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Abstract

The Iterative Closest Point (ICP) algorithm is a widely used
method for aligning three-dimensional point sets. The qual-
ity of alignment obtained by this algorithm depends heavily
on choosing good pairs of corresponding points in the two
datasets. If too many points are chosen from featureless re-
gions of the data, the algorithm converges slowly, finds the
wrong pose, or even diverges, especially in the presence of
noise or miscalibration in the input data. In this paper, we
describe a method for detecting uncertainty in pose, and we
propose a point selection strategy for ICP that minimizes
this uncertainty by choosing samples that constrain poten-
tially unstable transformations.

1. Introduction

When building three dimensional models using a range
scanner, multiple views are usually required due to the lim-
ited field of view of the scanner and the presence of occlu-
sions. Registration of these views is typically performed
pairwise, using a variant of the Iterative Closest Point algo-
rithm (ICP) [3, 2]. This algorithm starts with two meshes
and an initial estimate of the aligning rigid-body transform.
It then iteratively refines the transform by alternately choos-
ing corresponding points in the meshes and finding the best
translation and rotation that minimizes an error metric based
on the distance between them.

Since ICP is a non-linear local search algorithm, it suf-
fers from many problems commonly associated with local
searches, such as slow convergence (due to shallow error
landscapes) and the tendency to fall into local minima. The
point selection strategy and the choice of error metric to be
minimized play a large role in both the rate of convergence
and the accuracy of the resulting pose. A discussion of these
issues can be found in [11].

Poor alignment between a pair of meshes can come from
several sources. Noise in the input data can cause ICP to

converge to a local minimum. The frequency of local min-
ima in the error landscape depends on input geometry and
on the minimized distance metric. The point-to-plane error
metric of Chen and Medioni [3] makes the ICP algorithm
less susceptible to local minima than the point-to-point met-
ric of Besl [2]. Pottman and Hofer [9] show that if the two
meshes are close to each other, the point-to-plane distance is
the best approximation for the true distance between the two
surfaces. This metric also has an advantage that it allows
the two surfaces to “slide” against each other in the flat and
spherical regions, which do not contain enough informa-
tion to fully constrain the transform. However, if too many
point-pairs come from such featureless regions, the algo-
rithm can fail to converge because of lack of constraints. In
this case, the cause of poor convergence and poor final pose
is the shallow error landscape that results from too much
sliding. We will call geometry that does not have enough
constraints for good convergence “unstable.”

In most 3D scanning systems, pairwise registration is
usually followed by a global relaxation algorithm [10],
which spreads the accumulated alignment error over a set of
views. Since a single mesh usually has several partners in
this set, poor pose for one mesh can easily be propagated to
its partners. Even if two views are aligned correctly, a shal-
low error landscape around the minimum can cause them
to be pulled apart during global relaxation. Finally, if the
output surface model is to be reconstructed from the input
views by some sort of averaging [4], misaligned features
can become blurred. For all these reasons, we would like
the final pose to be both correct and well-constrained.

Several methods have been proposed for evaluating and
improving the stability of the final pose between two
meshes. Once a set of point-pairs has been selected, the
presence of sliding can be detected by analyzing the covari-
ance matrix used for error minimization [13, 12, 5]. The
chosen point set can then be altered to provide the best con-
straints for the final pose. Guehring [5] addresses the prob-
lem of maximizing stability of the transform by assigning



weights to existing point-pairs based on their contribution
to the covariance matrix. However, since stability analysis
is performed after the point-pairs have already been cho-
sen, this reweighting may not constrain sliding since not
enough constraining points may have been chosen in the
first place. Simon [12] has developed several algorithms for
iteratively adding and removing point-pairs to provide the
best-conditioned covariance matrix. We will discuss his ap-
proach in Section 3.

We propose a technique for identifying whether a pair of
meshes will be unstable in the ICP algorithm by estimating
the covariance matrix from a sparse uniform sampling of the
input. We then develop a sampling strategy that tries to min-
imize this instability by drawing a new set of sample points
primarily from stable, i.e. “lock and key”, areas of the input
meshes. This technique extends the normal space sampling
proposed by Rusinkiewicz and Levoy [11]. Unlike [11], our
approach deals with both translational and rotational uncer-
tainties in registration.

2. Geometric Stability of ICP

In this section we describe a method based on 6x6 co-
variance matrixes for determining if a pair of meshes will
be unstable if aligned using a point-to-plane error metric.
This discussion is similar to the analysis of Menq [8] and
Simon [12].

