines. Stylized lines can provide extra information with texture and
shape, and are more aesthetically appealing than conventional solid or stippled lines.

Another general strategy combines visibility and rendering by
simply causing the visible lines to appear in the image buffer.
The techniques of Raskar and Cohen [6] and Lee et al. [7]
work at interactive frame rates by using hardware rendering.
For example, the Raskar and Cohen method draws back-facing
polygons in black, slightly displaced towards the camera from
the front-facing polygons, so that black borders appear at
silhouettes. Such approaches limit stylization because by the
time visibility has been calculated, the lines are already drawn.

To depict strokes with obvious character (e.g. texture, wobbles,
varying width, deliberate breaks or dash patterns, tapered
endcaps, overshoot, or haloes) Northrup and Markosian [2]
introduced a simple rendering trick wherein the OpenGL lines
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Fig. 2. Per-fragment visibility vs. precomputed visibility.
When drawing wide lines using a naive per-fragment
visibility test, only lines that lie entirely outside the model
will be drawn correctly (b and d). Lines a, c, e are partially
occluded by the model, even when some polygon offset is
applied. Visibility testing along the spine of the lines (red
dots) prior to rendering strokes solves the problem.

are supplanted by textured triangle strips. The naive approach
to computing visibility for such strokes would be to apply a
z-buffer test to the triangle strips – a strategy that fails where
the strokes interpenetrate the model (Figure 2). Therefore,
NPR methods utilizing this type of stylization generally have
computed line visibility prior to rendering the lines. Line
visibility has been the subject of research since the 1960’s.
Appel [8] introduced the notion of quantitative invisibility, and
computed it by finding changes in visibility at certain locations
such as line junctions. This approach was further improved and
adapted to NPR by Markosian et al. [1] who showed it could
be performed at interactive frame rates for models of modest
complexity.

Appel’s algorithm and its variants can be difficult to implement
and are somewhat brittle when faced with degenerate segments
or overlapping vertices (i.e., when the lines are not in general
position). Thus, Northrup and Markosian [2] adapted the use of
an item buffer (which had previously been used to accelerate
ray tracing [9]) for the purpose of line visibility, calling it
an “ID reference image” in this context. Several subsequent
NPR systems have adopted this approach, e.g. [10], [11],
[12]. For an overview of line visibility approaches (especially
with regard to silhouettes, which present a particular challenge
because they lie at the cusp of visibility), see the survey by
Isenberg et al. [13].

Any binary visibility test, including the item buffer approach,
will lead to aliasing artifacts, analogous to those that appear
for polygons when sampled into a pixel grid. To ameliorate
aliasing artifacts, Cole and Finkelstein [3] adapted to lines the
supersampling and depth-peeling strategies previous described
for polygons, which we will revisit in Section 3.2.

While the item buffer approach can determine line visibility at
interactive frame rates for scenes of moderate complexity, it is
slow for large models. Moreover, computation of partial visi-
bility – which significantly improves visual quality, especially
under animation – imposes a further burden on frame rates.
The two algorithms described in Sections 3 and 4 provide
high-quality hidden line removal (with or without partial
visibility) at interactive frame rates for complex models.



PREPRIN
T

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 8, NO. 1, JANUARY 2009 3

Input Geometry Shader Fragment Shader

Clip-Space Strokes3D Line Segments Visibility at Spine Textured Strokes Visible, Textured Strokes

Result

+

Fig. 3. Steps in the spine test method. The input is a set of 3D line segments. A geometry shader projects the line
segments and creates clip-space strokes, preserving the homogenous positions for perspective-correct interpolation.
A fragment shader checks visibility at the spine of the stroke, and computes a texture color. The visibility and texture
are combined to produce the final result.

3 METHOD 1: SPINE TEST

Our first method is simple to implement and provides good
quality in many cases. The method requires only a single
pass to draw the depth buffer and a single pass to draw the
lines, so it can be easily added to an existing line rendering
implementation. However, the method does not support some
important stylization options. In particular, because it gener-
ates an independent stroke for each line segment, it cannot
properly parameterize stroke paths with multiple segments
such as seen in Figure 4; such paths require a continuous
parameterization if they are to be rendered with texture.
Nonetheless, many models (such as the Falling Water model
in Figures 6 and 11) have few curved stroke paths, and can
thus be effectively rendered with this method.

