
XFastMesh: Fast View-dependent Meshing from External Memory

Christopher DeCoro Renato Pajarola

Computer Graphics Lab
Information & Computer Science

University of California, Irvine
cdecoro@uci.edu, pajarola@acm.org

ABSTRACT

We present a novel disk-based multiresolution triangle mesh data
structure that supports paging and view-dependent rendering of
very large meshes at interactive frame rates from external memory.
Our approach, called XFastMesh, is based on a view-dependent
mesh simplification framework that represents half-edge collapse
operations in a binary hierarchy known as a merge-tree forest. The
proposed technique partitions the merge-tree forest into so-called
detail blocks, which consist of binary subtrees, that are stored on
disk. We present an efficient external memory data structure and
file format that stores all detail information of the multiresolution
triangulation method using significantly less storage then previ-
ously reported approaches. Furthermore, we present a paging al-
gorithm that provides efficient loading and interactive rendering of
large meshes from external memory at varying and view-dependent
level-of-detail. The presented approach is highly efficient both in
terms of space cost and paging performance.

CR Categories: I.3.3 [Computer Graphics]: Image Generation—
Display Algorithms I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Surface and Object Representations
E.5 [Files]: Organization/Structure— [H.3.2]: Information Storage
and Retrieval—Information Storage

Keywords: level-of-detail, multiresolution modeling, out-of-core
rendering, interactive large-scale visualization

1 INTRODUCTION

With the rapid advances in 3D scanning technology, it has become
possible to generate geometric models much larger than the ca-
pacity of physical main memory (see [12]). Therefore, rendering
these models with standard level-of-detail (LOD) approaches and
in-memory multiresolution frameworks causes uncontrolled paging
of the operating system’s virtual memory manager that negatively
affects the interactive display. In order to use traditional polygo-
nal methods to render such large objects and surfaces at interactive
frame rates, we require:

1. an efficient view-dependent multiresolution triangulation and
rendering framework that can be dynamically modified, and

2. support for rendering from external memory which includes
paging of view-dependent LOD mesh data from disk.

External-memory algorithms and data structures [1, 2] present
a unique set of challenges not encountered in traditional main-
memory techniques. Some efforts have been made in scientific
visualization to develop external-memory algorithms (see abstract

Figure 1: A model of Michaelangelo’s David statue, comprising over 8.25
million polygons. The model is shown as simplified with XFastMesh. The
full-quality (within view frustum) smooth-shaded model is shown on the
left, and the wire-framed, flat-shaded image on the right is shown to display
the simplification. The view frustum is focused on the head and upper body.

[18]). In real-time LOD rendering of large polygonal meshes from
external memory the main challenges are related to maintaining and
synchronizing two separate datasets: the in-memory triangle mesh
data structures, and the on-disk data.

In this paper we present XFastMesh, a system which allows effi-
cient view-dependent rendering of very large triangle meshes from
external memory, such as Michaelangelo’s statue of David as shown
in Figure 1, which consists of 8.25M polygons. The system’s in-
memory view-dependent rendering method is based on FastMesh
[19], however, incorporates substantial changes to dynamically up-
date the main memory mesh data structures. Additionally, the main
contribution of XFastMesh is an external memory data structure
(XFM file format) and paging algorithm that supports efficient load-
ing of mesh data from disk at different LODs.

The remainder of the paper is organized as follows. In Section 2
we review closely related work and preliminary background. Sec-
tion 3 describes the external memory data structures and file format,
and Section 4 explains the in-memory data structures and rendering
algorithm. Section 5 provides experimental results and Section 6
concludes the paper.

2 RELATED WORK

2.1 View-dependent Meshing
Several view-dependent mesh simplification and rendering meth-
ods have been proposed in the literature so far. The approaches
presented in [6, 25, 26] and [9, 10] are based on a binary vertex
hierarchy derived from iteratively simplifying the input mesh by
edge collapse operations [8]. Nodes of this hierarchy are collapsed
or refined for each rendered frame based on view-dependent error
metrics such as projected edge length or approximation error. The
triangle mesh is dynamically updated and rendered according to
changes in the hierarchy.

Generalized view-dependent rendering frameworks based on ar-
bitrary vertex hierarchies are presented in [16] and [22]. While not
optimized for storage cost or rendering performance these generic
approaches support a wide range of simplification operations. The
method presented in [3] is based on simple vertex insertion and re-
moval operations and provides a compact representation, however,
at the expense of mesh update and rendering performance.

Specialized view-dependent terrain triangulations based on
height-field models are presented in [4, 11, 14] and [10]. Besides
[10], these approaches take advantage of the regular grid structure
of elevation data.

2.2 Out-of-core Mesh Simplification
Only recently, research in multiresolution modeling has concen-
trated on out-of-core mesh simplification. The methods presented
in [13, 15] and [23] provide efficient simplification of very large
meshes on external memory using vertex clustering. However,
these methods do not provide a multiresolution triangle mesh struc-
ture for efficient view-dependent rendering nor do they support pag-
ing from disk.

The approach presented in [5] presents the first method for out-
of-core triangle mesh simplification and view-dependent render-
ing with different LODs from external memory. Additionally, this
method provides an out-of-core preprocess that could also be used
by our approach to generate an edge-collapse hierarchy. Compared
to [5] our approach is significantly better in terms of storage cost
and rendering performance as shown in the experimental results
section. In [20] a progressive mesh approach is presented which
is based on mapping a set of array ranges of the entire progressive
mesh sequence into contiguous virtual memory. No rendering per-
formance results are reported in [20] and loading detail information
from disk reportedly causes rendering pauses.