2.1. Error Minimization

Each iteration of the ICP algorithm proceeds as follows.
Let
�

and � be two meshes or two point sets with associ-
ated normals. These normals can either be computed by av-
eraging the normals of adjacent faces (for a mesh), or can be
provided externally (if no connectivity information is avail-
able). A set of points is chosen on

�
, and for each point the

corresponding closest point is found on � . This forms a set
of � point-pairs �����	��
 �� , where each 
 � has normal � � . (In
many implementations, source and target meshes are then
exchanged and the point selection is repeated. Here we will
use only one mesh as the source to simplify the presenta-
tion.) We then try to find a rigid-body transformation, com-
posed of a rotation � and a translation � , that minimizes the
sum of squared distances of each � � to the plane tangent to� at 
 � . The alignment error is given by:��� �� ����� �	����� ��� ��� 
 � �"! � � �$# (1)

If the rotation that minimizes
�

is small, Equation 1
can be solved by linearizing the rotation matrix � . This
is equivalent to treating the transformation of each point� � as a displacement by a vector % &(')� �*� �,+ , where& � ��-/.0�	-213�	-/4 � is a ( 56'87 ) vector of rotations around the9 , : , and ; axes, and � � ��<	.=��<$1>��<$4 � is the translation vec-
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Figure 1: (a) Force vectors (dashed) exerted by points in ? on
points in @ . Resulting translation vector is in bold. (b) Torque
vectors (dashed) exerted by points in ? on points in @ . ? ’s nor-
mals are attached to points on @ for clarity. Resulting rotation
vector is in bold.

tor. Substituting and expanding, we therefore wish to find a
6-vector % &BA6�/AC+ that minimizes:

��� �� ����� ���D� � �E
 �F�"! � � � & ! �D� � 'G� �H� � � ! � �H� # (2)

To understand the terms of Equation 2, we can imagine
that each pair ��� � �I
 �H� applies to

�
a translational “force” in

the direction of � � and a rotational “torque” around the axis� � 'J� � (Figure 1).
The last two terms of Equation 2 show that the amount by

which the point-plane distance will change if a given point-
pair K is moved by a transformation vector % LM&NAOLM�/AP+ is
given by: LRQ � � % LM& A LM� A +TS � � 'G� �� � U (3)

From Equation 3, we see that points whose correspond-
ing normal vectors � � are perpendicular to � , or whose
torque vectors � � 'V� � are perpendicular to & do not change
the error

�
(Figure 2 (a),(c)). In a more general setting, LRQ �

is zero for point-pairs whose 6-vector of torques and forces
is orthogonal to the transformation vector.

We solve for the aligning transform by taking partial
derivatives of Equation 2 with respect to the transform pa-
rameters. This results in a linear system W�X �ZY , whereX is the [V'E7 vector of transformation parameters,

Y
is the

residual vector, and W is a [6' [ covariance matrix of the
“torque” and “force” components contributed by each point
pair:

W �]\^\ A � (4)S � � 'J� �`_a_�_ � � 'J� �� � _a_�_ � � UObc �D� � 'G� �,� A �"A�_�_a_ _a_�_��� � 'G� � � A �"A�
de

The matrix W encodes how much the alignment error
will change when the mesh

�
is moved from its optimum

alignment to � (where the error is 0) by the transformation% LM&BAGLf�2AP+ :
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Figure 2: Two unstable surfaces sliding against each other. (a)-(b) Point-pairs whose corresponding normals � are orthogonal to translation
direction

�
maintain the same point-plane distance. Thus, this point pair exerts no constraint on translation

�
. (c)-(d) Point-pairs whose

torques (along ����� ) are orthogonal to the rotation vector � also maintain the same point-plane distance. Thus, this point pair exerts no
constraint on rotation by vector � .

L ����� LM& A LM� A
	 W S LM&Lf� U (5)

The transformations for which this increase is com-
paratively small correspond to directions where the input
meshes can slide relative to each other.

2.2. Stability of the Solution

Certain types of geometry lead to a covariance matrix
that is not full rank, which means that the minimizing trans-
form is not unique. The simplest example is two planes.
Without loss of generality, suppose they are parallel to the9 : -plane. Once the planes are aligned with each other, there
are still three degrees of freedom: translation in the 9 : -
plane of one plane relative to the other and rotation around
the ; axis. Neither of these transformations changes the
point-plane alignment error (Figure 2 (b), (d)). This corre-
sponds to our intuitive notion that there is not enough infor-
mation in the input data to fully constrain all the motions.
Other combinations of unconstrained rotations and trans-
lations are possible. Figure 3 shows a familiar shape for
each possible combination of unconstrained rotations and
translations. Each of these shapes will exhibit sliding when
aligned to a copy of itself.