The algorithm begins with a set of 3D line segments extracted
from the model. Most of our experiments have focused on
lines that are always drawn no matter the camera angle, for
example creases or texture boundaries. However, our system
can also selectively draw edges that lie on silhouettes (e.g. the

correct incorrect

Fig. 4. Curved stroke paths. Strokes such as at the top
and bottom of the cylinder consist of multiple segments.
The correct approach is to parameterize the entire loop
as a single stroke (le f t). Texturing each segment indepen-
dently results in an incorrect result (right). Single-segment
strokes as on the sides of the cylinder are not affected.

horizontal lines at the top of the clevis model shown on the
left in Figure 1) by checking the adjacent face normals during
stroke generation.

The line segments are passed to the GPU using standard
OpenGL drawing calls with the primitive type GL LINES.
A geometry shader turns each line segment into a rectangular
stroke and assigns texture coordinates to each vertex (Section
3.1). After the strokes are positioned and assigned texture
coordinates, a fragment shader tests visibility at the nearest
point on the spine of the stroke. As explained in Section 3.2,
this visibility test can be a single depth probe or an average of
many probes. Finally, the alpha value of each fragment is set
to the visibility value of the spine. These steps are visualized
in Figure 3.

3.1 Stroke Generation

Newer graphics processors that support OpenGL 3.0 or
the GL EXT geometry shader4 extension (for example,
NVIDIA’s 8800 series) can execute geometry shaders, which
are GPU programs that execute between the vertex and frag-
ment stages and have the ability to add or remove vertices from
a primitive. Geometry shaders are thus a natural choice for
creating stroke geometry on the GPU. On hardware that does
not support geometry shaders, it is also possible to generate
strokes by creating a degenerate quad for each line segment
and assigning the positions and texture coordinates in a vertex
shader (similar to the approach of [14]). The vertex shader
approach, however, requires additional vertices to be passed
from the host to the GPU, and requires additional software
support on the CPU side when compared with the geometry
shader approach.

In the spine test method, a geometry shader takes as input
line segments and produces as output rectangles, represented
as triangle strips. The shader also determines the screen-space
length of the rectangle and assigns texture coordinates so
that the stroke texture is scaled appropriately. The examples
in this paper use 2D images of marks in the style of pen,
pencil, charcoal, etc., and are parameterized at a constant
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Fig. 5. Visibility aliasing. Aliasing in line visibility usually occurs at changes in occlusion. In this example, the red line is
revealed behind the blue line as the cube rotates (left). The artifacts, while transient, can be severe for a single visibility
sample with a standard depth buffer (a). Multiple depth samples soften the artifacts (b). Supersampling the depth buffer
without increasing the number of depth samples does not solve the problem (c), but combining a supersampled depth
buffer with multiple samples gives high-quality results (d). Top: enlargement showing partially occluded red line with
blue line overlaid. Bottom: depth buffer visualization showing visibility samples for red line.

rate in screen space. Graphics hardware by default uses
perspective-correct texture interpolation, which tends to stretch
and compress textures on strokes that are not perpendicular
to the viewing direction. Uniform parameterization in screen
space requires perspective-correct texturing to be disabled.
Conveniently, control over perspective-correct interpolation
is provided by the GL EXT gpu shader4 extension, and by
OpenGL 3.0.

To limit crawling artifacts, we use the simple strategy of
fixing the “zero” parameter value at the screen-space cen-
ter of the stroke. A more sophisticated strategy that seeks
temporal coherence from frame to frame was described by
Kalnins et al. [11].

