
Texture Mapping for Cel Animation

Wagner Toledo Corrˆea1 Robert J. Jensen1 Craig E. Thayer2 Adam Finkelstein1

1Princeton University
2Walt Disney Feature Animation

(a) Flat colors (b) Complex texture

Figure 1: A frame of cel animation with the foreground character painted by (a) the conventional method, and (b) our system.

Abstract

We present a method for applying complex textures to hand-drawn
characters in cel animation. The method correlates features in a
simple, textured, 3-D model with features on a hand-drawn figure,
and then distorts the model to conform to the hand-drawn artwork.
The process uses two new algorithms: a silhouette detection scheme
and a depth-preserving warp. The silhouette detection algorithm is
simple and efficient, and it produces continuous, smooth, visible
contours on a 3-D model. The warp distorts the model in only two
dimensions to match the artwork from a given camera perspective,
yet preserves 3-D effects such as self-occlusion and foreshortening.
The entire process allows animators to combine complex textures
with hand-drawn artwork, leveraging the strengths of 3-D computer
graphics while retaining the expressiveness of traditional hand-
drawn cel animation.

CR Categories: I.3.3 and I.3.7 [Computer Graphics].

Keywords: Cel animation, texture mapping, silhouette detection,
warp, metamorphosis, morph, non-photorealistic rendering.

1 INTRODUCTION

In traditional cel animation, moving characters are illustrated with
flat, constant colors, whereas background scenery is painted in
subtle and exquisite detail (Figure 1a). This disparity in render-
ing quality may be desirable to distinguish the animated characters
from the background; however, there are many figures for which
complex textures would be advantageous. Unfortunately, there are
two factors that prohibit animators from painting moving charac-
ters with detailed textures. First, moving characters are drawn dif-
ferently from frame to frame, requiring any complex shading to
be replicated for every frame, adapting to the movements of the
characters—an extremely daunting task. Second, even if an ani-
mator were to re-draw a detailed texture for every frame, temporal
inconsistencies in the painted texture tend to lead to disturbing arti-
facts wherein the texture appears to “boil” or “swim” on the surface
of the animated figure. This paper presents a method for apply-
ing complex textures to hand-drawn characters (Figure 1b). Our
method requires relatively little effort per frame, and avoids boiling
or swimming artifacts.

In recent years, the graphics community has made great progress
in 3-D animation, leading up to full-length feature animations
created entirely with 3-D computer graphics. There are advantages
to animating in 3-D rather than 2-D: realism, complex lighting and
shading effects, ease of camera motion, reuse of figures from scene
to scene, automatic in-betweening, and so forth. Furthermore,
it is easy to apply complex textures to animated figures in 3-D.
Thus, one might consider using 3-D computer graphics to create
all animated figures, or at least the characters that have interesting
textures. However, it turns out that there are several reasons why
hand-drawn 2-D animation will not be replaced with computer-
generated 3-D figures. For traditional animators, it is much easier
to work in 2-D rather than in 3-D. Hand-drawn animation enjoys



aneconomy of line[14], where just a few gestures with a pen can
suggest life and emotion that is difficult to achieve by moving 3-D
models. Finally, there exists an entire art form (and industry) built
around hand-drawn animation, whose techniques have been refined
for more than 80 years [27]. While the industry is increasingly
using computer-generated elements in animated films, the vast
majority of characters are hand-drawn in 2-D, especially when the
figure should convey a sense of life and emotion.

In this project, we begin with hand-drawn characters created
by a traditional animator. Next, a computer graphics animator
creates a crude 3-D model that mimics the basic poses and shapes
of the hand-drawn art, but ignores the subtlety and expressiveness
of the character. The 3-D model includes both a texture and the
approximate camera position shown in the artwork. Our algorithm
distorts the model within the viewing frustum of the camera, in
such a way that the model conforms to the hand-drawn art, and
then renders the model with its texture. Finally, the rendered model
replaces the flat colors that would be used in the ink-and-paint stage
of traditional cel animation. This process combines the advantages
of 2-D and 3-D animation. The critical aspects of the animation
(gestures, emotion, timing, anticipation) are created in 2-D with
the power and expressiveness of hand-drawn art; on the other hand,
effects that give shape to the texture occur in 3-D, yielding plausible
motion for the texture. The hand-drawn line art and the texture are
merged for the final animation.

To implement the process outlined above, this paper offers
two new algorithms: a silhouette detection scheme and a depth-
preserving warp. The silhouette detector (which is based on the
frame buffer) is efficient, simple to implement, and can be used
for any application where visible silhouette detection is necessary.
The warp has two main advantages over previous warps that make
it appropriate for our problem: it works with curved features,
and it provides 3-D effects such as wrapping, foreshortening, and
self-occlusion. It also has other potential applications: texture
acquisition, and manipulation of 3-D objects using hand-drawn
gestures. (These applications are described in Section 9.)

The remainder of this paper is organized as follows. Section 2
surveys previous work related to this project. Section 3 presents
an overview of our process. In Sections 4, 5, and 6, we describe
in detail how we correlate features on the model with features on
the art, how our system warps the model to conform to the art, and
how to control the warp. In Section 7, we present some resulting
animations. Section 8 discusses some limitations of our technique,
while Section 9 describes several applications for this technology
other than its use in traditional cel animation. Finally, Section 10
outlines some possible areas for future work.

2 RELATED WORK

A variety of previous efforts have addressed the use of computer
graphics for animation, though to our knowledge nobody has suc-
cessfully solved the specific problem described here. Researchers
have largely automated the image processing and compositing
aspects of cel animation [6, 18, 25, 28], wherein the conventional
ink-and-paint stage could be replaced with the textures resulting
from our system. Woodet al. [35] demonstrate the use of 3-D com-
puter graphics in the design of static background scenery; in con-
trast, this paper addresses animated foreground characters. Sabis-
ton [20] investigates the use of hand-drawn artwork for driving 3-D
animation, which, although not the main focus of our work, is simi-
lar to the application we describe in Section 9.2. Finally, animators
at Disney actually applied a computer graphics texture to color a
hand-drawn magic carpet in the filmAladdin [30], but their pro-
cess involved meticulously rotoscoping a 3-D model to match each
frame of artwork—an arduous task that would have benefitted from
a system such as the one we describe.

