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Figure 1: Given an input puppet constructed from a reference frame with annotated layers, joints, and handles, we capture
poses in novel unlabeled images by registering the puppet to each image. This enables editing other frames by altering the
puppet’s artwork and synthesizing novel animations by interpolation. We demonstrate the utility of this approach by ani-
mating static characters from books and by re-targeting motion to new characters (see Section 7). Dashed boxes mark user
input.

ABSTRACT
Characters in traditional artwork such as children’s books or car-
toon animations are typically drawn once, in fixed poses, with little
opportunity to change the characters’ appearance or re-use them
in a different animation. To enable these applications one can fit
a consistent parametric deformable model— a puppet— to differ-
ent images of a character, thus establishing consistent segmenta-
tion, dense semantic correspondence, and deformation parameters
across poses. In this work, we argue that a layered deformable
puppet is a natural representation for hand-drawn characters, pro-
viding an effective way to deal with the articulation, expressive
deformation, and occlusion that are common to this style of art-
work. Our main contribution is an automatic pipeline for fitting
these models to unlabeled images depicting the same character in
various poses. We demonstrate that the output of our pipeline can
be used directly for editing and re-targeting animations.
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1 INTRODUCTION
Cartoon characters are a popular genre of art, with examples span-
ning graphical novels, animated movies, and illustrations in chil-
dren’s books. Beginning from cartoons’ hand-drawn roots, recent
advances in digital modeling have simplified content creation and
re-use. For instance, if an animation is created with a posable digi-
tal character, one can easily add new visual elements to change its
shape or texture (Figure 1, right). One can also transfer its motion
to novel posable characters with compatible rigs.

Unfortunately, most artist-created data does not come in this
consistently-parameterized form. Artwork typically consists of
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characters that are hand-drawn independently in each pose, pro-
viding a high-quality final result, but offering little opportunity for
re-use. The main motivation for our work is to enable artists and
amateurs to re-use existing artwork by fitting a consistent paramet-
ric representation to a collection of unlabeled images. Using such a
system, static characters from cartoon strips and illustrations in
children’s books can come to life, by interpolating between avail-
able static poses.

Existing techniques for cartoon registration use either a single-
layer deformable model [Sýkora et al. 2009a], which is limited in its
ability to represent the piecewise-rigid motion and self-occlusion
common in articulated characters, or amulti-layer rigidmodel [Zhu
et al. 2016], which fails to match more expressive artwork. In con-
trast, we pick a layered deformable puppet as our parametric model.
While this model is more general (and subsumes previous work
as special cases), it is also much more difficult to fit, and our main
technical contribution is an automatic and robust method for reg-
istering layered deformable puppets to input images.

Our model (Figure 1, extreme left) is defined by a hierarchy of
layers that are connected via joints and can be deformed by handle
manipulation. Layers are textured meshes that represent meaning-
ful character parts (e.g., head, torso, arms, and legs for a biped).
They are organized in a parent-child hierarchy and are sorted by
depth. Handles are control points on each layer associated with
rigid-body transformations. Interpolating the handle transforma-
tions enables the characters to deform. Joints are fixed points at
which a positional or rotational constraint is enforced between a
layer and its parent. This model naturally captures piecewise-rigid
articulations as well as free-form deformations by simply adjusting
the number of handles per layer and their degrees of freedom. It
also enables our method to model self-occlusions via layering, a
common technique used in traditional animation.

Fitting a layered deformable puppet to a set of input frames
proceeds in two stages. The first stage, consisting of fitting the
puppet to a single reference frame, leverages a small amount of
user input together with an adaptation of existing segmentation
and rigging tools. The second stage, however, involves solving for
the pose of every frame other than the reference, which requires
jointly reasoning about semantic correspondence, segmentation,
deformation, and occlusion. To tackle this challenge, we observe
that the layered deformable puppet model provides effective priors
for plausible deformations, allowing us to develop a novel discrete-
continuous optimization that jointly solves for these parameters
in an interleaved manner. We also demonstrate that results can be
further improved by optimizing across all frames simultaneously
instead of matching the puppet to each frame independently.

We evaluate our method on a benchmark constructed by ani-
mating puppets using state-of-the-art digital puppeteering tools.
We show that our deformable layered model provides the best ac-
curacy, in comparison to existing non-layered or piecewise-rigid
alternatives. We further demonstrate the utility of our approach
for altering the content of existing animations, such as textures
and shapes, as well as retargeting animations to novel characters
and animating characters from static media, e.g., children books.

2 RELATEDWORK
Digital Models for Character Animation. Manymodels have been

developed for digital character animation, which saves the artist
from having to draw each frame of an animation sequence. These
techniques typically require the artist to create one deformable
puppet, which is further animated by manually prescribing de-
formation parameters for the key poses, and then automatically
interpolating between these parameters to create the final ani-
mation. These puppets are typically represented as triangular or
tetrahedral meshes with associated artwork. The user prescribes
deformations at a small set of handles (e.g., skeleton joints or con-
trol points), which are further automatically extrapolated to the
rest of the shape [Jacobson et al. 2011]. Significant effort has gone
into producing deformations that preserve geometry of a reference
shape (e.g., [Igarashi et al. 2005; Poranne and Lipman 2014; Chien
et al. 2016]) or multiple references [Wampler 2016], and are fast to
compute (e.g., [Jacobson et al. 2012; Wang et al. 2015]).