2.3 FastMesh
The concepts of view-dependent meshing and rendering of
XFastMesh are based off the FastMesh method [19]. FastMesh
is a real-time view-dependent progressive meshing system based
on a hierarchy of edge collapse operations similar to [26] and [9].
FastMesh is different from other approaches in its use of an ef-
ficient half-edge data structure to represent the triangle mesh and
the simplification operations. This allows for compact represen-
tation and efficient mesh updates. An edge is represented by two
reversely directed half-edges. Each triangle is represented by its
three counter-clockwise oriented half-edges as shown in Figure 2.
As shown in [24], a directed half-edge h contains a reference to
its start vertex hvertex, information on its previous hprev and next
hnext half-edges within the same triangle, and its reverse half-edge
hrev in the adjacent triangle.

With merge tree forest we refer to the binary half-edge collapse
hierarchy of FastMesh [19]. As shown in Figure 3, a particular
LOD triangulation is defined by an active front through the merge

Figure 2: An edge collapse removes a vertex and two faces from the mesh,
which are reintroduced by its dual vertex split. In this example, the half-
edge A is collapsed, removing half-edges A through F. W, X, Y, Z are con-
sidered adjacent to the removed half-edges, and remain in the mesh after
the collapse.

tree forest which represents all nodes that are subject to collapse
or split operations. At run-time this front is traversed and updated
according to view-dependent error metrics for each frame, and the
corresponding triangle mesh is rendered. The view-dependent error
metrics used in XFastMesh are largely identical to [19] and require
two parameters to be stored with each node in the merge tree for-
est, the bounding sphere radius and bounding normal cone opening
angle.

3

Given a collapsed half-edge h by its index ih, a vsplit operation must
update the mesh connectivity to include the two triangles originally inci-
dent upon h. Note that the entries in the half-edge table for these two tri-
angles have not been altered after collapsing h, and the incident faces A,
B, C and D are valid faces in the current mesh as shown in Figure 3 on
the right (see also preconditions on ecol and vsplit operations in
Section 3.3). Therefore, for triangles A and B the connectivity can be
restored by reverse-edge reassignments:

Similarly triangles C and D can efficiently be updated. Furthermore,
all half-edges incident on the split-vertex, and between and including tri-
angles A and C that currently used h.n.v as a start vertex, now have to be
reassigned to h.v. Note that h.v is indeed the correct start vertex because
nothing has been changed for h since its collapse.

3.2 Vertex hierarchy

Conceptually, a sequence of ecol operations computed during a prepro-
cessing step defines a binary hierarchy as shown in [XV96] and
[Hop97], and a view-dependent mesh is defined by a front through this
hierarchy. However, the hierarchy in FastMesh differs significantly in
implementation and semantics from these previous approaches.

To reduce storage cost, FastMesh defines the hierarchy H on half-
edge collapses since the leaf nodes of a vertex hierarchy do not carry any
information required for collapsing an edge or splitting a vertex. Thus H
requires only half as many nodes as the vertex based representations.
Furthermore, this half-edge collapse hierarchy as shown in Figure 4 is
implemented as a separate binary tree data structure, not merged with
the vertex data, and only stores additional information per node that is
required for the view-dependent error metrics. A node consists
of pointers to a parent node t.p, left t.l and right t.r child nodes, and an
index t.ih of a collapsed edge h, plus two scalar values to compute the
view-dependent error metrics (see also Section 4).

FIGURE 4. Binary half-edge collapse hierarchy H.

This definition of the binary half-edge collapse hierarchy H com-
pletely changes the semantics of the front through the hierarchy
that defines a particular mesh. Although F defines a particular LOD
mesh based on which edges are currently collapsed, it does not contain
all visible mesh elements (triangles or vertices) of the current mesh.

Definition In FastMesh the front F consists of all active nodes in H, see
also Figure 5. A node t is defined to be active if and only if one of the
following two properties holds:

1. t.ih is currently not collapsed, and both child nodes t.l and t.r are
either currently collapsed or not existing. (subset F1 of F)

2. t.ih is currently collapsed, its parent t.p is not collapsed, and its
sibling child node in t.p exists and is not collapsed. (subset F2 of
F)

At any time F contains a node of every possible path from the roots
to the leaves of H, but only one node of any particular path at a time, and
is implemented as a doubly-linked linear list. In fact, F contains exactly
all nodes for the current LOD that can potentially be collapsed (nodes of

F1), or that must be checked for mesh refinement (nodes of F2, and all
child nodes of F1,).

FIGURE 5. Front F of the current view-dependent mesh
through the binary half-edge collapse hierarchy H.

At run-time, for every change in view parameters the front F is tra-
versed and updated. First, nodes F1 are tested to be collapsed. Second,
all nodes F2 and children CF1 of F1 are tested to be split. All simplifica-
tion and refinement operations have to be tested at run-time first to be
legal as described in the following section, since they are performed out-
of-order with respect to their global ordering at initialization.

3.3 Preconditions

A set of consecutive ecol operations can collapse multiple vertices to
one vertex. Such a set of ecol operations forms a subtree in our half-edge
collapse hierarchy, and must be performed bottom-up in correct partial
order. An ecol operation is uniquely defined by an index ih into the half-
edge table, and any half-edge h that by collapsing may cause a topologi-
cal singularity is not a legal half-edge collapse. A half-edge h is consid-
ered to be illegal if there exists a vertex V that is adjacent to both
endpoints P and Q of h, and for which the three connected vertices P, Q,
and V are not a triangle in the current mesh as shown in Figure 6.

FIGURE 6. Topological ecol constraint. Half-edge h cannot
be collapsed because of P and Q being connected to V.