While not a novel contribution of our method, we note that
generating strokes in this manner makes it very easy to rapidly
extract silhouette edges from smooth portions of a mesh, such
as the rounded top of the clevis on the left in Figure 1. The
extraction is performed by sending all mesh edges to the GPU,
then selecting the edges that lie on a silhouette boundary. To
provide the necessary information to the GPU, neighboring
face normals are packed into the vertex attributes for an edge
prior to rendering the strokes. While generating a stroke for an
edge, these face normals are checked for a silhouette condition
(one front-facing and one back-facing polygon). If the edge is
not a silhouette, it is discarded and no stroke is generated.
The edge can be discarded directly by a geometry shader, or
indirectly by a vertex shader by sending the vertices behind
the camera.

Unfortunately, when drawing stroke paths with many seg-
ments, there is no way to know at the geometry shader level the

proper parameterization of each segment, since each segment
is processed independently and in parallel. It is therefore
impossible to texture the entire path as one continuous stroke.
This drawback is not very noticeable for models with many
long, straight strokes, but is objectionable for models with
many curving paths and short segments (Figure 4). In contrast,
the segment atlas method described in Section 4 supports
computation of arc length and avoids this problem.

3.2 Visibility Testing

In order to perform depth testing at the spine of the stroke, the
depth buffer must be drawn in a separate pass and loaded as a
texture into the fragment shader. The visibility of a fragment
is then computed by comparing the depth value of the closest
point on the spine of the stroke with the depth value of the
polygon under the spine, much like a conventional z-buffer
scheme.

This simple approach commonly suffers from errors due to
aliasing. There are two potential sources of aliasing: under-
sampling of the depth probes, and polygon aliasing (“jaggies”)
in the depth buffer itself (both shown in Figure 5). Aliasing
errors occur at changes in line visibility, such as when a line is
revealed by a sliding or rotating object. These errors manifest
as broken or dashed lines. Broken lines may or may not be
objectionable in still imagery, but under animation the breaks
move, causing popping and sparkling artifacts. Any individual
line will only exhibit visibility artifacts from a small set of
camera angles. However, complex models (such as shown in
this paper) include so many lines that errors are very common
(Figure 6).
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(a) 1 sample, 1x depth buffer (b) 16 samples, 1x depth buffer

(d) 16 samples, 3x depth buffer(c) 1 sample, 3x depth buffer

(e) Falling Water

Fig. 6. Aliasing in visibility test. Results for varying
number of samples and scale of depth buffer. Green
box in (e) indicates location of magnified area. Visibility
supersampling is used in both the spine test and segment
atlas methods.

As noted by Cole and Finkelstein [3], aliasing can be alleviated
by determining a partial visibility value for each line fragment.
Conceptually, partial visibility can be computed by replacing
the line (which has zero width) with a narrow quadrilateral,
then computing the conventional α (occlusion) value for that
quadrilateral. In our case, partial visibility is determined by
making multiple depth probes in a box filter configuration
around the line sample (Figure 5b). Additional depth probes
are usually very fast (Table 1), but can become expensive on
limited hardware.

Any number of depth probes will not produce an accurate
result if the underlying depth buffer has aliasing error (Fig-
ure 5b). While impossible to eliminate entirely, this source of
aliasing can be reduced through supersampling of the depth
buffer by increasing the viewport resolution. Simply scaling
the depth buffer without adding additional depth probes for
each sample produces a marginal increase in image quality
(Figure 5c), but combining depth buffer scaling and depth test
supersampling largely eliminates aliasing artifacts (Figure 5d).
Since typical applications are seldom fill rate bound for simple
operations like drawing the depth buffer, increasing the size of
the buffer typically has little impact on performance outside
of an increase in memory usage. Results of these techniques
for a complex model can be seen in Figure 6.

4 METHOD 2: SEGMENT ATLAS

Stylization for curved strokes, or even simple effects such as
endcaps or haloes, require some non-local information. For
example, each segment in a curved stroke must have texture
coordinates based on the entire arc length of the stroke. This
information is costly to compute with a single-pass approach
such as the spine test, because much of the computation is
redundant across segments. The same observation holds for
endcaps or haloes: while in principle each fragment could
check a large neighborhood to determine the closest visibility
discontinuity, it is much more efficient to store the visibility
in a separate pass. Additional effects that can be achieved by
precomputing visibility are explained in Section 4.5.