The heart of our method is a new warp. Critical for visual
effects such as metamorphosis (ormorphing), image warps have
been extensively studied. Beier and Neely’s warp [2] distorts
images in 2-D based on features marked with line segments; it
was the inspiration for the warp that we describe, which works
with curved feature markers and provides 3-D effects such as
occlusion and foreshortening. Litwinowicz and Williams [13]
describe a warp (based on a thin-plate smoothness functional)
that behaves more smoothly than that of Beier and Neely in
the neighborhood of feature markers; perhaps a hybrid approach
could combine these smoothness properties into the warp that we
describe. Leeet al. [10] have described a user-interface based
on snakes[9] that is useful for feature specification, as well
as a new warp based on free-form deformations [24]. Warps
have been applied in other domains as well, such as the work of
Sederberget al. [23] on 2-D curves, Witkin and Popovi´c [33] on
motion curves for 3-D animation, and Lerioset al.[11] on volumes.

This paper also presents a scheme for silhouette detection based
on rendering the 3-D model into a frame buffer. In general, sil-
houette detection is closely-related to hidden surface removal, for
which there are a host of methods [7]. Markosianet al. [14] present
some improvements and simplifications of traditional algorithms,
and are able to trade off accuracy for speed. Most algorithms deal-
ing with polyhedral input traverse the mesh tagging edges of the
model as silhouettes. In our work, we are only interested invisi-
ble silhouettes (since they correspond to features that appear in the
drawing). Furthermore, we want our algorithm to produce smooth,
continuous silhouette curves on the actual model. As described in
Section 4, our method generates this kind of output, and solves the
problem of bifurcation along the silhouette edge by rendering the
3-D model colored with texture coordinates into a frame buffer.
Saito and Takahashi [21] employed a similar technique for high-
lighting edges in technical illustrations, and Wallachet al.[29] used
this idea for finding frame-to-frame coherence in 3-D animations.

This project shares much in spirit with the recent progress of the
computer graphics community toward non-photorealistic rendering
(NPR), although the actual NPR aspects of our work (the shape of
the animated figure and often its texture) are created by an artist.
For the researchers who have investigated animation and video in
simulated media (oil paint for Meier [15] and Litwinowicz [12];
pen and ink for Markosianet al. [14] and Winkenbachet al. [32];
and watercolor for Curtiset al.[4]) a challenge has been to maintain
temporal coherence in the individual strokes of the artwork to avoid
“boiling.” In our project, this challenge is circumvented because we
use a single texture throughout the animation.

3 THE PROCESS

In this section we present our system from the user’s point of view.
The details of the algorithms mentioned here are explained in later
sections.

For each shot in the animation, we follow these steps (Figure 2):

(a) A person scans in the cleaned-up hand-drawn artwork.

(b) A person creates a simple 3-D model that approximates
roughly the shape of the hand-drawn character.

(c) The computer finds border and silhouette edges in the model.

(d) A person traces over edges of the line art that correspond to
border and silhouette features of the 3-D model.

(e) The computer warps the 3-D model to match the shape of the
line art, and then renders the model.

(f) The computer composites the rendered model with the hand-
drawn line art and background scenery.



(a) Hand-drawn art (b) 3-D model (c) Edges in model (d) Edges in art (e) Warped model (f) Final frame

Figure 2: The process of creating one texture mapped frame.

Our method fits into the existing production pipeline for cel ani-
mation [6, 18]. Steps (a) and (f) are stages in the current digital
production process, with the ink-and-paint stage between them. We
are offering, as an alternative to the constant colors of the ink-and-
paint stage, a process that applies complex textures to the drawings.

The problem of applying textures to hand-drawn artwork poses
a challenge: the line art must be interpreted as some kind of shape.
Given a set of black lines on white paper, the computer must acquire
at least a primitive model for the 3-D forms conveyed by the art.
This information is necessary if we are to provide 3-D effects for
the texture such as self-occlusion and foreshortening. (See, for
example, the difference in occlusion between Figures 2b and 2e or
the foreshortening shown in Figure 7.) Note that with the constant
colors of the traditional ink-and-paint stage, these 3-D effects are
unnecessary. The viewer does not expect the constant orange color
of the front of the carpet in Figure 1a to appear to recede as it
crosses over a silhouette; however the texture of the carpet in
Figure 1b must recede. Thus, some form of 3-D information must
be available to the algorithm. Since interpreting hand-drawn line
art as a 3-D figure is tantamount to the computer vision problem
(which has not as yet been solved), we resort to human intervention
for steps (b) and (d) above. These phases of our process can be
labor-intensive, and we believe that partial automation of these
tasks through heuristic methods is a critical area for future work.

In step (b) above, we create a simple 3-D model that corresponds
to the animated figure. As seen from a set of specific camera
perspectives, the model should have the approximate form of the
hand-drawn figure. By “approximate form” we mean that the model
projected into screen space should have a similar set of features in a
similar arrangement as the features of the line art. For example,
the artwork and 3-D model and in Figures 2a and 2b both have
four border edges and an upper and lower silhouette edge. Note
that in this example the warp succeeds even though the order of
the upper silhouette edge and the backmost edge of the carpet is
reversed between the hand-drawn artwork and the 3-D model. For
the animations shown in this paper, our models were represented by
tensor product B-spline patches [5]. However, before performing
the warp described in Section 5, we convert our models to polygon
meshes. Thus, the method should be applicable to any model
that can be converted to polygons, provided that the model has a
global parameterization, which is generally necessary for texture
mapping.

4 SPECIFYING MARKERS

In this section we show how we specifymarker curves—curves that
identify features on the 3-D model and on the 2-D artwork. We call
feature curves on the modelmodel markersand feature curves on
the drawingdrawing markers. These curves will be used by the
warp described in Section 5 to deform the 3-D model so that it
matches the drawing.

Section 4.1 explains how we automatically find model markers
by detecting visible border edges and silhouette edges on the model.
Section 4.2 explains how these edges are converted to form smooth
curves on the model. Section 4.3 shows how to guarantee that these

edges can be safely used later as the input to the warp. Section 4.4
shows how to specify the edges on the 2-D drawing that correspond
to the edges found on the 3-D model.