While modeling 2D characters can be as easy as triangulating a
2D sketch, deforming the entire character as a single mesh poses
challenges in modeling occlusions. Several techniques have been
proposed to address this limitation, including multi-layered char-
acters [Catmull 1978], assigning depth [Sýkora et al. 2010] or local
layering order [McCann and Pollard 2009] to different mesh re-
gions, and leveraging 3D proxies [Jain et al. 2012; Sýkora et al.
2014]. In this work we focus on multi-layered representations,
since they effectively model occlusions, enable artists to prescribe
complex relationships between layers [Willett et al. 2017], and are
commonly supported by commercial tools [Adobe 2018]. We lever-
age these recent advances in digital puppets and demonstrate that
deforming a layered puppet to images of the same character in
different poses enables applications in editing and creating anima-
tions.

Animating Digital Characters Based on Artwork. Even with a de-
formable puppet, defining key poses is challenging for users who
lack an animation background. One can borrow motions from mo-
tion capture data [Hornung et al. 2007]; however, they are usually
limited to skeletal motions of real humans and thus lack the expres-
siveness and variation of cartoon animations. To address this limi-
tation, several methods have been proposed to capture and transfer
deformations from cartoon data [Bregler et al. 2002; de Juan and
Bodenheimer 2006], enabling more expressive animations. They
typically focus on cartoon videos and leverage existing tools [Shi
and Tomasi 1994; Wirtz et al. 2004] to track the motion. Sýkora
et al. [2009a] proposed a more general image registration tech-
nique for cartoon characters, alternating between correspondence
estimation and as-rigid-as-possible mesh deformation to align the
character to the target frame. In this work, we propose a similar
approach for layered deformable puppets. To leverage layering, we
incorporate a segmentation step into our pipeline. We also design
our approach to be more reliable in the presence of strong defor-
mations and higher variance in character depiction: we leverage
multiple features to estimate sparse correspondence, guide our cor-
respondence with layer and segmentation information, reinforce
self-consistent correspondences within a frame and across multiple
frames, and jointly optimize for regularization and correspondence
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alignment. Our comparisons demonstrate that this pipeline is bet-
ter at handling stronger deformations, occlusions, and multi-layer
relationships.

Layered Models for Cartoon Analysis. Traditional cel animation
has motivated layer-aware methods in cartoon analysis [Petrović
et al. 2000; Corrêa et al. 1998]. Zhang et al. [2011] proposed EX-
COL, a method for decomposing cartoons into foreground and
background layers. Their model mostly assumes rigid motions,
with the exception of foreground characters, which they regis-
ter as a single deformable mesh using the method of Sýkora et
al. [2009a]. Zhu et al. [2016] further propose a global optimization
for segmentation and piecewise-rigid registration of segments, and
demonstrate that their approach provides higher accuracy than EX-
COL. Due to the success of these techniques, we sidestep the fore-
ground/background segmentation problem and focus on improv-
ing the fitting of foreground characters. We make improvements
including allowing per-layer deformation, maintaining joint con-
straints, and solving for highly-accurate deformation parameters
aligning each layer of the puppet to each frame in the animation.
This allows us to explore applications such as re-targeting motion,
editing layer shapes, and animating static frames in children books.

3 LAYERED DEFORMABLE MODEL
Our layered deformable puppet model is designed to provide a
flexible framework that can accommodate both rigid-body and de-
formable motion. Conceptually, a puppet is initialized from a single
reference frame, using a small amount of manual annotation. The
model is then fit onto all other available frames of the character,
where the deformation parameters are automatically inferred. As
part of this process, areas occluded in the reference frame are filled
in from other frames.

In this section, we introduce our layered deformable puppet
framework and explain what input is needed to initialize it from
a reference frame. Section 4 describes how we solve the problem
of deforming the reference frame to best match another frame, ef-
fectively fitting the pose of that frame to the puppet. We find that
fitting all frames at once can lead to better results, and we describe
this “global” optimization in Section 5.

Puppet Model. A puppet P(Θ) is parameterized by deformation
parameters Θ, which define the final textured geometry. The pup-
pet is composed of a tree-structured hierarchy of multiple layers
L = {L1, ...,L |L |}, where each layer Ll is assigned a depth dl , a
mesh Ml , a set of deformation handles Hl , and joints Jl . Assign-
ing a single integer depth dl per layer offers a simple model for
occlusion, which we nevertheless found sufficient for all the exam-
ples presented in this paper. More complex self-occlusion could be
accommodated by having a scalar per-point and per-frame depth
function.

The handles defining the character’s deformation are defined
per-layer, Hl = {hl,1, ...,hl, |Hl |}. This choice simplifies the defor-
mation model by constraining the influence of each handle to a
single corresponding segment, allowing us to control the amount
of deformation in each layer independently (e.g., a dress might be
floating freely, while the limbs are mostly piecewise-rigid). Each
handle hl,i corresponds to a vertex of the mesh and is assigned

Texture HandlesDeformable layers Layer hierarchy

Figure 2: Our puppet is composed of a textured image de-
composed into deformable layers, with annotated handles
(circles) and joints (stars), organized into a parent-child hi-
erarchy.

a transformation defined by 3 parameters: [θ , tx , ty ], where θ is
the angle of rotation, and tx , ty is translation. Note that multiple
handles can lead to non-rigid deformations. The union of all per-
handle transformations defines the deformation parameters Θ. We
propagate these transformations to the rest of the mesh vertices
on that layer via linear blend skinning, with per-vertex weights
assigned using the method of Jacobson et al. [2012].

Joints Jl are used to model the kinematic structure of articulated
characters. Each joint consists of a pair of corresponding points,
one on the layer itself and one on its parent. The interpretation is
that the child is constrained to have the same position (hinge joint)
or position and rotation (welded joint) as the parent layer at the
corresponding point. We assume that parent-child relationships
are consistent and organize our layers into a tree, which prescribes
the order in which deformations are estimated.