The segment atlas approach is designed to efficiently compute
and store the visibility information for every stroke in the
scene. The input includes 3D line segments, as with the spine
test method, but also line strips (stroke paths). The output is a
segment atlas containing visibility samples for each projected
and clipped stroke, spaced by a constant screen-space distance
(usually 2 pixels).

The pipeline has four major stages, illustrated in Figure 7: line
projection and clipping, computation of atlas offsets, drawing
the segment atlas and testing visibility, and stroke rendering.
All stages execute on the GPU, and all data required for
execution resides in GPU memory in the form of OpenGL
framebuffer objects or vertex buffer objects.

4.1 Projection and Clipping

The first stage of the pipeline begins with a set of candidate
line segments, projects them, and clips them to the viewing
frustum. Ideally, we would use the GPU’s clipping hardware
to clip each segment. However, in current graphics hardware
the output of the clipper is not available until the fragment
program stage, after rasterization has already been performed.
We therefore must use a fragment program to project and
clip the segments, using our own clipping code. The fragment
program uses the same camera and projection matrices as the
conventional projection and clipping pipeline.

The input to the program is a six-channel framebuffer object
packed with the world-space 3D coordinates of the endpoints
of each segment (p,q) (Figure 7, step 1). In our implemen-
tation, this buffer must be updated at each frame with the
positions of any moving line segments. However, the fragment
program could also be modified to transform the segments with
a time-varying matrix. The output of the fragment program
is a nine-channel buffer containing the 4D homogeneous clip
coordinates (p′,q′) and the number of visibility samples l. The
number of visibility samples l is defined as:

l = d||p′w−q′w||/ke (1)

where (p′w,q′w) are the 2D window coordinates of the segment
endpoints, and k is a screen-space sampling rate. The factor
k trades off positional accuracy in the visibility test against
segment atlas size. We usually set k = 1 or 2, meaning
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Fig. 7. Segment Atlas Pipeline. The input 3D line segments (pi,qi) are stored in a table on the GPU. At each frame,
each 3D segment is projected and clipped by a fragment shader, which also determines a number of samples li
proportional to screen space length (step 1). Next, a scan operation computes the atlas offsets s from the running
sum of l (step 2). The sample positions v are then created by interpolating (p′,q′) and writing to the segment atlas
at offset s (step 3). Visibility values α j are determined by probing the depth buffer at each v j (see Figure 9). Finally,
strokes are created at (p′,q′) and textured with the visibility values α to produce the final rendering. Note the colors
used throughout to identify individual segments.

visibility is determined every 1 or 2 pixels along each line;
there is diminishing benefit in determining with any greater
accuracy the exact position at which a line becomes occluded.

A value of l = 0 is returned for segments that are entirely
outside the viewing frustum. Segments for which l ≤ 1 (i.e.,
sub-pixel sized segments) are discarded for efficiency if not
part of a path, but otherwise must be kept or the path will
appear disconnected.

In a separate step, the sample counts l are converted into
segment atlas offsets s by computing a running sum (Figure 7,
step 2). The sum is calculated by an exclusive-scan operation
on l [15]. Once the atlas offsets s are computed, each segment
may be drawn in the atlas independently and without overlap.

If the system must handle multi-segment paths, the segment
table may also include two extra channels to store the offsets of
each segment from the start and end of its path. By comparing
these pointers, a standalone segment can be distinguished from
a segment that is part of a path. This information may be
used during the final stroke rendering step to smoothly connect
adjacent segments of multi-segment paths (Section 4.4).