4.1 Silhouette Detection

In this section we describe a scheme for finding visible silhouette
and border edges in a 3-D model represented by a polygon mesh.
These features are likely to correspond to features in the hand-
drawn line art; such correspondences are the primary input to the
warp we describe in Section 5. We also allow the user to specify
model markers by drawing them directly on the 3-D model, but it
would be cumbersome to have to specifyall model marker curves
this way. Thus, we automatically construct model markers for all
visible border and silhouette edges, and allow the user to pick the
useful marker curves (often, all of them).

To get started, we need to define some terminology, consistent
with that of Markosianet al.[14]. A border edgeis an edge adjacent
to just one polygon of the mesh. Asilhouette edgeis an edge shared
by a front-facing polygon and a back-facing polygon (relative to the
camera).

Standard silhouette detection algorithms will identify the subset
of edges in the mesh that are silhouette edges. Treated as a group,
these edges tend to form chains. Unfortunately, in regions of the
mesh where many of the faces are viewed nearly edge-on, the
chains of silhouette edges can bifurcate and possibly re-merge in
a nasty tangle. For our warp, we are interested in finding a smooth,
continuous curve that traces the silhouette on the model, rather than
identifying the exact, discrete set of silhouette edges in the mesh.
Furthermore, we are only interested invisible silhouettes because
they tend to correspond to features that appear in the drawing.
Finally, we want to distinguish border edges from other silhouette
edges.

To detect the border and silhouette edges of a 3-D model, we pro-
ceed as follows. Using Gouraud shading (withoutlighting effects or
antialiasing) we render the 3-D model over a black background as a
polygon mesh whose vertices are colored(R;G;B) = (u; v; ID),
whereu andv are the parametric coordinates of each vertex, andID
identifies the texture (Figure 3b). Let us call the resulting image the
uv-image. The method accommodates models with multiple tex-
ture maps, but so far in our animations all of our models have only
used a single texture, whoseID is 1. TheID 0 is reserved for the
background.

When a pixel on theuv-image corre-

666666
666666
666666
666666
666666

11111
11111
11111
11111
11111

c2

c1e

p1 p2

Figure 4: A few pixels.

sponds to a point on the surface of the
model, we say that the pixel iscovered by
the model. Also, apixel corneris one of
the four corners of a pixel, while apixel
boundaryis the line segment joining two
pixel corners shared by two adjacent pix-
els. For example, in Figure 4,p1 andp2
are pixels,c1 and c2 are pixel corners,
ande is a pixel boundary.

Borders and silhouettes generate color discontinuities in the
resulting image (Figure 3c). To find these discontinuities, we
construct a directed graphG = (V;E), whereV are the vertices



(a) (b) (c) (d) (e)

Figure 3: Detecting border and silhouette edges on a 3-D model. (a) Wireframe 3-D model. (b) 3-D model shaded with vertices colored
(u; v; ID). (c) Discontinuities in color. (d) Model marker curves in parameter space. (e) Marker curves on model.

of the graph, andE are directed edges in the graph.V consists
of the pixel corners in theuv-image, andE is constructed by the
following classification process:

CLASSIFY(G)
1 for every boundary between two neighboring pixels
2 p1 pixel closer to the camera
3 p2 pixel farther from the camera
4 if p1.color 6� p2.color
5 e ADD EDGE(G, p1, p2)
6 if p1 is an extremum
7 e.type corresponding kind of border edge
8 else
9 e.type silhouette edge

In steps 2 and 3, we determine which of the two pixels of a
boundary is closer to the camera, using one of three methods. First,
if exactly one of the pixels is covered by the model, then it is the
closer pixel (because the other pixel corresponds to background).
Second, we can read from the depth buffer thez-values of the two
pixels and compare them. Third, if the depth value is unavailable
(as on some machines for whichz-buffering is implemented in
hardware) then we can read theu andv parameters of the part of
the model that covered those pixels, evaluate the model at those
parametric locations, and compare their distances from the camera.

In step 5, we add toG a directed edgee between the two corners
shared byp1 andp2 in such a way thatp1 is on the left ofe, andp2
is on the right. If the parametric space is periodic then the border
edges should be ignored. For example, in Figure 3, the carpet has
two silhouette edges (upper and lower) and four border edges (at
u = 0, u = 1, v = 0, andv = 1); the ball only has silhouette
edges because the interior line in Figure 3c is ignored. In the actual
implementation, we generate for each edge a confidence value for
each of the possible kinds of edge. If, for example, theu parameter
at p1 was found to be very near 0, andu at p2 was large, then
we could say with high confidence that the edge between these
pixels represents a border atu = 0. Finally, we choose the highest
confidence value to represent the type of the edge.

After the classification process is finished, finding the edges on
the model is equivalent to finding the connected components ofG,
which can be done efficiently using depth-first search [3, 26]. We
traverse the graph, finding paths of edges that have the same edge
type and the same color (within a tolerance). The running time of
depth-first search is�(jV j+jEj) [3]. In our case, bothjV j andjEj
are linear in the number of pixels. Furthermore, the classification

process is linear in the number of pixels because it makes a single
pass over the entire image, adding a number of edges to the graph
that is bounded by a constant multiple of the number of pixels.
Thus, the silhouette detection scheme described here is linear in
the number of pixels in the image. The image resolution dictates
the accuracy of the resulting silhouette curves. We have found that
a resolution of512 � 512 is sufficient for the simple models we
have used in our animations.

Having found the connected components ofG, we have a set
of lists of pixel boundaries that correspond to border edges and
silhouette edges on the model. In the next section we will describe
how to fit smooth curves to this data. These curves are the model
marker curves (Figure 3e) used by the warp in Section 5.

The benefits of this silhouette detector are that it is simple to
implement, it leverages existing support for hidden surface removal
and texture mapping, it works for any object with a well-defined
parameter space, and produces smooth, visible silhouette curves.

4.2 Curve Fitting

To represent each marker curve, we use a chord-length parameter-
ized endpoint-interpolating uniform cubic B-spline [5, 19]. These
curves have several desirable properties: they are smooth; they can
be linked “head to tail” (without a break between them); the rate of
change of the curve with respect to the parameter is uniform; and
they are well understood. We obtain each curve by fitting it to a set
of data. These data are either chains of pixels (as in the previous
section) or the result of user input (as in Section 4.4).