Finally, each mesh also has a corresponding texture image Il
along with an alpha channel Al , specifying visibility. Figure 2 il-
lustrates the parameters of our layered deformable model.

Initialization. To initialize our puppet we ask the user to anno-
tate a single reference frame denoted by f0. The user segments
the reference frame using standard techniques (e.g. [Boykov et al.
2001; Sýkora et al. 2009b]), and we use Triangle [Shewchuk 2002]
to create a mesh for each layer Ml . The user then clicks on han-
dles and joints, and prescribes the depth ordering and parent-child
relationships between the layers.

4 CAPTURING THE POSE OF A FRAME
Given a deformable puppet P(Θ) initialized from a reference frame
f0, our goal is to capture the pose of the puppet in a new frame fi ,
by optimizing deformation parameters Θi to maximize similarity
between P(Θi ) and fi . Note that the presence of multiple frames
can improve the accuracy of this method, as discussed in Section 5.
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Figure 3: Our fitting pipeline begins with the puppet posed at the previous frame, together with a new target frame. It finds
initial (sparse) correspondences (Section 4.1), and uses them to bootstrap dense registration (Section 4.2) and segmentation for
layer assignment (Section 4.3). These stages are iterated until convergence, and then any disoccluded regions are used to fill
the texture in the puppet (Section 4.4). The result is the puppet posed at the new frame.

The main challenge in fitting a deformable puppet to a single
frame is that the initial puppet P(Θ0) might appear to be substan-
tially different from the appearance in the target frame, and thus
naive gradient descent over ∥P(Θi )− fi ∥ is prone to getting stuck in
local minima. To remedy this, our approach leverages both sparse
correspondences that are robust to strong deformation and dense
correspondences that enable us to estimate deformation parame-
ters Θi precisely. In the presence of layering, it is also important
to reason about visible parts and segments in the target frame.

We propose an iterative pipeline that first finds a sparse set of
correspondences between the reference and target frames (Subsec-
tion 4.1), and then uses these correspondences to initialize and reg-
ularize an optimization to find a dense alignment (Subsection 4.2).
This dense alignment is further used to reason about the segmen-
tation of the target frame (Subsection 4.3), and this segmentation
in turn is used to improve correspondences in the next iteration,
by constraining them to corresponding layers (see Figure 3).

4.1 Sparse Correspondence
Given initial deformation parameters Θ0, we treat the resulting
deformed puppet f0 = P(Θ0) as an image and estimate a sparse
image-to-image correspondence to the frame fi . As shown in Fig-
ure 3, the same method will later be used to compute layer-to-layer
correspondences. Cartoons, unlike natural images, often lack tex-
tures, which makes it difficult to rely on a single type of feature.
We therefore design a method that leverages multiple weak cues
such as color, texture, and outline similarity, and then use a voting
scheme to select a larger set of self-consistent correspondences.

Feature Detection and Matching. We first detect sparse feature
points Q j ⊂ fj , which include corners [Harris and Stephens 1988],
blobs [Lowe 2004], and uniform samples on detected edges [Canny
1986]. We then extract several feature descriptors for each point,
capturing the local texture and shape:
• Color histogram is computed within a circular neighbor-
hood around each keypoint to make it rotation-invariant (96
features, 32 bins × 3 colors).
• SIFT [Lowe 2004] provides cues about texture similarity
(128 features).
• Shape context [Belongie et al. 2002] provides cues about
outline similarity. We modify it to be rotation-invariant by
applying a 1D Fourier transform within each radius bin and

discarding phase [Zahn and Roskies 1972] (72 features, 6
radius bins × 12 angle bins).
• Location offset from the center of mass of the character
encourages rough spatial alignment (2 features).

We concatenate the descriptors into one vector, and normalize
each dimension to have zero mean and unit variance (across all
available images for multi-frame analysis). We denote the result-
ing descriptor space as F : Qi → R

|F | . Note that although this
similarity metric leverages multiple local cues, it is not sufficient
to establish reliable correspondences for cartoons, where the ab-
sence of shading and lighting cues yields very similar-looking local
patches (see Figure 7, left).

Correspondence Aggregation with Voting. For reliable sparse
matching, we leverage local consistency cues, so that correspon-
dences that agree with other nearby correspondences are treated
as more likely to be reliable. This is still not trivial because pup-
pets undergo non-rigid deformations, thus they are unlikely to
have a single low-dimensional transformation that aligns all the
regions. Inspired by techniques for aligning 3D non-rigid shapes,
we employ a voting scheme that casts votes proportionally to the
fraction of the puppet that aligned well [Lipman and Funkhouser
2009]. The voting routine needs several decisions: which feature
points to use to define a transformation to align two shapes, how
to compute the vote score, and which pairs of points receive the
vote.

We pick a random quadruplet of points q1,q2 ∈ Q0 and p1,p2 ∈
Qi , where F (qi ) and F (pi ) are mutually-closest points in fea-
ture space and q1,q2 are not too far or too close in image space
(δl < ∥q1−q2∥2 < δu ). We use L2 distance metric over both feature
space: ∥F (q) − F (p)∥2 and image space: ∥q − p∥2. We set δl = 2%,
δu = 10% of character’s bounding box diameter. Based on these
points, we find the similarity transformation T such that pi = Tqi .

Next, we estimate the fraction of puppet that was aligned well
under this transformation. Due to vast texture-less regions we
only consider alignments between compatible feature points. For
each point q ∈ Q0 we define a compatible set N(q) ⊂ Qi as the
K nearest points in feature space. For each pair of compatible
pointsq,p ∈N(q), we define their post-alignment proximity weight
(clamped to the [0, 1] interval):

wI (q,p) = clamp
(
δu − ∥Tq − p∥2

δu − δl
, [0, 1]

)
. (1)
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We now measure weighted distances in image and feature space,
summed across all feature points:

DI =
1
Z

∑
q∈Q0,p∈N(q)

wI (q,p)∥p − Tq∥2, (2)

DF =
1
Z

∑
q∈Q0,p∈N(q)

wI (q,p)∥F (p) − F (q)∥2, (3)

where Z is the normalizing factor: Z =
∑
q∈Q0,p∈N(q)wI (q,p).