Therefore, the half-edge h referenced from a node t is a legal candi-
date for an ecol operation only if:

1. no descendants of t have to be collapsed first,
2. and h is a topologically correct half-edge collapse.

Precondition 1 for ecol operations is satisfied by our definition of
the front F of active nodes, and its subset F1 that is tested for collapsing.
Precondition 2 can be tested efficiently at run-time by examining the set
of vertices V and edges e incident upon the endpoints of h. Condition 2
holds if:

Testing Precondition 2 involves visiting incident half-edges by rota-
tion around both endpoints of h and testing for a non-empty intersection.
This cost is small on average, but goes with O(n2) in the worst case.

A vertex split operation is also uniquely defined by an index ih into
the half-edge table, and vsplits must be performed partially ordered top-
down in the hierarchy. The indexed collapsed half-edge h, and its two
incident triangles contain all the required information to perform the
vsplit operation as described in Section 3.1. However, the triangles A, B,
C and D (referenced by h.p.r, h.n.r, h.r.n.r and h.r.p.r, see Figure 3)
must currently be valid triangles in the half-edge data structure. Thus the
half-edge h referenced by node t is a legal candidate for a vsplit opera-
tion only if:

1. all ancestors of t have been split,

h. p.r .r h. p=

h.n.r .r h.n=

t H∈

v2

v1

v3
v2

v2

v3

v1 v2 v4 v3

v4 v5

v4

v5

a) vertex hierarchy b) half-edge collapse
hierarchy H

h1

h2

h3

h4

h1

h2 h3

h4

F H⊆

CF1
t p t . p≡ p F1∈∧{ }=

h9

h5

h10

h11 h13 h8

h7

not collapsed half-edges

h12 h6

h14

h1

h2h3

h4

collapsed half-edges

front F of active nodes

F

h
P

Q

V

V e:V e.v=∃ e.n.v h.v=∧{ }
V e:V e.v=∃ e.n.v h.n.v=∧{ }

∩
h. p.v h.r . p.v,{ }≡

Figure 3: An example merge tree forest, with the current front represented
by the dashed line. This active front represents the current level of detail,
and can be moved up (lower detail) and down (higher detail) as the situation
requires.

3 EXTERNAL-MEMORY STRUCTURES

The external-memory layout of XFastMesh is designed to minimize
space usage while attempting to store all related information to-
gether on disk, thereby minimizing the amount of disk accesses re-
quired to render a scene. Especially given that most external mem-
ory devices, such as hard disk drives, are block devices and read
information in blocks of data, we break the XFastMesh data struc-
tures into logically-grouped blocks to take advantage of this fact.

The XFastMesh file format (XFM) as shown in Figure 4 contains
the following data fields:

1. Fixed-size file header, which describes the position and length
of other data fields

2. Initial vertex coordinates and face information; those vertices
and faces that are present in the coarsest mesh, and are not
introduced by any vertex split operation.

3. Root list, which lists the blocks containing the root nodes of
the merge tree forest.

4. Block index table, which provides the offset and length of
each detail block in the file. Because we use a variable length
block size, we cannot determine detail block positions in the
file implicitly from the block numbers, and use the block in-
dex for this purpose.

5. Detail blocks, which comprise the majority of the file, and
contain information for LODs, including vertex coordinates
and edge split/collapse information.

Figure 4: XFastMesh external memory structure. The block number and
offset of a node are determined from its index. The block index table is used
to determine the offset of a block within the file. Note that the Block Index
is stored as part of the file, but is accessed as a memory-mapped file, rather
than with explicit I/O commands.

3.1 Initial faces and vertices
Detail information such as vertex and normal coordinates are gen-
erally stored on disk with the merge tree node that will introduce
the corresponding vertex into the mesh by means of a vertex split.
Each vertex split inserts one vertex and two triangles into the mesh
as shown in Figure 2. Because the faces and vertices in the coarsest
mesh, referred to as initial faces and vertices, are not created by any
vertex splits, they must be stored separately in the file. For these,
the data file contains a list of vertex coordinates, their associated
normal vectors, and triangle faces as specified in the file header.
This information is used to generate the initial coarse mesh on sys-
tem initialization. These initial faces and vertices will be kept in
main memory during system run time.

3.2 Root block list
On system initialization, the algorithm will load the blocks corre-
sponding to the root nodes of the merge tree forest, in order to set
up the initial active front. To identify these nodes and their cor-
responding detail blocks efficiently, the file stores a list of all root
blocks, those blocks that contain the root nodes of the merge tree
forest. The system reads this list on startup and loads the specified
blocks.

3.3 Block index
The primary purpose of the XFastMesh data file is to store a large
number of detail blocks (see Section 3.4) which contain information
for different LODs. Each detail block is identified by a numerical
index, and the algorithm will use this index to locate blocks on disk.
For space efficiency reasons, detail blocks do not have a fixed size
and thus cannot be located on disk using implicit position informa-
tion only. Instead we keep a fixed table, referred to as the block
index I , that lists the on-disk location and the length of each block,
which are represented with two scalars per block. This block index
table is accessed by every block load operation to find the block
location on external memory.

Because this table is fixed in size, immutable, and usable di-
rectly in its on-disk storage format, we access the table by mapping
the corresponding data of the file into virtual memory using the
file memory-mapping capability (such as the mmap function under
UNIX). Alternatively, since the block index is sufficiently small it
can be loaded entirely into main memory without causing undue
space overhead.

3.4 Detail blocks
The primary units in the XFastMesh data file are referred to as detail
blocks. Each detail block contains the information required to de-
scribe a complete subtree of the merge-tree forest. Thus the binary
merge-tree hierarchy is regularly partitioned into binary subtrees as
shown in Figure 5.