To fit the curves, we typically have many more data points than
degrees of freedom: a chain of hundreds of pixels generated by the
silhouette detector (or generated by tracing on the drawing) may be
smoothly approximated by a spline with only a few control points.
To calculate the control points, we solve an overdetermined linear
system using least squares data fitting techniques that minimize
the root-mean-square error between the data and the resulting
curve [1, 17, 19, 22]. Our fitting procedure attempts to use as few
control points as possible, given a maximum error threshold.

4.3 Ghostbusting

The marker curves created in this section drive the warp described
in Section 5. Beier and Neely [2] observe that image warps tend to
fail if feature lines cross, producing what they callghosts. Near the
intersection between two feature lines, both features exert a strong
influence on the warp. If crossed feature lines do not “agree” about



the warp, then there tend to be sharp discontinuities in the resulting
warp leading to unpleasant artifacts. Thus, conventional wisdom
regarding image warps warns: “donot cross the streams.”

For the warp of Section 5, there dangerous

benign

Figure 5: Crossed streams.

are some configurations of crossed
feature markers that are dangerous
and others that are benign. Our
warp distorts a 3-D model, so feature
markers that crosson the modellead
to sharp discontinuities in the warp.
On the other hand, feature markers that cross in image space (but
are distant on the model) do not cause any ill artifacts. An exam-
ple of each kind of crossing is shown in Figure 5. Our application
automatically detects dangerous crossings, and splits model marker
curves where they cross. Since the silhouette detector described in
this section builds feature markers based on finding discontinuities
in parameter space, it is easy to use this information to distinguish
dangerous crossings from benign crossings. At dangerous crossings
we split marker curves so that they meet only at their endpoints. For
example, after splitting, three curves in Figure 5 meet at the point
labeled “dangerous.” Furthermore, our application trims the fea-
ture curves a small distance away from the crossing point, so the
resulting curves do not touch. The splitting procedure ensures that
the resulting marker curves “agree” about the warp at their intersec-
tion. The trimming step, though not strictly necessary, causes the
warp to behave even more smoothly in the neighborhood.

4.4 Specifying Markers on the Drawing

We have described the creation of model marker curves based on
features in the 3-D model. Next the user picks model marker curves,
and specifies corresponding drawing marker curves. To specify
these curves, the user traces over features in the hand-drawn art—
a time-consuming and tedious task. To reduce user-intervention,
we use contour tracing techniques similar to those presented by
Gleicher [8] and Mortensen and Barrett [16] in which the cursor
automatically snaps onto nearby artwork. For each drawing marker,
tracing results in a list of pixels that we subsequently approximate
with a smooth curve, as described in Section 4.2.

We now have a collection of model and drawing markers. These
curves identify features on the model that correspond to features on
the hand-drawn artwork. In the following section, we describe a
warp that uses this information to guide the distortion of the 3-D
model so that it matches the hand-drawn artwork.

5 THE WARP

This section describes our method for warping a given 3-D model
to match hand-drawn line art. The inputs to the warp are the model,
camera parameters, and a set of pairs of (model and drawing)
marker curves. The warp is applied to points on the modelafter they
have been transformed into the screen space for the given camera
but before the model has been rendered. The warp, which maps a
point in screen space to a different point in screen space, has the
following important properties:

� Each warped model marker lies on its associated drawing
marker as seen from the camera.

� The surface warped between two markers varies smoothly,
avoiding puckering or buckling.

� The warp preserves approximate area in image space, so that
foreshortening effects are still apparent.

� The warp leaves depth information (relative to the camera)
unchanged.

5.1 The Warp for One Pair of Markers

To begin, let us assume we only have a single pair of marker curves
in screen space: a model marker curveM(t) (generated by the
silhouette detector in Section 4.1) and a drawing marker curveD(t)
(traced on the drawing by the user as described in Section 4.4). In
the next section we will describe how this works with multiple pairs
of marker curves.

For a given pointp in the screen-space projection of the model,
we want to find the corresponding pointq on the drawing. For
a particular value oft, we define two coordinate systems: one
on the model marker curve and one on the drawing marker curve
(Figure 6). The model coordinate system has origin atM(t), and
abscissa direction̂xm(t) given by the tangent ofM at t. Likewise,
the drawing coordinate system has origin atD(t), and abscissa
directionx̂d(t) given by the tangent ofD att. For now, the ordinate
directionsŷm(t) and ŷd(t) are oriented to be perpendicular to the
respective abscissa. However, in Section 6.4 we will modify the
ordinate direction to get a smoother warp.

We find thex andy coordinates ofp in relation to the model
coordinate system in the usual way:

x(t) = (p�M(t)) � x̂m(t)

y(t) = (p�M(t)) � ŷm(t)

Next we define a tentative drawing pointq(t) corresponding top(t):

q(t) = D(t) + x(t) x̂d(t) + y(t) ŷd(t) (1)

This is the location to which we warpp(t), taking into account
only the coordinate systems at parametert. Of course, we have a
continuum of coordinate systems for all parameterst, and in general
they do not agree about the location ofq(t). Thus, we takeq to be a
weighted average ofq(t) for all t, using a weighting functionc(t):

q =

Z
1

0

c(t) q(t)dt

Z
1

0

c(t) dt

(2)

We want the contributionc(t) to fall off with the growth of the
distanced(t) between the 3-D points that project top andM(t).
Intuitively, we want nearby portions of the marker curves to have
more influence than regions of the markers that are far away. We
computed(t) in one of two ways. We either approximate the

A B

M(t)

x(t)

y(t)

p
ŷm(t)

x̂m(t)

(a) Model marker curve

D(t)

x(t)

y(t)

q(t)

x̂d(t)
ŷd(t)

(b) Drawing marker curve

Figure 6: Coordinate systems for the warp.



distance along the surface of the model, or we compute world-space
distance on an undeformed reference mesh. This is an important
difference between our warp and traditional warps: traditional
warps would use the 2-D distance between the origins of the
coordinate systems. Although our warp happens in 2-D space, it
takes into account 3-D information. Thus, the marker curves at
pointA in Figure 6a have little influence on the warp of pointB,
even though they are very near each other in the image plane. Thus,
we choose the contribution to be:

c(t) =
1

�+ d(t)f
(3)

where� is a small constant to avoid singularities when the distance
is very near zero, andf is a constant that controls how fast the
contribution falls off with distance. We discuss the nature of these
parameters in greater detail in Section 6.1.