We finally define the vote score:

wT = e

(
−D2
I
/σ 2
I

)
e

(
−D2
F
σ 2
F

)
. (4)

Where σI is 1% of the character’s diameter and σ 2
F
is 10% of the

feature vector’s length. We cast the vote for every pair of compati-
ble points (q ∈Q0, p ∈N(q)), weighted by post-alignment proximity
wI (q,p), and store it in a correspondence matrix ωc ∈R |Q0 |× |Qi | .
We cast 8000 votes for a pair of frames. After voting, we estimate
the final corresponding points as corr (q) = argmaxp∈N(q) ωc (q,p).
We summarize this process in Algorithm 1, and demonstrate the
impact of the voting in Figure 7.

Algorithm 1 Correspondence voting

Input: feature keypoints sets Q0,Qi and feature descriptors F .
for iterations = 1, ... N do

Sample random quadruplet (q1,q2,p1,p2) s.t. F (qi ),F (pi )
are mutually closest and δl < ∥q1 − q2∥2 < δu

Compute transformation T s.t. pi = Tqi
Compute votewT ▷ Equation 4
for all pairs (q ∈ Q0,p ∈ N(q)) do

ωc (q,p) ← ωc (q,p) +wT ·wI (q,p) ▷ Cast votes
end for

end for
Set corr (q) = argmaxp∈N(q) ωc (q,p)

4.2 Dense Registration
The sparse correspondences estimated with the voting provide op-
portunity to relate even strongly deformed regions, however, they
do not consider the puppet rig, and thus might yield unnatural
warps if used directly. Moreover, since we assume that the target
frame can be produced with a deformation of the puppet, besides
coarse correspondence at feature points, we expect dense pixel-
wise consistency to provide us with a better guidance once we are
close to a good alignment. Thus, we formulate dense alignment as
a continuous optimization with respect to free handle parameters
Θ minimizing an objective that takes all priors into account:

E(Θ) = τcorrsEcorrs + τcolorEcolor + τjointEjoint + τarapEarap, (5)

Ecorrs favors alignment of sparse correspondences, Ecolor favors
dense pixel-wise alignment, and Ejoint,Earap are regularization
terms to ensure that the articulated puppet structure is preserved.
We now describe these terms in more details.

The sparse correspondence term is based on weighted image-
space distance:

Ecorrs =
∑
q∈Q0

ωc (q, corr (q)) ∥P(Θ,q) − corr (q)∥
2
2 , (6)

where P(Θ,q) is the location of feature point q after puppet is
warped with handle parameters Θ.

To favor accurate pixel-wise alignment we measure the color
similarity between pixels in the texture of the source layer and the
pixel that it aligned to after the warp:

Ecolor =
∑

x s.t.Al,0(x )=1
Epixel(x), where (7)

Epixel(x) =

{
∥Il,0(x) − Il,i (P(Θ,x)) ∥

2
2 if Al,i (x) = 1,

Imax if Al,i (x) = 0.
(8)

We use 3D RGB vectors to compare pixel values in the [0...255]
range. Note that we only consider pixels with opaque alpha in the
source, and we assign penalty Imax = 255 if they match to empty
regions in the target. In the first iteration, we do not have layer-
wise segmentation of the target frame, and thus both source and
target are treated as a single layer.

We treat joints as soft constraints, which makes our approach
less sensitive to puppet initialization and improves convergence
(since joint constraints play smaller role until the puppet is coarsely
aligned). We represent joints with a set of pairs (jp , j) ∈ J , where
jp is a point on parent layer and j is a point on a child layer. We
measure the error based on distances between these parent and
child joints under the puppet deformation:

Ejoint =
∑
(jp, j)∈J

∥P(Θ, jp ) − P(Θ, j)∥22 (9)

For welded joints, we estimate the entire transformation matrix at
joint positions, and measure distance between vectors that include
translation and rotation: [x ,y,θ ].

Finally, we favor preservation of the reference puppet shape us-
ing as-rigid-as-possible (ARAP) deformation energy [Sorkine and
Alexa 2007]:

Earap =
∑

l=1.. |L |

∑
f ∈Ml

λ2f + λ
−2
f + γ

2
f + γ

−2
f (10)

where f is a face on a mesh Ml , and λ,γ are singular values of a
deformation gradient at face f induced by P(Θ).

To optimize for parameters Θ, we use a gradient descent-based
method [Agarwal et al. 2018] to minimize E(Θ). We use the built-in
autodiff function for efficient gradient computation. We also lever-
age the layer structure, as we optimize one layer at a time, keeping
the parent layer fixed for joint energy. Finally, since the color term
is not expected to be reliable in early iterations (before coarse shape
is matchedwell), we gradually increase its influence over the course
of iterations. In particular we set τcorrs=τarap=τjoint=1,τcolor=3·it ,
where it is the iteration number.

4.3 Segmentation for Layer Assignment
Understanding the layer structure of the target frame is important
to properly reason about occlusions and correspondences. On the
other hand, segmenting the target into layers requires correspon-
dence as guidance. To address this inter-dependency, we employ an
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alternating optimization strategy. As discussed above, we start by
estimating coarse and dense correspondence, treating both shapes
as a single layer. We use this information to segment the target
frame, and restrict the correspondence computation to the corre-
sponding regions, as dictated by the resulting segmentation.