Finally, silhouette edges may also be extracted during the pro-
jection and clipping stage by loading face normals alongside
the vertex world coordinates and checking for a silhouette edge
condition at each segment. if the edge is not a silhouette, it
is discarded by setting l = 0. This method is similar to the
approach of Brabec and Seidel [16] for computing shadow
volumes on the GPU. Note, however, that our current method
is unable to stitch these silhouette edges into continuous multi-
segment silhouette paths, e.g., the outline of a sphere. The

parameterization of multi-segment paths is computed by the
exclusive-scan operation, which assumes that the segment
indices are neighboring and constantly increasing. The seg-
ments of a silhouette path, by contrast, are in effectively
random order in the segment table. In addition, silhouette paths
based on polygon edges can include degeneracies (see [17]).
Continuous parameterization of silhouette paths on the GPU
is therefore an area for future work.

4.2 Segment Atlas Creation

The purpose of the segment atlas is to store the visibility
samples for every segment in the scene. The ith segment
is allocated li visibility samples, or entries, in the atlas (for
example, segment 2 might be 5 pixels long, and be assigned
3 entries, while segment 3 might be 20 pixels long, and be
assigned 10 entries). Each set of entries begins at the segment
atlas offset si. Each entry consists of a 3D screen-space sample
position v and a visibility value α . While storing the sample
position v is unnecessary after visibility has been computed,
current GPUs commonly support only four-channel textures,
and the visibility values require only a single channel. On
future hardware, storing only the visibility values α would
save GPU memory.

To compute the screen-space positions v of the samples we
make use of the rasterization hardware of the GPU. We set
up the segment atlas as a rendering target (e.g., an OpenGL
framebuffer object), and draw single-pixel wide lines (proxy
lines) into the atlas, as follows: The host passes one vertex to
the GPU, identified by an index i, for each segment. A geom-
etry shader then looks up the ith entry in the projected and
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clipped segment table, and produces two vertices for a single
proxy line segment. If the hardware does not support geometry
shaders, the host must pass two vertices to a vertex shader,
each identified with index i and a binary “start vertex/end
vertex” flag. The shader then positions the vertex at either
the beginning or the end of the proxy segment, depending on
the flag.

In either case, the proxy segment i begins in the atlas at
position si and is li pixels long. The color of the first vertex
of the proxy is set to the clip space position p′i, and the color
of the second vertex is set to q′i. When the proxy lines are
drawn, the rasterization hardware performs the interpolation
of the clip space positions. A fragment shader then performs
the perspective division and viewport transformation steps to
produce the screen-space coordinate v (Figure 7, step 3). At
the same time, the fragment shader checks the visibility of
the sample as described in Section 4.3. The final output of the
fragment shader is the interpolated position v and the visibility
value α .

The most natural representation for the segment atlas is a very
long, 1D texture. Unfortunately, current GPUs do not allow
for arbitrarily long 1D textures as targets for rendering. The
segment atlas must therefore be mapped to two dimensions
(Figure 8). This mapping can be achieved by wrapping the
atlas positions at a predetermined width w, usually the maxi-
mum texture width W allowed by the GPU (W = 4096 or 8192
texels is common). The 2D atlas positions s are given by:

s = (s mod w,bs/wc) (2)

The issue then becomes how to deal with segments that extend
outside the texture, i.e., segments for which (s mod w)+ l > w.
One way to address this problem is to draw the segment atlas
twice, once normally and once with the projection matrix
translated by (−w,1). Long segments will thus be wrapped
across two consecutive lines in the atlas (Figure 8 top).
Specifically, suppose L is the largest value of l, which can be
conservatively capped at the screen diagonal distance divided
by k. If w > L, drawing the atlas twice is sufficient, because
we are guaranteed that each segment requires at most one
wrap. Drawing twice incurs a performance penalty, but as the
visibility fragment program is usually the bottleneck (and is
still run only once per sample) the penalty is usually small.

For some rendering applications, however, it is considerably
more convenient if segments do not wrap (Section 4.4). In
this case, we establish a gutter in the 2D segment atlas by
setting w = W −L. The atlas position is then only drawn once
(Figure 8 bottom). This approach is guaranteed to waste W −
L texels per atlas line. Moreover, this waste exacerbates the
waste due to our need to preallocate a large block of memory
for the segment atlas without knowing how full it will become.
Nevertheless, the memory usage of the segment atlas (which
is limited by the number of lines drawn on the screen) is
typically dominated by that of the 3D and 4D segment tables
(which must hold all lines in the scene).