5.2 The Warp for Multiple Pairs of Markers

The warp in equation (2) only considers a single pair of marker
curves. Here we generalize the warp to handle multiple pairs of
curves. We assign a user-specified weightwi to each pairi of
curves,i = 1; 2; : : : ;m, balancing the relative contribution of each
pair to the overall warp. Finally, we compute the drawing pointq as
a weighted average usingqi(t) andci(t) from equations (1) and (3),
for each marker pairi:

q =

mX
i=1

�
wi

Z
1

0

ci(t) qi(t)dt

�

mX
i=1

�
wi

Z
1

0

ci(t) dt

� (4)

The main features of our warp are: it uses curved features; it is
visually smooth; it is scale, translation, and screen-space rotation
independent; and, most importantly, it maps model markers to
drawing markers while preserving 3-D effects.

5.3 Computing the Warp

In practice, we evaluate the integrals in equation (4) numerically,
by uniformly sampling the marker curves. This can be computed
quickly for all vertices in the model by caching the coordinate
systems at sample locations.

Our warp usesforward mapping[34]: for each point in the
source texture, it finds where the point is mapped in the destination.
The motivation in this case is that we get self-occlusion and hidden-
surface removal for free using normalz-buffered rendering. Also,
this permits us to compute the warp at low resolution for the
interactive parts of the process, and later perform the final rendering
at high-resolution. Litwinowicz and Williams [13] also use forward
mapping, whereas Beier and Neely [2] useinverse mapping: for
each point in the destination, they find the location at which to
sample the input image. We sample the map by calculating the warp
only at vertices in the 3-D model; thus, we can render the warped
model using conventional texture mapping simply by modifying the
coordinates of vertices in the mesh and then rendering the usual
way.

6 CONTROLLING THE WARP

Many factors influence the behavior of the warp described in
Section 5. In this section we describe some of these influences in
better detail.

6.1 Contribution Parameters

The factors� and f of equation (3) can be modified to achieve
different effects. By varying�, we can get different levels of
smoothness and precision. If� is large, the warp is smoother. If� is
small, the warp is more precise. By varyingf , we control how fast
the contribution falls off with distance. Iff is large, distant points
will have almost no influence. (The factors� andf are similar to
the factorsa andb of the warp of Beier and Neely [2].) The figures
in this paper use� = 10�4 andf between 2 and 3.

6.2 Modeling and Viewing Parameters

Our warp is based on the projection of the 3-D model into screen
space. By varying the modeling and viewing parameters we
produce different projections of the model, and obtain different
results. Figure 7 shows the results of the warp for two different
camera views. In both cases, the hand-drawn art and the 3-D model
are the same. Notice that without the texture the drawing would
be ambiguous. We do not know whether the drawing is smaller
at the top or recedes into the distance. The foreshortening effect
helps resolve this ambiguity. Thus, use of a texture in a figure may
provide the viewer with information about spatial arrangement that
is not available in conventional flat-colored figures. Since it only
takes a few seconds to rotate the model and re-render the frame, it
is easy to interactively switch between the two views like those of
Figure 7 to choose one that has the desired effect.

6.3 Extra Markers

So far we have only mentioned model marker curves detected
automatically. In the actual implementation, the user can specify
extra markers on the model and the corresponding ones on the
drawing, to match features that were not detected automatically.
For example, Figure 8 shows how extra markers can be used to tell
the carpet how to fold over a set of stairs. Also, one could add
marker points— control points that add to the formula like marker
curves, but have a single coordinate system that is embedded in the

(a) Upright model warped to the art

(b) Tilted model warped to the art

Figure 7: Influence of modeling and viewing parameters.



(a) Without extra markers (b) With extra markers

Figure 8: Effect of defining extra markers on the warp.

plane—although we have not yet found it necessary to use marker
points for any of our animations.

6.4 Ordinate Direction Adjustment

In Section 5 we described a warp that uses coordinate systems
whose ordinate and abscissa directions are perpendicular to each
other. This approach leads to puckering when there is a great
disparity between the orientation of nearby drawing coordinate
systems (Figure 9a). Instead, we adjust the ordinate direction of
the drawing coordinate systems so that they conform better to
the actual artwork. The algorithm produces drawing coordinate
systems whose axes are linearly independent, but not necessarily
orthogonal. The result is a smoother and more intuitive warp
(Figure 9b).

To understand how our method works, let us suppose we have a
drawing coordinate system with axes(x̂d; ŷd), and a correspond-
ing model coordinate system with axes(x̂m; ŷm) as shown in
Figures 10a and 10b. Also, let us assume that we have a single
drawing marker curveD and a corresponding model marker curve
M . For a given value oft, we want to find the ordinate direction
ŷ0d taking into account the drawing coordinate system with origin at
D(t) and axes(x̂d(t); ŷd(t)), as well as the corresponding model
coordinate system with origin atM(t) and axes(x̂m(t); ŷm(t)).
We find the rotation that mapŝym(t) to ŷm, and apply this same

(a) Without adjustment

(b) With adjustment

Figure 9: Effect of ordinate direction adjustment on the warp.

rotation toŷd(t) to obtainŷ0d(t), which is where the coordinate sys-
tem atD(t) “thinks” that ŷd should be. Using an approach similar
to the one we used for the warp, we findŷ0d as a weighted combina-
tion of ŷ0d(t), using a weighting functionc0(t):

ŷ
0

d =

Z
1

0

c
0(t) ŷ0d(t)dt

Z
1

0

c
0(t)dt

(5)

We want the contributionc0(t) to have two properties. First, it
should fall off with the distanced0(t) between the model coordinate
systems, computed as in Section 5. Second, it should be larger
when the corresponding coordinate systems in parameter space
(Figure 10c) are perpendicular to each other. Intuitively, the bottom
edge of the carpet in Figure 9 should have a strong influence
over the ordinate direction along the right edge of the carpet,
because they are perpendicular in parameter space. This leads to
“isoparameter lines” in the drawing space that follow the shape of
the lower boundary curve. The contribution is then:

c
0(t) =

1� ŷp � ŷp(t)