Within each detail block, explicit links between nodes are mini-
mized using an array representation of the complete binary subtree.
Tree nodes are numbered and stored in a breath-first ordering such
that given the index i of a particular node, the parent node can be
found at position (i − 1)/2, and the left and right child nodes at
i · 2 + 1 and i · 2 + 2 respectively. This detail-block tree structure
allows us to store 2l − 1 tree nodes per block, where l is number of
levels in the binary subtree.

Each detail block in the tree contains the same number of nodes.
The value of l is user specified; in the current implementation, l =
4 has shown efficient results. Lower values for l allow for finer
granularity in memory allocation, at the expense of more frequent
loading of small detail blocks.

Figure 5: Detail block tree structure of a 4-level merge tree, with l = 2.
The nodes in each block are numbered such that the block number is b =

n/2l for a given node n. Block 0 contains the root node of its tree and
thus is a root block. Its index stored in the file’s root list, as described in
Section 3.2

A given detail block b consisting of l levels of a binary tree,
contains the following fields:

1. A set of flags to indicate if the block is a leaf block, and to
indicate which nodes are present in this block.

2. Index of the parent block of b.

3. A variable-length array N of merge-tree nodes, with |N | ≥ 1

and |N | ≤ 2l − 1.

4. An optional array C containing indices of child blocks (if not
a leaf block).

XFastMesh can use the complete subtree structure of a block
to implicitly represent intra-block links between nodes within the
same detail block. However, the parent-child relationships between
blocks, called inter-block links, must be explicitly stored in each
block. Each detail block stores the index of its parent node, as well
as the indices of each of its 2l+1 child nodes.

In a simple implementation of detail blocks that consist of com-
plete binary trees, significant storage space is wasted for leaf blocks
that are not full (not all available nodes are used). To resolve this
internal fragmentation, the nodes of each block are fully packed as
shown in Figure 6. Each block contains a 8- 16- or 32-bit flag (for
l = 3, 4, 5, respectively) that indicates which nodes are present in
this block. The loading algorithm uses this information to properly
reconstruct the incomplete binary subtree in main memory.

Figure 6: A partially filled detail block (unused nodes displayed in dashed
outline) can be packed in order to use less space, using bitflags to identify
which nodes are present.

Additional efficiency issues are related to the fact that a block
tree has a large fan-out (a block with l = 4 has 8 nodes in the lowest
level, and thus 2l = 16 child blocks). For shallow and unbalanced
merge-tree hierarchies this results in a large ratio of leaf to non-
leaf blocks. The space used to store the array of child pointers
C is wasted in each leaf block since there are no child blocks to
reference. Thus with a large percentage of leaf blocks, storing child
pointers in every one of these would result in a significant amount
of storage overhead. We avoid storing these child pointers by using
the high-order bit of a block’s flag-set to indicate whether or not that
block is a leaf. Thus we store the array C of child block indices only
for non-leaf blocks.

The most significant data field in a detail block is the array N of
merge-tree nodes. For each particular node n ∈ N and its corre-
sponding half-edge h, we store the following information:

1. Vertex coordinates for h.vertex (12 bytes)

2. Normal vector coordinates for h.vertex (12 bytes)

3. Bounding-sphere radius and sine of bounding normal cone an-
gle (as described in [19]) (8 bytes)

4. The indices w, x, y, z (from Figure 2) of the four half-edges
adjacent to the two triangles introduced by expanding h (16
bytes)

5. (Optional) Index of n in the global ordering of edge collapses
(used for fold-over prevention, 4 bytes)

Each node in a detail block consumes 52 bytes. Potentially, this
can be reduced to under 36 bytes by quantizing the normal, bound-
ing cone, and bounding radius as in QSplat [21], and removing the
global ordering.

3.5 Data file construction
The XFastMesh data file is generated in a preprocess from a given
set of half-edge collapse operations that define a binary merge-tree

forest. The details of generating such a progressive mesh simpli-
fication are independent of XFastMesh which focuses on creating
the out-of-core data structures. A progressive mesh simplification
using edge collapses can be constructed in various ways (for ref-
erences see [7, 17]). The procedure for creating the data file is as
follows:

1. Create the merge tree hierarchy from the input data

2. Collapse mesh into the lowest resolution configuration

3. Write all present vertices and faces into the file as initial ver-
tices and initial faces

4. Traverse the tree in depth-first order and renumber the half-
edges corresponding to each node such that for a node num-
bered n, its corresponding block b = n/(2l − 1) (further
described in Section 4).

5. Again traverse the tree in depth-first order, writing each block
out to the data file, and storing its block-index table entry.

6. Write the block-index table to the file

7. Determine the block numbers of each root block; write the
root list into the file

A key point is that the algorithm must traverse the tree twice:
before writing the blocks to disk, it must renumber the nodes in the
blocks so as to achieve an implicit relationship from a node to its
corresponding block. Once the nodes have been renumbered, they
can be written to the file.

4 MAIN-MEMORY STRUCTURES

Previous mesh simplification systems assume that the dataset will
fit entirely in memory, allowing all data structures to be allocated
up-front and stored in arrays. This has the benefit of allowing con-
stant time indexing and access to edges or tree nodes.

In order to avoid allocating all the required memory at once, but
maintaining the ability to perform constant time indexing, we use
a page-table-like structure to organize data as shown in Figure 7.
This structure, known as the detail block directory D stores point-
ers to all loaded detail blocks. Furthermore, this indirect indexing
structure allows us to easily add and delete blocks at run-time.