Note that the segmentation limits the solution space of the cor-
respondence estimation, leading to poor results if one commits to
inaccurate region divisions too early. To mitigate this problem, we
propose a two-stage process. First, we produce a hard segmenta-
tion, using the common graph cut approach. Then, we create a
soft segmentation by assigning multiple labels to the same pixel.
This enables the correspondence algorithms to map points between
several viable options.

Hard Segmentation. The dense registration provides strong cues
for segmentation, but it does not address texture boundaries in the
target frame. Thus, we formulate a graph cut problem [Boykov
et al. 2001], with unary terms which are derived from dense corre-
spondence, and binary terms from the target image.

To define the unary term Eu (p, l), we observe that if a pixel
p ∈ fi is of label l , p and its immediate surroundings are likely
to match in color when compared to their counterparts in P(Θi ).
Based on this observation, we compute a confidence score αl (p)
for every non-empty pixel in each target frame layer, considering
only the relevant puppet layer. The score is computed as the color
difference within a window of radius n around the pixel p (where
correlating empty and non-empty pixels receive a maximum differ-
ence penalty). Of course, in P(Θi ) some pixels from different layers
can overlap, yielding a few layers with high confidence scores for
the same region. To resolve these ambiguities, we give higher pri-
ority to upper layers. We compute the confidence αlj (p) from the
top most layer l1 to the back most one l |L | , according to:

Eu (p, lj ) = wunary ·

(
1 − clamp[0,1]

( j−1∑
k=1

αlk (p)

))
· αlj (p). (11)

In other words, we reduce the confidence of back layers, if the
confidence of frontal ones is high. In all our experiments, we set
wunary = 1, and as previously described:

αl (p ∈ fi ) =
1

Zn (p)

∑
q∈Ll , ∥P (Θ,q)−p ∥2≤n

∥ f0(q) − fi (P(Θ,q))∥,

(12)

where Zn (p) is the number of pixels in the kernel, and n = 5 in all
our experiments.

To define pairwise potentials we evaluate how smooth the tex-
ture is in a particular region (i.e., how similar a pixel p is to a neigh-
boring pixel q). Since cartoons often have thick outlines around
layers, we incorporate two adaptations: we down-weigh penal-
ties near edge pixels and introduce longer-range connections (with
penalty scaled according to the distance). More specifically, given
a pair of points p,q, we define the pairwise penalty if two points

are within n = 3 pixels of each other, and received different labels:

Epair(p,q) =wpair exp

(
∥ fi (p) − fi (q)∥

2
2

σ 2
c

)
·

exp
(
max{C(p),C(q)}2

σ 2
e

)
· exp

(
∥p − q∥22

σ 2
d

)
, (13)

whereC(p) is the probability that p lies on a contour [Canny 1986].
In all our experiments, we set wpair = 7,σc = 0.5,σe = 1, and
σd = 1. The final graph cut optimizes the following energy over
labelings of points L:

E(L) =
∑
p∈Ii

Eu (p,L(p)) +
∑

(p,q)∈Ii , s.t.
L(p),L(q), and
∥p−q ∥<n

Epair(p,q). (14)

Multi-Label Segmentation. To mitigate the effects of inaccurate
labeling in challenging cases, we utilize an inclusive approach that
does not limit the following iterations to the hard choices made
by the segmentation step. We compute layer-wise and point-wise
confidences, and form masks for every layer, Al,i , which include
the initial segmentation augmented by regions that may have been
segmented incorrectly, and are plausible candidates. The insight is
that the upcoming steps benefit from the additional options much
more than they stand to lose from them.

We compute the point-wise confidence as defined in Equation
12. We also generate a confidence value in the other direction —
measuring how well fi matches P(Θi ) instead of how well P(Θi )

matches fi :

αl (q ∈ f0) =
1

Zn (q)

∑
p∈fi ,L(p)=l,

∥P−1(Θi ,p)−q ∥2≤n

∥ f0
(
P−1(Θi ,p)

)
− fi (p)∥,

(15)

where P−1 maps pixels from the target frame to the reference frame
according to the deformation prescribed in Θi . The layer-wise con-
fidence is then computed as the average of the pixel-wise confi-
dence values, in a bi-directional manner:

α(l) =
1

Z (l , 0)

∑
q∈fl,0

αl (q) +
1

Z (l , i)

∑
p∈fi ,L(p)=l

αl (p), (16)

where Z (l , i) measures area of the layer l in frame i .
Based on this, we set Al,i (p) = 1 if L(p) = l , or if the pixel is of

low confidence and is close enough to the label l , i.e. α(p) < 0.75
and d(p,L)<exp

(
−
α (l )
σml

)
. d(p,L) is the minimum distance between

the point p and any of the non-empty pixels in L, and σml = 0.25
in all our experiments. The process is demonstrated in Figure 4.

4.4 Texture Completion
As described in Section 3, each layer of our puppet is assigned
a depth order to handle occlusion between layers. During defor-
mation, it is possible that gaps will appear at layer boundaries,
exposing regions that were occluded in the reference frame. We
exploit these gaps to expand our layered representation, and com-
plete the texture in regions of a puppet’s layer that were previously
unknown. To perform this texture completion operation, one must
solve two problems: determining which regions in the source need
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Blended Hard segmentation Confidence Soft mask

Figure 4: Generating a soft layer mask for the dancer’s right
shoe. From left: The blended image includes the warped
reference and the target frame. Incorrect correspondences
were generated at this iteration, causing the hard segmenta-
tion to incorrectly place the right leg in the same layer as the
dress. However, the confidence of this segmentation is low,
so the right leg receives an expanded mask allowing correct
correspondence in the next iteration.

to be textured and assign appropriate texture. To answer the for-
mer, we find pixels in the target frame that are not covered by the
warped source, and were not seen in any frame prior to the current
one. Formally, given a pixel that satisfies both p ∈ fi and p < P(Θ),
we examine P−1(Θ,p) on the layer L(p). For each pixel in every
frame, we store whether it has been viewed (i.e, not occluded by
more frontal layers) in any of the frames so far. If P−1(Θ,p) has not
been seen before, we assign the color from the target frame fi (p)
to pixel P−1(Θ,p) updating the puppet texture IL(p),0, and mark it
as textured. See the Bear in Figure 11.