�0 + d0(t)f 0

whereŷp and ŷp(t) are the vectors in parameter space that corre-
spond tôym andŷm(t), respectively. The parameters�0 andf 0, and
the distance functiond0(t) have the same roles as in equation (3).
As with the warp in Section 5, we compute the final ordinate di-
rection by promoting equation (5) to includeall marker curves, but
here we do not use weightswi. When all coordinate systems are
parallel to each other in parameter space, the result of this algo-
rithm is undefined. In this special case, we simply use the original
orthogonal̂yd.

x̂d(t)

x̂d

ŷd(t)

D(t)

ŷd

(a) Drawing

x̂m(t)

x̂m

ŷm(t)

M(t)

ŷm

(b) Model

x̂p
ŷp

x̂p(t)
ŷp(t)

(c) Parameter

x̂d(t)

x̂d

ŷd(t)

D(t)

ŷ'd(t)

(d) Adjusted

Figure 10: Coordinate systems for ordinate direction adjustment.



Figure 11: Bouncing ball animation.

(a) Without reparametrization (b) With reparametrization

Figure 12: Effect of reparameterizing the texture.

6.5 Reparameterizing the Texture

As we mentioned in Section 4, the marker curves are approximately
chord length parameterized. This leads to an interpretation of which
part of the overall texture should be visible that is often, but not
always, correct. We provide a mechanism for pulling occluded
texture back over a silhouette horizon, or pushing visible texture
over the horizon so it becomes occluded. For example, for the
carpet in Figure 12, the lower silhouette curve corresponds to two
different regions in parameter space. We simply move the texture
on the underformed model, essentially reparameterizing the texture
on the surface. We can perform such reparameterization easily by
warping the texture in parameter space prior to rendering, guided
by feature curves such as the borders of the texture and the desired
silhouette positions. However, we have not yet found it necessary
to use this feature for any of our animations.

7 RESULTS

In this section we describe several animations we created with our
application.

Figure 11 shows an animation of a ball bouncing along a desert
highway. For each row, the upper left picture shows the hand-drawn
artwork, the lower left picture shows the 3-D model with the texture
applied to it, and the right picture shows the final frame from the
movie: hand-drawn art composited with the warped model and the
background. In these frames the ball exhibits “squash and stretch”,
a fundamental principle of traditional cel animation [27]. The 3-D
model for this case is a simple sphere with a hand-painted beach-
ball texture applied to it. The sphere rotates with respect to the
camera, so that it appears to be rolling. To guide the warp for this
simple model, we used exactly one pair of marker curves per frame.

In Figure 14 we show the line art, model, and final frames for an
animated carpet on a staircase. In these frames, the carpet “stands
up” to look around. For this animation we used about 5 or 6 marker
curves per frame. Section 6.3 describes a method for specifying
extra marker curves that would cause the carpet to follow the
contours of the steps more closely, but we did not use that feature
in this animation. The frames demonstrate 3-D effects such as self-
occlusion and foreshortening—as well as temporal coherence in
a complex texture—that would be very difficult to produce with
traditional cel animation. Also note that even though the character
is computer-rendered using a highly-symmetric, repeating texture,
it blends aesthetically with the background art due to the hand-
drawn shape.

Finally, Figure 15 shows a hand-drawn animation of a fish. The
3-D model of the fish contains only the body of the fish (with a
simple checkerboard texture). Not shown are the three fins of the
fish (which are planar quadrilaterals) and the two eyes of the fish
(which are simple spheres). These were modeled, rendered, and
composited as separate layers—in the style of traditional, multi-
layer animation [27]—although they all share the same hand-drawn
art. The model is rigid throughout the animation, only rotating
back and forth with respect to the camera. Nonetheless, in the



final frames of the animation the fish appears to bend and flex as it
swims. The fins and tail are semi-transparent (using a hand-painted
matte embedded in the texture of the model) and thus it is possible
to see the reeds of the background through transparent parts of the
fish.

To create the hand-drawn artwork for the fish, it took several
hours to draw 23 frames. Building the 3-D model was easier
(approximately an hour) because the motion is simple rotation.
The computer found the model markers in just a few seconds per
frame. Drawing markers were specified by hand, requiring about
two minutes per frame. Finally, rendering and compositing required
tens of seconds per frame. For the ball and carpet animation (which
have simpler art and simpler models) these steps required less time.

8 LIMITATIONS

There are several classes of line art for which our process does
not work well. First, cel animation has developed a “vocabulary”
for conveying texture by modifying the edges of characters. For
example, tufts of fur on a character may be suggested or by drawing
a few sharp wiggles rather than a smooth edge (Figure 13a). A
character illustrated withboth “hinted” texture (in its line art) and
the kind of textured-fill described in this paper would probably
suffer visually from this mixed metaphor; moreover, the texture
near the sharp wiggles would be likely to stretch and pucker
unpleasantly in order to conform to the wiggles of the line art.
Our process also does not work well with figures for which it
is difficult to generate the 3-D model—most notably, clothing.
Cloth is typically drawn showing creases and folds, which would
be difficult to replicate well in a 3-D model (Figure 13b). Other
drawings use a few lines to suggest greater geometric complexity.
The interior folds in the knotted carpet would have to be modeled
explicitly if we expect the texture to look right. Figure 13c shows
an example of how some drawings do not correspond to any
reasonable 3-D geometry. Here the nose is drawn in profile, the
eyebrows float off the surface, and the hair is a crude representation.
There are other limitations inherent in using quadrilateral patches
to represent complex shapes. The body, legs, and tail of the cat
Figure 13d could not reasonably be represented with a single patch.

Figure 13: Line art that would be difficult to texture. Figure 14: Carpet animation.



Figure 15: Fish animation.

To solve these problems we either need to use multiple patches
and solve continuity issues, or switch to a more general surface
representation. Subdivision surfaces could be used in the warp if we
devised a method of representing surface curves and some concept
of orthogonality in parameter space.

9 OTHER APPLICATIONS

In this section we briefly talk about some other applications that
might benefit from this technology.