Constant-time indexing of nodes and half-edges is achieved by
using a consistent numbering for the blocks and half-edges, as if
each block were full. Therefore, for 2l − 1 nodes per block, the
global number of the first node in this block modulo 2l − 1 is equal
to 0, as was shown in Figures 5 and 6. Each vertex split operation
creates two triangle faces, and so each node corresponds to six half-
edges. Therefore, with m = 6 ·(2l−1) of half-edges per block, the
number of the first half-edge in this block modulo m is equal to 0.
Given a half-edge number h, we can compute its block number b =
h/m, and its offset as h modulo m. This numbering is consistent
for all blocks, even for blocks that are not full.

During runtime, XFastMesh will need to access a particular node
based only on its index n. To find this node, we need to compute
the block number nblock = n/(2l − 1) of this node, and the offset
noffset = n modulo (2l − 1) of the node within the block. The
node n can then be accessed as D[nblock][noffset].

For faster implementation, we can number each block as if the
number of tree nodes it contains is an even power of two. This al-
lows us to use shifts and bitmasks to substitute the more expensive
division and modulo operations. Essentially, we assign a certain
number of bits to identify the block, and the remaining bits to iden-
tify the offset within the block. This technique is much faster than
the hashing used in other external memory methods [5].

The choice of l, the number of levels per block, affects the size
of the directory. Smaller values of l will result in more blocks,
and require more entries in D; conversely, larger values of l will
result in less blocks and a smaller memory footprint for D. Because
the directory is always stored in main memory, a memory-limited
system might choose a large value of l to reduce this fixed memory
overhead.

Once a detail block has been loaded from disk, it is inflated into
its full main-memory representation. We copy most of the basic
fields from the on-disk representation. Additionally, we create a set
of half-edges to represent the faces, with each half-edge containing
a pointer to its corresponding start vertex, and the number of its re-
verse half-edge. In the on-disk representation we only store the four
reverse half-edges w, x, y, z adjacent to the two faces of a node, as
shown in Figure 2. In the main-memory representation, we use this
information to re-create all six half-edges. While the disk represen-
tation uses the implicit complete tree representation to store node
connectivity (intra-block links), we explicitly store parent, left and
right pointers for each node in main memory, as well as left and
right child block numbers for efficiency.

Figure 7 illustrates the structure of detail blocks as used in main
memory. For each in-memory tree node n, and its associated half-
edge h, XFastMesh contains the following information and uses a
total of 108 bytes per node:

1. Pointers to the parent, left and right children of n in the merge
tree (12 bytes)

2. Vertex coordinates for h.vertex (12 bytes)

3. Normal vector coordinates for h.vertex (12 bytes)

4. Bounding-sphere radius and sine of bounding normal cone an-
gle (8 bytes)

5. Global index of h (4 bytes)

6. Left (lblock) and right (rblock) child block indices (8 bytes)

7. Six half-edges (including h) representing two faces; each
half-edge contains a vertex pointer and the index of its reverse
(8 bytes each; 48 bytes total)

8. (Optional) Index of n in the global ordering of collapses (used
for fold-over prevention, 4 bytes)

As each node corresponds to a vertex, there are roughly as many
nodes as there are vertices in the input mesh. Therefore, we can
conclude that XFastMesh uses 108 bytes per vertex in main mem-
ory, plus some small overhead for the fixed directory structure. We
use 4 bytes per block in the block index directory, to store a pointer
to the particular detail block. We also store 4 bytes per block for a
timestamp, which is used for block caching and removal as dis-
cussed in Section 4.2. As in the out-of-core data structure dis-
cussed in Section 3.4, we can encode certain values more efficiently
through quantization if necessary.

4.1 Block loading
For interactive rendering, the system requests blocks from disk in
two different situations at run-time:

1. When the front of active nodes moves down the tree, requiring
more detail.

2. When a split operation on a node causes a forced split of other
nodes.

Figure 7: Main memory structure of XFastMesh, for l = 4. Once block
number and offset are determined from a node index, XFastMesh uses the
Directory to find the individual detail block. Each directory entry may point
to an individual detail block. Each detail block will have a corresponding
entry in the time priority queue used for caching and paging.

For each frame, the algorithm will test each node in the active
front, to determine if it should be split or collapsed. If it has to
be split, the traversal will recursively descend the tree to test child
nodes. As it descends, it will reach the frontier of the loaded blocks,
the lowest blocks currently loaded into the tree, and will trigger
the first case. The data structure indicates these frontier nodes by
setting the n.left and n.right pointers of the node n to null, while
setting the n.lblock and n.rblock values to the actual child block
index. Once the algorithm detects this case, it will load both the left
and right child blocks into memory, and continue.

Alternatively, a node split operation may cause a forced split, in
which a node from another part of the merge-tree forest must be
split first, and its information loaded from disk. A forced split is
detected by the absence of any face referenced by the reverse half-
edges of a, b, c, d in Figure 2, and it causes the insertion of this face
into the triangle mesh by the corresponding node split. In this case,
the algorithm will use the numerical index of the face to determine
which block to load, and recursively load the ancestors of this block
until that subtree can be connected to the existing hierarchy in main
memory. This requires that for a given block b, we must determine
the index of the node n that is the parent of b, such that n.left =
b.root or n.right = b.root. We store this index of a block in
b.parent, and we use the directory structure to access the node,
and link the new block into the existing hierarchy. If the directory
entry for the block containing n, D[nblock], is null, then we must
recursively load this block and its ancestors.

4.2 Block deletion
In order to avoid loading a block from disk every time it is used,
XFastMesh caches blocks using a least-recently-used (LRU) strat-
egy. Each currently loaded block is given a timestamp that indicates
the last frame in which it was part of the active front as shown in
Figure 7.