5 MULTI-FRAME GLOBAL OPTIMIZATION
While the “pairwise” pose capture algorithm described in Section 4
can be directly used to align the puppet to every frame, it lacks
important context that can be provided by multiple frames. In
particular, for animation sequences, neighboring frames are likely
to have small relative deformations, and this observation can be
leveraged to provide a good initial guess for the subsequent fit-
ting. In addition, joint reasoning across multiple frames enables
us to regularize based on cycle consistency (i.e., if a sequence of
deformations returns to the original frame, concatenating all the
deformations should yield the identity).

Fitting Order. The convergence of our iterative fitting procedure
can be made more robust if an initial guess is available. In other
words, when fitting a puppet to some target frame fi , we make the
process easier by starting with an existing fit to some frame P(Θj )

that is as similar as possible to fi , instead of always beginning with
the reference frame P(Θ0). This initialization affects all steps of
the fitting process, including computation of feature points and
descriptors. To decide on the order in which frames are fit, we first
construct a graph where each image is a vertex and edge weights
are L2 distances computed between all pairs of images. We com-
pute a minimum spanning tree of the graph, rooted at the reference
frame (see Figure 5) to define the fitting order. We always use the
puppet warp parameters computed at the parent within this tree
to define the initial state for the fitting to the child frame.

Synchronization for Cycle-Consistency. An effective regulariza-
tion commonly used in multi-frame correspondence estimation is

Figure 5: Spanning tree constructed among the frames of an
animation, based on L2 image differences.

Reference TargetWith tree order Without tree order

Figure 6: Following the computed fitting order (blue path,
top) yields a successful pose capture (blue box, bottom). On
the other hand, trying to match the reference (left) to the
target (right) directly results in a poor localminima (bottom,
red dashed box).

cycle consistency. It is based on the common-sense observation that
a cyclic path of mapping frames should be the identity. To formal-
ize this observation, we compute a sparse pairwise correspondence
matrix ωi, j

c , as described in Section 4.1 for all pairs of frames, and
concatenate these matrices into one matrix Ω ∈ R |Q |× |Q | , where
Q is the set of all feature points from all frames. Next, we project
the matrix Ω onto its low-rank approximation AAT ≈ Ω, using
an off-the-shelf non-negative matrix factorization [Solomon et al.
2016]. This matrix is used to produce a new sparse correspondence
matrix ω

improved
c This step can be performed every time any of

the pairwise frame-to-frame correspondences are updated, but we
found this to be unnecessary; we update only at the first iteration
for each new frame.

6 EVALUATION
In this section we evaluate the performance of our system on vari-
ous types of characters and deformations, and compare our method
to the state of the art. See the Appendix (Table 1) for information
about the characters we consider, as well as run-times.

Matches by
feature similarity

Matches after
voting

Matches after
synchronization

Figure 7: Matches on two poses of Lola [Child 2013] are de-
picted as lines. Accurate correspondences are washed out,
while inaccurate ones are colored frommost confident (blue)
to least (red).
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Reference Target Warped Drop correspondence Drop color Drop ARAP Drop joints

Figure 8: The effects of the different energy terms in Equation 5. From left to right: the Reference pose is deformed to match
the Target. The full energy term yields the Warped results. For every term dropped, we show the deformed result (with
zoomed-ins), laid over the target frame for comparison. For the ARAP term, we visualize the deformed mesh (due to flipping)
Reference Target Warped Drop correspondence Drop color Drop ARAP

Iter 3 Iter 6 Iter 12

Drop joints

Target Iter 1Reference

Figure 9: The reference frame (left) is warped to match the
target frame over 12 iterations. The result of each iteration
is laid over the target frame for comparison. [Astley Baker
Davies 2003]

6.1 System Components Evaluation
We first evaluate the effect of our central modules on the end result
quality. Namely we examine the sparse correspondence and dense
registration modules, and their iterative interaction. The other
parts of our system are either well established (e.g. graph-cut for-
mulation for image segmentation), or their importance has already
been demonstrated in previous sections (e.g. Figures 4 and 6).

Sparse correspondences. The sparse correspondence step gives
the system robustness to large deformations. In Figure 7, we visu-
alize the matches obtained in a controlled experiment, with ground
truth correspondences available. This allows us to wash out per-
fect matches from the visualization, and focus on the relatively
few inaccurate ones. As can be seen on the left, our raw feature
descriptor similarity yields accurate estimations for most cases. In
the middle image, we demonstrate the effect of local aggregation
through voting (Algorithm 1) (e.g. some bad correspondences in
the hair are resolved). Large similar regions are not handled well by
this process, for example, points on the right palm being matched
to the left one. On the right, we take advantage of multiple frames
through synchronization, and resolve these last issues.

Dense Registration terms. Next, we carry out an ablation study
to test the performance of each term in our objective function in
Equation 5. Figure 8 demonstrates the issue introduced by drop-
ping each term, respectively. As can be seen, ignoring the sparse
correspondences causes the optimization to fall into local minima,
while dropping the color term reduces local fine-scale accuracy.
It is further demonstrated how dropping the ARAP term causes
extreme deformations and overlaps. Finally it can be observed how
the joints are necessary for enforcing articulated behavior.