9.1 Shading Effects

Once we have this correspondence between a 3-D model and the
artwork, it is easy to incorporate many traditional computer graph-
ics effects such as highlights, shadows, transparency, environment
mapping, and so forth. Since this draws us further away from the
look and feel of traditional animation, we have not investigated
these effects in our work (except for the use of transparency in the
fins of the fish in Figure 15).

9.2 3-D Shape Control for Animation

While it is not the focus of this work, we are currently developing a
variation of this method as a new form of control in 3-D animation.
It would fit into the 3-D animation pipeline just before rendering.
An animator could add detail or deformations to the 3-D geometry
by drawing on the image plane (Figure 16). This is better than
distorting the final image because it affects theactual geometry,
correctly modifying occlusion and shading. Note that after the
warp, the model should only be viewed from the original camera
position, as the figure may appear distorted when viewed from other
directions.

(a) Original 3-D model (b) Hand-drawn art (c) Warped 3-D model

(d) Perplexed face (e) Goofy face

Figure 16: Controlling a 3-D model by drawing.



(a) Texture photograph (b) 3-D model (c) Acquired texture

Figure 17: Texture acquisition.

9.3 Texture Acquisition

Sometimes we find pictures of objects with textures that we would
like to apply to other objects. Often these textures are not available
in a perfect orthogonal view as it is necessary for texture mapping.
Our technique can be used in reverse to acquire the texture. For
example, shown in Figure 17 is a photograph of a carpet on the
floor. Since the camera was not directly over the carpet, it appears
in perspective; furthermore, since the carpet is not rigid the edges
are not completely straight. Thus, the image of the carpet is not the
kind of rectangle one would like to use for texture mapping. We
build a 3-D model of the carpet (a rectangle), position and orient
the model in space so its projection on screen space is similar to
the picture, associate markers on the picture and on the model, and
apply the inverse of our warp to extract the texture form the picture
and apply it to the model. Of course, if parts of the figure were
occluded in the original photograph this could lead to holes in the
final texture map.

10 FUTURE WORK

This project suggests a number of areas for future work, several of
which are described below.

Computer Vision. We would like to reduce the amount of effort
required to construct and position the 3-D model. One strategy is to
investigate the applicability of computer vision algorithms to recon-
struct the 3-D geometry from the 2-D drawings. Perhaps the ani-
mator could draw hints in the artwork using Williams’s scheme [31]
for conveying depth information through line-drawings. Computer
vision techniques would also be useful for discerning camera posi-
tion, inferring model deformations, and applying kinematics con-
straints. The computer could orient and deform the 3-D model
based on the 2-D drawings. Finally, perhaps the computer could
also guess the correspondence between a curve in the drawing and
a curve in the 3-D model using simple heuristics based on location,
orientation and shape.

(a) Hand-drawn art (b) 3-D model (c) Resulting image

Figure 18: Applying texture to hand-drawn cloth.

Frame-to-Frame Coherence. In an animation sequence, two
consecutive frames are likely to be similar. We would like to min-
imize user intervention by exploiting frame-to-frame coherence,
reusing information such as association between drawing and ap-
proximating 3-D model, detection and association of feature curves,
and model and camera adjustment.

Cloth. As mentioned in Section 8 there are some kinds of figures
for which our process does not yet work. Perhaps the most
challenging (and probably the most rewarding) class of figures
would be those with complex surface textures such as cloth and
hair. One of the difficulties with cloth is understanding and how it
folds, based on the line art. Given the right set of marker curves,
our warp can produce the right kind of behavior. For example, in
Figure 18 we show how adding extra marker curves by hand (shown
as dashed blue) can disambiguate the line art.

Acknowledgements

We thank Kiran Joshi for posing this problem, as well as Brent
Burley, Aliza Corson, Mauro Maressa and Paul Yanover at Disney
for their help and advice on this project. We also thank Cassidy
Curtis for his guidance, and Tim Milliron for the 3-D examples.
Finally, we are grateful to Ronen Barzel, John Hughes, Dan
Wallach, and the anonymous reviewers for many improvements to
the paper. This work was supported in part by CNPq (Conselho
Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico), Brazil.

References

[1] Kendall E. Atkinson.An Introduction to Numerical Analysis.
John Wiley & Sons, New York, 1988.

[2] Thaddeus Beier and Shawn Neely. Feature-Based Image
Metamorphosis. In Edwin E. Catmull, editor,SIGGRAPH
92 Conference Proceedings, Annual Conference Series, pages
35–42. ACM SIGGRAPH, Addison Wesley, July 1992.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. MIT Press, Cambridge,
Mass., 1990.

[4] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims,
Kurt W. Fleischer, and David H. Salesin. Computer-Gener-
ated Watercolor. In Turner Whitted, editor,SIGGRAPH 97
Conference Proceedings, Annual Conference Series, pages
421–430. ACM SIGGRAPH, Addison Wesley, August 1997.

[5] Gerald Farin. Curves and Surfaces for Computer Aided
Geometric Design: a Practical Guide. Academic Press, 1997.

[6] Jean-Daniel Fekete,́Erick Bizouarn,Éric Cournarie, Thierry
Galas, and Fr´edéric Taillefer. TicTacToon: A Paperless Sys-
tem for Professional 2-D Animation. In Robert Cook, edi-
tor, SIGGRAPH 95 Conference Proceedings, Annual Confer-
ence Series, pages 79–90. ACM SIGGRAPH, Addison Wes-
ley, August 1995.

[7] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes.Computer Graphics, Principles and Practice.
Addison-Wesley, Reading, Massachusetts, second edition,
1990.

[8] Michael Gleicher. Image Snapping. In Robert Cook, editor,
SIGGRAPH 95 Conference Proceedings, Annual Conference
Series, pages 183–190. ACM SIGGRAPH, Addison Wesley,
August 1995.



[9] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.
Snakes: Active Contour Models.International Journal of
Computer Vision, pages 321–331, 1988.

[10] Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, and
George Wolberg. Image Metamorphosis Using Snakes and
Free-Form Deformations. In Robert Cook, editor,SIG-
GRAPH 95 Conference Proceedings, Annual Conference Se-
ries, pages 439–448. ACM SIGGRAPH, Addison Wesley,
August 1995.