XFastMesh makes use of two quotas that determine its memory
usage. The soft quota, qs is a suggestion to the system to remove the
least recently used blocks once the total number of loaded blocks
bloaded has exceeded qs. XFastMesh will begin removing blocks as
soon as bloaded > qs, but if the quota does not allow for enough
blocks to achieve the specified view-dependent LOD threshold, it
will load additional blocks as required and exceed the quota.

In contrast, the hard quota, qh is a set limit on the number of
loaded blocks. Once XFastMesh has reached its hard quota, it will

function mesh-update()
for each node in active-front

test-node(node)

function test-node(node)
split = view-test(node)
if(split)

if(node has unloaded child blocks)
load blocks into memory

if(node is currently collapsed)
split-node(node)

test-node(node->left)
test-node(node->right)

else
collapse-node(node)

end if
end function

Figure 8: XFastMesh update algorithm. We analyze each node in the active
front, and test to see if the front should be moved up or down. We assume
that view-test is a function that takes a merge-tree node as input, and
returns as output whether or not that node should be split. split-node
and collapse-node are functions that perform their respective split or
collapse operations on their input node.

not load additional blocks until more storage has been made avail-
able.

This design allows for flexibility in memory allocation. To force
the system to always remove unused blocks, set qs = 0. To keep
all blocks until a set limit is reached, set qs = qh. To always load
blocks as needed, the hard quota can be disabled by setting qh =
∞. Note that qs cannot be set higher than qh.

Candidates for block removal are only detail blocks whose nodes
are all below the active front (see also Figure 3). For these blocks,
their root nodes are collapsed and the siblings of those nodes are
also collapsed. The node m is a sibling of node n if m.parent =
n.parent. At run-time, when a node is collapsed, the system
checks to see if this condition is met. If so, its block is timestamped
with the current time, based on the number of frames rendered, and
placed in a minimum priority queue as shown in Figure 7. When
nodes are split, their corresponding blocks and their siblings are re-
moved from the priority queue since they are no longer candidates
for removal.

4.3 Mesh update
The mesh update operation consists of two steps, shown in Fig-
ure 8. First, the algorithm traverses the active front, performing a
test on each node to determine if that node should be split or col-
lapsed (see [19] for details on that test operation). The algorithm
will descend the tree recursively as needed. Secondly, once the al-
gorithm has determined that a merge tree node should be modified,
it will perform the split or collapse operation on that node. As the
algorithm descends the tree, it will eventually reach the frontier of
the loaded blocks. At this point, the algorithm will determine if the
frontier nodes have additional child blocks, and if so, it will load
those blocks into memory, connect them into the tree, and continue
recursively testing.

4.4 Rendering
A given XFastMesh configuration has two types of triangle faces
that it must render:

1. Initial faces, which are part of the coarsest mesh and never
removed, are loaded at system start.

function mesh-render()
for each initial face

render initial face as a triangle
for each root-node in merge-forest

render-node(root-node)
end function

function render-node(node)
if(node is split)

render both faces
render-node(node->left)
render-node(node->right)

end if
end function

Figure 9: XFastMesh rendering algorithm. The initial faces are rendered
first, followed by the detail faces, which are rendered by traversing the
merge tree forest

2. Detail faces, which are added by vertex splits to the mesh, are
loaded as part of detail blocks.

All faces are stored as a sets of half-edges, with a face defined
as a set of three consecutive half-edges. The half-edges of the ini-
tial faces are stored separately from those of the detail faces, in a
fixed array. The rendering algorithm proceeds through this array,
rendering each of the initial faces from their constituent half-edges.

In contrast, the detail faces are stored in the dynamic merge tree
structure, with each node in the merge tree containing six half-
edges, corresponding to two faces. Detail faces are rendered by
recursively traversing the merge tree forest top-down, and drawing
the two triangles that correspond to each node that is split. The
rendering algorithm is shown in Figure 9

5 EXPERIMENTAL RESULTS
All benchmark testing was performed on a Sun Microsystems Ul-
tra60 workstation, with the Solaris 8 operating system, running at
450MHz. The amount of RAM usable to the application is set by
the hard quota qh.

5.1 Storage Requirements
As shown in Table 1, the XFastMesh data files are very efficient;
the Stanford Bunny model represented in XFM format uses 2.04
MB, versus 3.03 MB for the original (ASCII) PLY file. Note that
the indexed face representation of the PLY format does not in-
clude any multiresolution triangle mesh or view-dependent render-
ing information whatsoever. XFastMesh is approximately 350%
more efficient than the implementation of external-memory render-
ing framework proposed in [5] (VDT) which uses 7.1 MB for the
same model. With only about 60 bytes per vertex, XFM is also
more efficient than the file based FastMesh format (FM) [19], the
view-dependent progressive meshes of [9], or the multitriangulation
approach [3].

Much of this storage efficiency can be credited to packing in-
complete blocks as described in Section 3.4. For the horse model,
with 97K faces, XFastMesh generates 12231 blocks, with l = 4.
Each block could potentially store 2l− 1 = 15 nodes. If the blocks
were completely filled, we would have about 6600 blocks. It fol-
lows that the 12231 blocks are only about half full, therefore, the
packed storage scheme saves approximately 50% the storage cost
of the unpacked scheme. Removing unnecessary child pointers also
proved to save a significant amount of disk storage. From experi-
mental results, the horse model, which uses 2.84 MB without un-
necessary child pointers, previously used over 3.5 MB, an increase
of about 25%. For that particular model, testing showed that out of
12231 total blocks 10358 were leaf blocks (or about 85%).