Option 1: Draw Twice, with Translation

Step 3a:
 Draw Segments into Atlas

Option 2: Draw Once, with Gutter

0 w (= W)

0 W

L

w

Fig. 8. Segment atlas wrapping. Because current genera-
tion GPUs do not support arbitrarily long 1D textures, the
segment atlas must be wrapped to fit in a 2D texture. One
option is to draw the atlas twice, wrapping segments that
fall outside the width w (shown faded). Another option is
to establish a gutter of size L to catch segments that fall
outside w. Here W is the maximum texture width, and L is
the maximum segment length.

4.3 Visibility Computation

As mentioned in Section 4.2, the visibility test for each sample
is performed during rasterization of the segments into the
segment atlas. While drawing the atlas, a fragment program
computes an interpolated homogeneous clip space coordinate
for each sample and performs the perspective division step.
The resulting clip space z value is then compared to a depth
buffer (Figure 9).

The visibility test itself is similar to the test for the spine
test approach, with the same configuration of multiple depth
probes and supersampled depth buffer. Since visibility is only
tested once per spine sample, however, rather than once for
every fragment along the width of the stroke, even more depth
probes can be efficiently computed.

4.4 Stroke Rendering

After visibility is computed, all the information necessary to
draw strokes is available in the projected and clipped segment
table and the segment atlas. The most efficient way to render
the strokes is to generate, on the host, a single point per
segment. A geometry shader then uses the point as an index
and looks up the appropriate (p′,q′) in the projected and
clipped segment table. The segment endpoints may also be
looked up in the segment atlas, if the positions v are stored in
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Step 3b:
Compute Visibility

depth buffersegment atlas

v

α

0 5 8 18

Test Visibility 
(fragment shader)

Fig. 9. Visibility Testing. The first three segments of
Figure 7 are shown. Each sample in the segment atlas
corresponds to a fragment. The fragment shader uses the
screen space position v j to test the sample against the
depth buffer, recording the result in the visibility value α j.
Colors are the same as Figure 7.

the atlas. However, we find the original segment table is more
convenient since both vertex positions are stored at the same
texture offset in different channels. The geometry shader then
emits a quad that lies between the segment endpoints, with
width determined by the pen style.

As with the spine test method, hardware without geometry
shaders can generate the same quads, albeit less efficiently, by
generating a degenerate quad on the host and positioning the
four vertices in a vertex shader (again, similar to [14]).

Lastly, a fragment shader textures the quad with a 2D pen
texture and modulates the texture with the corresponding 1D
visibility values from the segment atlas. A range of effects
can be achieved by varying the pen texture and color with
visibility (Figures 10 and 13).

4.5 Additional Effects

By storing the visibility and screen-space positions simultane-
ously for all strokes in the scene, the segment atlas method

Fig. 10. Variation in style. A different texture may be used
for lines that fail the visibility test (le f t), allowing visual-
ization of hidden structures. Our method also produces
attractive results for solid, simple styles (right).

Fig. 11. Line density control. The segment atlas can store
information besides visibility, such as local line density.
Left: no density control. Right: line density reduction as
described in [12].

allows a range of additional rendering effects not possible with
the spine test method. Some examples include:

Mitering

In order to render multi-segment strokes without visible gaps
or overlap between segments, the ends of adjacent segments
must be smoothly connected (mitered). Proper mitering of
segment i requires the positions and orientations of segments
i−1 and i+1 (if they exist). This information can be looked up
in the projected and clipped segment table (see Section 4.1).
Corner mitering (joining with a sharp corner) can be performed
in the final rendering step by either a geometry or vertex
shader, simply by adjusting the four vertices of each segment
quad. While not implemented in this work, smooth mitering
(joining with a rounded corner) should also be possible by
emitting extra vertices from a geometry shader.