[11] Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy.
Feature-Based Volume Metamorphosis. In Robert Cook, ed-
itor, SIGGRAPH 95 Conference Proceedings, Annual Con-
ference Series, pages 449–456. ACM SIGGRAPH, Addison
Wesley, August 1995.

[12] Peter Litwinowicz. Processing Images and Video for an
Impressionist Effect. In Turner Whitted, editor,SIGGRAPH
97 Conference Proceedings, Annual Conference Series, pages
407–414. ACM SIGGRAPH, Addison Wesley, August 1997.

[13] Peter Litwinowicz and Lance Williams. Animating Images
with Drawings. In Andrew Glassner, editor,SIGGRAPH 94
Conference Proceedings, Annual Conference Series, pages
409–412. ACM SIGGRAPH, Addison Wesley, July 1994.

[14] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin,
Lubomir D. Bourdev, Daniel Goldstein, and John F. Hughes.
Real-time Nonphotorealistic Rendering. In Turner Whitted,
editor,SIGGRAPH 97 Conference Proceedings, Annual Con-
ference Series, pages 415–420. ACM SIGGRAPH, Addison
Wesley, August 1997.

[15] Barbara J. Meier. Painterly Rendering for Animation. In
Holly Rushmeier, editor,SIGGRAPH 96 Conference Pro-
ceedings, Annual Conference Series, pages 477–484. ACM
SIGGRAPH, Addison Wesley, August 1996.

[16] Eric N. Mortensen and William A. Barrett. Intelligent Scissors
for Image Composition. In Robert Cook, editor,SIGGRAPH
95 Conference Proceedings, Annual Conference Series, pages
191–198. ACM SIGGRAPH, Addison Wesley, August 1995.

[17] Michael Plass and Maureen Stone. Curve Fitting with Piece-
wise Parametric Cubics. In Peter Tanner, editor,SIGGRAPH
83 Conference Proceedings, Annual Conference Series, pages
229–239. ACM SIGGRAPH, July 1983.

[18] Barbara Robertson. Disney Lets CAPS out of the Bag.
Computer Graphics World, pages 58–64, July 1994.

[19] D. F. Rogers and J. A. Adams.Mathematical Elements
for Computer Graphics. McGraw-Hill, New York, second
edition, 1990.

[20] Walter Roberts Sabiston. Extracting 3D Motion from Hand-
Drawn Animated Figures. M.Sc. Thesis, Massachusetts Insti-
tute of Technology, 1991.

[21] Takafumi Saito and Tokiichiro Takahashi. Comprehensible
Rendering of 3-D Shapes. In Forest Baskett, editor,SIG-
GRAPH 90 Conference Proceedings, Annual Conference Se-
ries, pages 197–206. ACM SIGGRAPH, Addison Wesley,
August 1990.

[22] Philip J. Schneider. An Algorithm for Automatically Fitting
Digitized Curves. In Andrew S. Glassner, editor,Graphics
Gems, number I, pages 612–626. Academic Press, 1990.

[23] Thomas W. Sederberg, Peisheng Gao, Guojin Wang, and
Hong Mu. 2D Shape Blending: An Intrinsic Solution to the
Vertex Path Problem. In James T. Kajiya, editor,SIGGRAPH
93 Conference Proceedings, Annual Conference Series, pages
15–18. ACM SIGGRAPH, Addison Wesley, August 1993.

[24] Thomas W. Sederberg and Scott R. Parry. Free-Form Defor-
mation of Solid Geometric Models. In David C. Evans and
Russell J. Athay, editors,SIGGRAPH 86 Conference Pro-
ceedings, Annual Conference Series, pages 151–160. ACM
SIGGRAPH, August 1986.

[25] Michael A. Shantzis. A Model for Efficient and Flexible
Image Computing. In Andrew Glassner, editor,SIGGRAPH
94 Conference Proceedings, Annual Conference Series, pages
147–154. ACM SIGGRAPH, Addison Wesley, July 1994.

[26] Robert E. Tarjan and Jan van Leeuwen. Worst-Case Analysis
of Set Union Algorithms. Journal of the ACM, 31(2):245–
281, April 1984.

[27] Frank Thomas and Ollie Johnston.Disney Animation: The
Illusion of Life. Walt Disney Productions, New York, 1981.

[28] B. A. Wallace. Merging and Transformation of Raster Images
for Cartoon Animation. In Henry Fuchs, editor,SIGGRAPH
81 Conference Proceedings, Annual Conference Series, pages
253–262. ACM SIGGRAPH, August 1981.

[29] Dan S. Wallach, Sharma Kunapalli, and Michael F. Co-
hen. Accelerated MPEG Compression of Dynamic Polygonal
Scenes. In Andrew Glassner, editor,SIGGRAPH 94 Confer-
ence Proceedings, Annual Conference Series, pages 193–197.
ACM SIGGRAPH, Addison Wesley, July 1994.

[30] Walt Disney Home Video. Aladdin and the King of Thieves.
Distributed by Buena Vista Home Video, Dept. CS, Burbank,
CA, 91521. Originally released in 1992 as a motion picture.

[31] Lance R. Williams. Topological Reconstruction of a Smooth
Manifold-Solid from its Occluding Contour. Technical Report
94-04, University of Massachusetts, Amherst, MA, 1994.

[32] Georges Winkenbach and David H. Salesin. Computer–
Generated Pen–and–Ink Illustration. In Andrew Glassner, ed-
itor, SIGGRAPH 94 Conference Proceedings, Annual Confer-
ence Series, pages 91–100. ACM SIGGRAPH, Addison Wes-
ley, July 1994.

[33] Andrew Witkin and Zoran Popovi´c. Motion Warping. In
Robert Cook, editor,SIGGRAPH 95 Conference Proceed-
ings, Annual Conference Series, pages 105–108. ACM SIG-
GRAPH, Addison Wesley, August 1995.

[34] George Wolberg.Digital Image Warping. IEEE Computer
Society Press, Washington, 1990.

[35] Daniel N. Wood, Adam Finkelstein, John F. Hughes, Craig E.
Thayer, and David H. Salesin. Multiperspective Panoramas
for Cel Animation. In Turner Whitted, editor,SIGGRAPH
97 Conference Proceedings, Annual Conference Series, pages
243–250. ACM SIGGRAPH, Addison Wesley, August 1997.