Model Faces PLY FM XFM B/∆ VDT B/∆
bunny 69K 3.0 2.1 2.0 29.6 7.1 102.9
knee 75K 3.2 2.3 2.2 29.6 3.4 45.3
horse 100K 4.1 2.9 2.8 28.4 - -

ball joint 274K 12.4 8.2 8.0 29.3 27.4 100.0
dragon 202K 7.3 - - - 21.8 107.9
dragon 871K 33.8 26.2 25.6 29.4 - -
buddha 293K - - - - 31.7 108.2
buddha 1087K 42.6 32.6 31.8 29.3 - -
david 8254K 343.0 247.6 241.4 29.2 - -

Table 1: File sizes in megabytes for various models. The table displays the
number of faces in each model, and the size of file in megabytes for source
ASCII format (PLY), FastMesh format (FM), XFastMesh format (XFM)
and in the external-memory format as presented in [5] (VDT).

5.2 Runtime Costs
Before rendering a mesh, XFastMesh first must preprocess the input
mesh in order to build the merge-tree forest similar to [19] (FM),
and then create the XFM file. Creating the XFM file adds only
minor overhead to the preprocess, as seen in Table 2.

Rather than use a greedy approach to selecting edge collapses,
XFastMesh iteratively selects the largest independent sets of edge
collapses. Because of that XFastMesh does not need to constantly
re-sort the list of edge collapses, as other techniques do using a
heap structure, which would result in an O(n lg n) running time
for the preprocess. Instead, because XFastMesh only needs to sort
the list some constant number of time, the number of iterations, and
all of the keys, the approximation error values, are scalar numbers,
XFastMesh can use a linear-time radix sort. Therefore, the running
time of the preprocess is O(n), where n is the number of triangles
in the input mesh. Note that the one exception to the linear time
growth is the david model, in which case the system is forced to
page in memory.

Model Faces FM µs/∆ XFM µs/∆
bunny 69K 8.4 122 8.6 125
knee 75K 8.8 117 9.4 125
horse 97K 12.0 120 12.3 123

ball joint 274K 39.6 145 40.2 146
dragon 871K 119 137 122 140
happy 1087K 149 137 154 142
david 8254K 2628 318 2994 363

Table 2: Preprocessing times in seconds for various models. The basic
view-dependent simplification preprocess is shown as FM, the preprocess
plus the external file creation step is shown as XFM

At rendering time, because of the use of external memory,
XFastMesh is able to load into main memory only the data needed
at any given time for a particular viewpoint and error tolerance.
This also results in extremely quick start-up times for viewing an
initial coarse representation of the displayed mesh. Even for the
largest of our test meshes, the David statue, our application only re-
quires a couple of seconds to load the coarsest mesh, initialize the
merge tree forest and display the first frame.

To determine the runtime performance of XFastMesh, we ren-
dered each of our models, with the viewpoint moving on a fixed
path. The screen-error tolerance was set to 0.02. This tolerance
controls the view-dependent mesh simplification according to the
screen-space error metric as described in [19]. The soft quota was
set to qs = 10%.

In Table 3, we display the per frame timing in milliseconds for
each of the basic tasks performed by XFastMesh, as exhibited on
our test models. We recorded the timing using the high-resolution

timer functionality provided by the Solaris operating system. These
tasks include:

• View tests, performed on each node to determine if it should
be split or collapsed (column VT)

• Mesh updates, which reconfigure the mesh through either
edge collapses or vertex splits (column U)

• Block loading, loading a block from disk and converting it to
its main-memory representation (column BL)

• Rendering of the selected triangle mesh (R)

The Table 3 also displays the average number of triangles shown
per frame (#Shown) and the average number of updates performed
per frame (#U). The results show that XFastMesh is very efficient,
and scales well to large meshes.

Model Faces #Shown #U U VT BL R
bunny 69K 10K 1593 4ms 3.5ms 11ms 9ms
knee 75K 10K 589 4ms 3.2ms 8ms 9ms
horse 97K 9K 270 15ms 3.0ms 7ms 15ms

ball joint 274K 14K 463 6ms 5.3ms 5ms 13ms
dragon 871K 39K 1700 11ms 9.1ms 12ms 25ms
happy 1087K 38K 1110 19ms 15ms 5ms 35ms
david 8254K 17K 1148 10ms 7.5ms 2ms 17ms

Table 3: Runtime performance measures for the basic operations in
XFastMesh. The numbers shown are the average number of faces and up-
dates per frame, and the time cost per frame of updates, view-tests, block
loading and rendering in milliseconds.

Figure 10 provides several examples of a large model rendered
at interactive frame rates with XFastMesh. The error tolerance was
configured to adjust automatically to match a specific target frame
rate; in this case, the target was set to 5 frames/second to achieve
high-quality images while maintaining interactive rendering. The
figure demonstrates the high-detail view from the user’s perspec-
tive, as well as showing the entire mesh to demonstrate the effec-
tiveness of the simplification.

6 CONCLUSION

In this paper we presented efficient algorithms and data structures
for out-of-core multiresolution meshing and view-dependent ren-
dering. Our approach called XFastMesh provides a very efficient
representation of the multiresolution triangle mesh on external stor-
age, requiring only about 60 bytes per vertex. This out-of-core data
structure allows for efficient view-dependent retrieval and paging of
triangle mesh data and supports interactive rendering of large-scale
meshes. Our in-memory multiresolution mesh data structure al-
lows for paging mesh update information from disk. This changes
dynamically at run-time, and supports fast view-dependent mesh
refinement and rendering. Experiments on a variety of triangle
meshes have shown the efficiency of our approach in terms of space
cost (size of data structure) and rendering performance (including
paging from disk).