Filtering

The segment atlas also provides the opportunity to filter the
visibility information to fill small holes or remove short,
spurious sections. Other image processing operations can be
performed on the atlas as well. For example, erosion and
dilation can produce line overshoot or undershoot (haloing)
effects (Figure 1). A convincing sketchy overshoot effect can
be achieved by setting the dilation amount to a constant screen-
space length, then modulating this length pseudo-randomly
with the path index (or index of the starting segment of the
path) to vary the size of the overshoot. For operations such as
dilation, it is necessary to add padding around each segment
in the atlas, so that the segment can dilate beyond its normal
length. Padding can be added easily by increasing the number
of samples when computing the atlas offset (Section 4.2).

Density Control

The segment atlas also can be used to store any type of per-
sample information, not just visibility. For example, it can
store a measure of the density of lines in the local area,
as produced by a stroke-based line density control scheme
[18], [12]. Results from the system described in [12], as
implemented using a segment atlas, are shown in Figure 11.
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4.6 Readback

For applications that are difficult to implement entirely on
the GPU, such as stroke simplification [19] or complex NPR
shaders [20], the segment atlas can be read back to the
host. Reading back and processing the entire segment atlas is
inefficient, however, since for reasonably complex models the
vast majority of line samples in any given frame will have zero
visibility. We can reduce this cost by applying a stream com-
paction operation [21] to the segment atlas visibility values.
This operation yields a packed buffer with only visible samples
remaining. For models of moderate complexity, compaction
and readback adds an additional cost of ∼ 20 ms per frame.

5 RESULTS

We implemented the two methods using OpenGL and GLSL,
taking care to manage GPU-side memory operations effi-
ciently. For comparison we also implemented an optimized
conventional OpenGL rendering pipeline using line primitives,
the item buffer approach of Northrup and Markosian [2], and
the improved item buffer approach of Cole and Finkelstein [3].
We did not use NVIDIA’s CUDA architecture, because the
segment atlas drawing step uses conventional line rasterization
and the rasterization hardware is unavailable from CUDA.

Table 1 shows frame rates for four models ranging from 1k-
500k line segments. The clevis, house (Falling Water), ship and
office models are shown in Figures 10-12. The “+s” indicates
silhouettes were extracted and drawn in addition to the fixed
lines. Timings for clevis and house are averaged over an
orbit of the model, whereas timings for the ship and office
are averaged over a walkthrough sequence. All frames are
rendered at 1024× 768 using a commodity Dell PC running
Windows XP with an Intel Core 2 Duo 2.4 GHz CPU and 2GB
RAM, and an NVIDIA 8800GTS GPU with 512MB RAM.

We tested the following rendering algorithms: (OGL) conven-
tional OpenGL lines; (IBlo) single item buffer [Northrup2000];
(IBhi) 9× supersampled item buffer with 3 layers [Cole2008];
(STlo/SAlo) spine test shader and segment atlas, respectively,
with a single depth probe, which is comparable to IBlo; and
(SThi/SAhi) spine test shader and segment atlas, respectively,
with 9 depth probes and 2× scaled depth buffer, which is
comparable to IBhi. For small models (clevis and house),
both the spine test and segment atlas methods are slower than
conventional OpenGL rendering by factors of 2−4×, though
overall speed is still high. Additional samples and depth buffer
scaling also incur a noticeable penalty for these models. For
the more complex models (ship and office), the penalty for
using either method declines. Both methods are within 50% of
conventional OpenGL in the high-quality modes (SThi/SAhi).
The basic segment atlas (SAlo), which suffers from some
aliasing artifacts but still provides good quality, is within 75%
of OpenGL on both the office and ship models.

Both of the new methods are always considerably faster than
the item buffer based approach, but the most striking difference
is when comparing the high quality modes of each method.

TABLE 1
Frame rates (FPS) for various models and methods.

Model clevis house ship office ship+s off.+s
# tris 1k 15k 300k 330k - -
# seg 1.5k 14k 300k 300k 500k 400k
OGL 1000+ 300+ 42 32 - -
IBlo 87 24 9.6 7.0 - -
IBhi 20 3.4 0.5 0.4 - -
STlo 900+ 146 26 28 19 23
SThi 300+ 75 24 25 19 21
SAlo 400+ 119 33 29 23 24
SAhi 200+ 76 25 24 22 21

The item buffer approach with 9× supersampling and 3 layers,
as suggested by [3], gives similar image quality to our methods
with 9 depth probes and 2× scaled depth buffer. The new
methods, however, deliver performance increases of up to 50×
for complex models.