Iterations. Lastly we demonstrate how alternating between the
continuous optimization of the deformation parameters and the
discrete optimization of the sparse correspondence and segmenta-
tion improves the quality of the results. As can be seen in Figure 9,

from iteration to iteration the deformed puppet matches the (over-
laid) target better and better, especially visible in the limb.

6.2 Pose Capture with Various Character Types
We evaluate the expressiveness of our model by demonstrating
the range of deformations it can handle, including articulation,
non-rigid deformation, occlusion, and their combinations. We also
evaluate how the amount of deformation and texture affects per-
formance. Many results in this section are presented as rows of
four images, where each row includes the puppet reference pose,
the target frame, the warped puppet, and the segmentation of the
target frame. Note that the former two are considered as inputs,
while the latter are generated.

Articulation. Our deformable layered model naturally handles
various kinds of articulations. Joints ensure that the kinematic
structure of the character is preserved. For example, one can easily
model simple characters used in low-budget TV shows, such as
Peppa Pig (Figure 10), where motions have an almost piecewise-
rigid cutout style. Note how Peppa’s head is rotating indepen-
dently from the body without introducing any distortion to the
scarf, which would be hard to achieve if the character were mod-
eled with a single mesh (see comparison in Section 6.3 below).

Deformation. At the extreme opposite end of the spectrum from
articulated motion lies free-form deformation, which is also com-
mon for some characters. For example, the Ghost in Figure 10
cannot be handled with a simple kinematic model, and thus we
model its body with several evenly-distributed handles, allowing
expressive deformations.

Mixed Deformation. Most real characters exhibit a mixture of
various deformations. For example, the Wilk and Fox animations
shown in Figure 10 have arms that move near-rigidly in some poses,
but bend more significantly in others. The Snowman animation
undergoes nonrigid deformation of the body, but the arms are artic-
ulated through the use of multiple segments per arm. The Dancer
mostly has a traditional kinematic structure, but her dress is com-
posed of multiple non-rigid layers. These mixed models are easily
accommodated within our framework by giving the user the flexi-
bility to select the most appropriate rig, including the number of
layers and the number of handles and joints per layer.

Occlusion. One of the key advantages of our layered model is
that it naturally deals with self-occlusion. Our method can handle
a previously visible part being occluded (see the Fox in Figure 11).
However, an evenmore challenging case is when parts get revealed,
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Figure 10: Our model naturally accommodates characters with multiple deforming layers. For every demonstrated example,
the Reference pose is warped to match two input Target frames. The Warped result is depicted, along with the computed
Segmentation of the target frame. (Peppa Pig [Astley Baker Davies 2003])

Reference Target 1
Warped 1 with 
segmentation Target 2

Warped 2 with 
segmentation Reference Target 1

Warped 1 with 
segmentation Target 2

Warped 2 with 
segmentation

Reference Target Warped Reference Target Warped

Figure 11: Our systemhandles occlusion across layers, when
parts are occluded (Fox) and revealed (Bear).

Reference Warped Target

Figure 12: With little variability in texture, our system may
have difficulty in computing correspondences (top). Adding
texture or color variation improves quality (bottom).

which is common since it is often impossible to find a reference
frame in which all parts are visible. Our texture completion enables
us to properly fill the missing texture, as demonstrated by the Bear
in Figure 11.

Amount of Texture. Feature descriptors are expected to struggle
for images containing less texture and strong contour deformation,
as happens for the Airplane banner (Figure 12). Indeed if we paint
the banner with a constant color (top), the quality of the alignment
decreases. In contrast, adding some color variation to the banner
helps the alignment (bottom).

6.3 Comparisons
We now compare our method to previous relevant techniques. We
first compare directly to a single-layer ARAP-based registration
method [Sýkora et al. 2009a] (which is the most similar method to
ours). We then demonstrate the disadvantages of existing multi-
layered models that use rigid transformations per layer.

Cartoon Registration via a Single Deformation. We compare our
result to the cartoon registration technique of Sýkora et al [2009a],
by running both methods on the same pair of reference and target
images (Figure 13). Since their method operates on a mesh con-
structed from a regular grid, we test it with both coarser and finer
grids. As discussed before, a non-layered model is not expressive
enough to represent some animations (e.g., the Dancer’s leg moves
independently under the dress, which cannot be modeled with a
single layer). Their correspondence estimation technique can also
struggle for stronger deformations, especially if regions lack tex-
ture or good alignment of features within the grid cells (see the
misalignment on Peppa’s foot).

Piecewise-Rigid Layered Model. Two recent techniques for track-
ing cartoons from video sequences use layered models. Note that
their goals are different, as they aim to decompose the entire se-
quence into foreground and background layers (instead of decom-
posing a single character). EXCOL [Zhang et al. 2011] uses the
method of Sykora et al. [2009a], as discussed in the previous para-
graph, to track foreground characters, and thus suffers from simi-
lar shortcomings in the context of our problem. GOTT [Zhu et al.
2016] treats layers as independent segments that can be aligned
with a rigid transformation across multiple frames. However, their
method cannot directly leverage an input puppet. It only outputs
consistent segmentations of frames, but does not provide dense
registration. To demonstrate this model, we simulate a piecewise-
rigid model in our framework by restricting each layer to have only
a single handle.