XFastMesh currently does not include an out-of-core preprocess
to generate the XFM format but relies on doing that off-line for
a particular data set on a machine with sufficient virtual memory.
With the target of the XFM file format, future work will address the
issue of efficient out-of-core generation of the multiresolution mesh
simplification hierarchy.

Figure 10: Four renderings of Michaelangelo’s David statue, taken at high-quality settings with the error tolerance set to achieve rendering times of approx-
imately 5 frames/second. The top row shows the view from the user’s perspective; the bottom row shows the same scene outside the user’s view frustum,
which is represented by a yellow pyramid. From left to right, the error tolerance τ and number of triangles ∆ are: (head) τ = .00728 ∆ = 67092, (chest)
τ = .00260 ∆ = 69428, (legs) τ = .00559 ∆ = 50828, (back) τ = .00337 ∆ = 67356

ACKNOWLEDGMENTS

We would like to thank the UC Irvine UROP program for providing
funding for this research. We would also like to thank the Stanford
Computer Graphics Lab1, the Georgia Tech Large Geometric Mod-
els Archive2 and Cyberware3 for providing freely-available high-
resolution geometric models.

REFERENCES

[1] J. Abello and J. S. Vitter. External Memory Algorithms. American Mathematical
Society, Providence, R.I., 1999.

[2] L. Arge. Efficient External-Memory Data Structures and Applications. PhD
thesis, Department of Computer Science, University of Aarhus (Denmark), 1996.

[3] L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-
triangulations. In Proceedings IEEE Visualization 98, pages 43–50, 1998.

[4] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.
Mineev-Weinstein. Roaming terrain: Real-time optimally adapting meshes. In
Proceedings IEEE Visualization 97, pages 81–88, 1997.

[5] J. El-Sana and Y.-J. Chiang. External memory view-dependent simplification. In
Proceedings EUROGRAPHICS 2000, pages 139–150, 2000.

[6] J. El-Sana and A. Varshney. Generalized view-dependent simplification. In Pro-
ceedings EUROGRAPHICS 99, pages 83–94, 1999.

[7] P. S. Heckbert and M. Garland. Survey of polygonal surface simplification algo-
rithms. SIGGRAPH 97 Course Notes 25, 1997.

[8] H. Hoppe. Progressive meshes. In Proceedings SIGGRAPH 96, pages 99–108.
ACM SIGGRAPH, 1996.

[9] H. Hoppe. View-dependent refinement of progressive meshes. In Proceedings
SIGGRAPH 97, pages 189–198. ACM SIGGRAPH, 1997.

[10] H. Hoppe. Smooth view-dependent level-of-detail control and its application to
terrain rendering. In Proceedings IEEE Visualization 98, pages 35–42. Computer
Society Press, 1998.

[11] R. Klein, D. Cohen-Or, and T. Huttner. Incremental view-dependent multiresolu-
tion triangulation of terrain. In Proceedings Pacific Graphics 97, pages 127–136.
IEEE, Computer Society Press, 1997.

1http://www-graphics.stanford.edu/data/3Dscanrep/
2http://cc.gatech.edu/projects/large models/
3http://www.cyberware.com

[12] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginz-
ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital
michelangelo project: 3d scanning of large statues. In Proceedings SIGGRAPH
2000, pages 131–144. ACM SIGGRAPH, 2000.

[13] P. Lindstrom. Out-of-core simplification of large polygonal models. In Proceed-
ings SIGGRAPH 2000, pages 259–262. ACM SIGGRAPH, 2000.

[14] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner.
Real-time, continuous level of detail rendering of height fields. In Proceedings
SIGGRAPH 96, pages 109–118. ACM SIGGRAPH, 1996.

[15] P. Lindstrom and C. T. Silva. A memory insensitive technique for large model
simplification. In Proceedings IEEE Visualization 2001, pages 121–126. Com-
puter Society Press, 2001.

[16] D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygo-
nal environments. In Proceedings SIGGRAPH 97, pages 199–208. ACM SIG-
GRAPH, 1997.

[17] D. P. Luebke. A developer’s survey of polygonal simplification algorithms. IEEE
Computer Graphics & Applications, 21(3):24–35, May/June 2001.

[18] K.-L. Ma. Large-scale data visualization. IEEE Computer Graphics & Applica-
tions, 21(4):22–23, July-August 2001.

[19] R. Pajarola. FastMesh: Efficient view-dependent meshing. In Proceedings Pa-
cific Graphics 2001, pages 22–30. IEEE, Computer Society Press, 2001.

[20] C. Prince. Progressive meshes for large models of arbitrary topology. M.S.
Thesis, 2000.

[21] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point rendering sys-
tem for large meshes. In Proceedings SIGGRAPH 2000, pages 343–352. ACM
SIGGRAPH, 2000.

[22] D. Schmalstieg and G. Schaufler. Smooth levels of detail. In Proceedings VRAIS
97, pages 12–19, 1997.

[23] E. Shaffer and M. Garland. Efficient adaptive simplification of massive meshes.
In Proceedings IEEE Visualization 2001, pages 127–134. Computer Society
Press, 2001.

[24] K. Weiler. Edge-based data structures for solid modeling in curved-surface envi-
ronments. IEEE Computer Graphics & Applications, 5(1):21–40, January 1985.

[25] J. C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based
rendering for polygonal models. IEEE Transactions on Visualization and Com-
puter Graphics, 3(2):171–183, April-June 1997.

[26] J. C. Xia and A. Varshney. Dynamic view-dependent simplification for polyg-
onal models. In Proceedings IEEE Visualization 96, pages 327–334. Computer
Society Press, 1996.

	reference: In Proceedings IEEE Visualization 2002, pages 363–370. IEEE Computer Society Press, 2002.