As mentioned in Sections 3.1 and 4.1, both methods allow for
easy extraction and rendering of silhouette edges on the GPU.
The last two rows of Table 1 show the performance impact
when extracting and rendering silhouettes. The increase in cost
is roughly proportional to the increase in the total number of
potential line segments. We did not implement silhouette ex-
traction for the other methods. However, silhouette extraction
can be a costly operation when performed on the CPU.

While accurate timing of the stages of our method is difficult
due to the deep OpenGL pipeline, the major costs (∼80-90%
of total) lie in the sample visibility testing stage and depth
buffer drawing stage. For small models, the sample visibility
testing is dominant, while for large models, the depth buffer
creation is the primary single cost. Projection, clipping, and
stroke rendering are minor costs.

6 CONCLUSION AND FUTURE WORK

The proposed methods allow rendering of high-quality stylized
lines at speeds approaching those of the conventional OpenGL
rendering pipeline. They provide improved temporal coherence
and less aliasing (sparkle) than previous approaches for draw-
ing stylized lines, making them suitable for animation of com-
plex scenes. The spine test shader (method 1) is particularly
simple, and should be easy to include in existing line rendering
systems. The segment atlas pipeline (method 2), while more
complex, is still fairly easy to implement, and provides a
broader range of stylization options. Compared with previous
approaches for computing line visibility, both are robust and
conceptually simple. We believe these approaches will be
useful for interactive applications such as games and design
and modeling software, where previously the performance
penalty for using stylized lines has been prohibitive.

The ability to store full visibility information for all lines
allows for special rendering of hidden lines (Figure 13), but
also opens several possibilities for future work. Just as [12]
introduced “stylized focus” as an artistic effect inspired by
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Fig. 12. Complex models. The ship model (le f t) has 300k triangles and 500k total line segments. The office model
(right) has five levels, each with detailed furniture, totaling 330k triangles and 400k line segments. Both models can
be rendered at high-quality and interactive frame rates using both the spine test and segment atlas methods.

Fig. 13. Drawing hidden lines using the segment atlas. Locally controlling line visibility, using the stylized focus
technique of [12], can reveal the internal structure of a model while providing context or hiding unimportant areas.
Because the segment atlas stores visibility information for all strokes, hidden and visible lines can be drawn with no
extra cost to performance.
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photorealistic defocus effects, we can imagine a “stylized
motion blur” effect inspired by photorealistic motion blur. By
storing the segment atlases from previous frames, we could
blur the visibility values from consecutive frames rather than
the final rendered strokes. Blurring visibility could, for exam-
ple, allow a disappearing stroke to break up into shrinking
splotches of ink, rather than simply fading out.

Storing copies of the segment atlas from previous frames
could also allow for performance increases in situations where
computing the atlas samples is a significant cost. Rather than
recomputing each sample from scratch at each frame, the
sample positions could be reprojected from frame to frame
and fully refreshed intermittently. Reprojection would distort
the sampling rate of each line and introduce errors for clipped
lines, but may be worthwhile in some applications.

Other future work in this area may include adapting line
density control methods such as proposed in [18], [12] to
operate more effectively on the GPU. Our current implementa-
tion of [12] exhibits some sparkling artifacts under animation,
and causes a hit in performance. One challenge is that these
approaches do not take into account partial visibility of lines,
which is necessary for smooth animation.

While not a direct extension of our method, we would also like
it to handle other view-dependent lines such as smooth silhou-
ettes [17], suggestive contours [22], and apparent ridges [23].
Including these line types at a reasonable performance cost
may require an extraction algorithm that executes on the GPU.
In contrast to lines that are fixed on the model, consistent
parameterization of such lines from frame to frame presents
its own challenge [11].
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