Figure 14 shows a comparison between rigid and nonrigid de-
formation. We see that for models that undergo significant de-
formation, such as the Airplane, the rigid model is obviously too
limiting. However, even for characters such as the Bear, for which
the deformation might at first appear to be mostly rigid, much of
the expressiveness is conveyed through subtle deformations and
secondary motion, such as in the shape of the dress. The piecewise-
rigid model cannot capture these effects.
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Reference AIR 1 AIR 2 OursTarget

Figure 13: Comparison with two resolution configurations
of Sýkora et al. [2009a]. The single-layer-based method can-
not handle extreme variation in deformation, e.g. local rota-
tion (such as the foot of Peppa [Astley Baker Davies 2003]),
and sliding (such as the Dancer’s foot). To enable a fair com-
parison, no intermediate frames were used for our results.

Reference Layered rigid Layered deformableTarget

Figure 14: Comparison of rigid vs. deformable (ours) lay-
ers. Even for modest deformation (top), a rigid model fails
to capture these important subtleties. The airplane’s banner
(bottom) requires significant deformation.

Figure 15: By fitting our puppet to different character poses
in a kids’ book [Donaldson and Scheffler 1999], we can ani-
mate static characters by interpolating deformations.

7 APPLICATIONS

Our dense registration of cartoon characters can be used in a wide
range of applications for altering and re-purposing cartoon art-
work. We prototype a few examples in this section.

Animating Children’s Books. Many children’s books have the
same character in various poses. The ability of our method to
handle strong deformations enables us to densely register all ap-
pearances of a character and produce in-betweens. This may be
used to automatically animate digitized copies of otherwise static
classics (see Figure 15 and supplemental video).
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Figure 16: Animation retargeting. The captured Fox se-
quence (top) is used to animate (bottom) the Lola charac-
ter [Child 2013], which has a similar handle layout.
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Figure 17: Edit propagation. The reference frame (left) is
altered, and the change is propagated to the rest of the cap-
tured sequence. (Peppa Pig [Astley Baker Davies 2003])

Motion Transfer. As motivated by Bregler et al. [2002], we can
re-use professionally-created motions and apply them to new pup-
pets. In this case, the user needs to prescribe the correspondence
between handles and layers of the source and target puppets, and
we directly transfer transformations between corresponding han-
dles (see Figure 16).

Layer Editing. Dense registration across frames in a cartoon
video can also be used for effective content editing. Instead of re-
drawing every frame, the artist only needs to update the puppet’s
textures or layer shapes, and the edits are automatically propagated
to the entire set of frames (Figure 1 and 17). While texture edits are
trivial to accommodate, changing the shapes of layers is less trivial,
since portions of each target frame may need to be filled in with
new content. To find pixels that must be filled in, we identify pairs
of points (p,q) ∈ f0 that stem from different layers, are adjacent
in f0, and are not adjacent in P(Θ). The domain spanned by such
consecutive pairs identifies the region to be filled.

8 DISCUSSION
We propose a method for dense registration of deformable layered
characters. Our method estimates per-pixel correspondence and
deformation parameters for a puppet while aligning it to unlabeled
images. We demonstrate that our method can effectively handle
articulations, free-form deformations, and occlusions, and provides
a better model for cartoon registration than existing alternatives.
Finally, we demonstrate its use for applications such as animating
children’s books, editing of video sequences, and motion transfer.

Even though we use a combination of multiple descriptors that
consider color, texture, and shape, as well as local aggregation,
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we nevertheless observe difficulty in establishing correspondences
between hand-drawn characters, especially with little texture.

Results for more examples are demonstrated in the supplemen-
tal video, along with basic animations between fitted frames (via
interpolation of the computed deformation parameters). While
some artifacts can be observed in our animations, most of these are
caused by imperfect texture filling (e.g. Peppa’s armpits, Dancer’s
dress layers, Wilk’s armpits and Charlie’s collar and fingertips).
State-of-the-art texture synthesis techniques, e.g. [Fišer et al. 2017],
can be incorporated to improve the visual quality.

In the future, we would like to combine our system with auto-
matic foreground/background segmentation using existing cartoon
tracking techniques. Another venue for future work is to infer the
puppet rig (including layering and handle placement) automati-
cally based on observed deformations and correspondences across
images. Choosing an appropriate parametric model to explain un-
derlying data without over-fitting is a long-standing problem in
machine learning, and it would be interesting to extend it to the
domain of cartoons. These two enhancements would open the door
to fully-unsupervised cartoon analysis, enabling indexing, editing,
and re-using the plethora of unorganized cartoon data available via
free online video streaming resources. We believe that this holds
tremendous potential in democratizing visual storytelling.
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APPENDIX
We list all the characters that we consider, together with statistics about the characters and run-time.

Table 1: Details of the puppet characters presented in this paper and the accompanying video. For each puppet, we list the
number of layers, the total number of handles and joints, the reference frame resolution, and the average end-to-end process-
ing time per target frame (including correspondence, registration, segmentation, and texture completion).

Character Name Layers Handles Joints Resolution Runtime (min)

Dancer [Willett et al. 2017] 9 21 4 290 × 375 10
Bear1 [Willett et al. 2017] 6 31 2 205 × 240 9
Lola [Child 2013] 6 13 4 262 × 382 20
Peppa Pig [Astley Baker Davies 2003] 7 22 2 239 × 302 9
Ghost [Willett et al. 2017] 2 18 0 277 × 275 4
Wilk [Adobe 2018] 6 12 2 330 × 450 18
Fox [Adobe 2018] 4 17 2 450 × 330 14
Snowman [Adobe 2018] 7 15 6 351 × 405 21
Airplane [Adobe 2018] 2 6 1 450 × 330 6
The Hatchling Bird [Eastman 1960] 8 23 0 300 × 240 6
The Gruffalo Mouse [Donaldson and Scheffler 1999] 7 25 6 304 × 255 10

1 For illustration purpose, we don’t show all the handles for the bear in Figure 2.
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