We can identify the unconstrained transformations by ex-
pressing W in terms of its eigenvalues and eigenvectors. If
any of the eigenvalues are small, the corresponding eigen-
vector defines a transformation that can move two meshes
from their optimum alignment with only a small increase in
error.

Sliding between a pair of meshes can occur even if the
input has enough features to constrain most motions. An ex-
ample is two planar regions with indentations or incisions.
Examples of such input in shown in Figure 4. If the size of
these “lock and key” features is small and only a subset of
the mesh points are used in the alignment algorithm, most
of the points used in the registration will come from areas
that are planar. If the data has no noise, the small number of
points from the “lock and key” areas should be sufficient to

resolve the ambiguity in the transform and bring the meshes
into alignment. In reality, noise in point positions and nor-
mals in the flat areas will overwhelm the contribution of the
points sampled from the features, and the algorithm will fail
to converge.

There are several ways to approach the problem of slid-
ing. We can try to reduce the noise by smoothing the
meshes. This can have an undesirable side effect of smooth-
ing away the features that provide the valid constraints. We
can try to use other constraints, such as color [1, 15]. We
can also add more points to be used for minimization of
Equation 2. Just adding more points will not improve con-
vergence, since they are as likely to come from the flat areas
as from the parts of the meshes that provide the constraints.
We would like, therefore, to be able to detect whether the in-
put data has any rotational or translational instability, iden-
tify if there are any features that can better constrain the
unstable transformations, and sample those features more
densely.

3. Improving ICP’s Stability Through Sample
Selection

In this section we describe a greedy algorithm for se-
lecting samples from the input meshes in a way that will
constrain transformations which have small associated er-
ror change under the uniform sampling model.

The two techniques that are the most similar to our ap-
proach are those of Simon [12] and Rusinkiewicz [11].
Simon developed several hill climbing algorithms for se-
lecting a set of points on one of the input meshes that has
the best potential for constraining all transformations when
another mesh is aligned with it. These algorithms are espe-
cially well-adapted for dealing with noisy data, but do not
address the problem when matching areas are only a subset
of the input meshes. They are also designed for cases when
only a very small number of points is required for align-
ment. As a result, they are too expensive to be used when
large number of points are to be selected for minimization.
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Figure 3: Some examples of simples shapes that are unstable. For each shape, the corresponding covariance matrix will have some number
of small eigenvalues, and for those, the corresponding eigenvector specifies the direction of instability. Below each figure, the number and
types of the instabilities are noted. A helix, which has one unstable screw motion, is missing, but helical shapes are not likely to arise in
scanned data.

Rusinkiewicz [11] proposed a technique called normal-
space sampling that is aimed at constraining translational
sliding of the input meshes. When drawing samples from
a mesh, the algorithm tries to ensure that the normals of
the selected points uniformly populate the sphere of direc-
tions. The algorithm can be viewed as trying to equalize the
eigenvalues of eigenvectors of W that correspond to trans-
lations. We will use a similar approach to create a basis all
six eigenvectors of W .

3.1. A Measure of Stability

In previous sections we showed that the point-to-plane
error metric is susceptible to sliding in the presence of too
few constraints. When the two input meshes are far away
from each other, this sliding can help us by preventing the
algorithm from getting stuck in a wrong local minimum.
However, we do not want the meshes to slide once they get
close to their correct alignment. The goal of our sampling
strategy, therefore, is to select samples that will constrain
the transformations when the alignment gets close to the
correct pose.

As discussed in Section 2.2, we can detect if the chosen
set of point-pairs has any unconstrained transformations by
examining the eigenvalues of the covariance matrix W . LetX �"_,_/_ X�� be the eigenvectors of W with the corresponding
eigenvalues

� ��� _,_,_�� � � . Each eigenvector corresponds
to a general screw motion that can be described as a rotation
around an axis and a translation along that axis. If any of the� � are small compared to

� � , the corresponding eigenvector
corresponds to a sliding direction. Our measure of stability,
therefore, will be the condition number of the matrix W :� ���
	

��� . The goal of the sampling strategy is to keep � as
close to 1 as possible.

However, the part of the transformation vector % &NA �/AP+
that corresponds to rotation depends on the term � � ' � � .
This means rotations are dependent on distance of the point� � from the origin (which is the center of rotation when &
is applied to each � � ). As is common with PCA methods,
we will shift the center of mass of the points � to the origin.
However, the magnitude of rotations can still be incompati-

ble with the magnitude of translations, since a point � � can
be arbitrarily far from the center of mass. Therefore, af-
ter shifting the center of mass, we will scale the point set
so that the average distance of points � � from the origin is
1. This has the effect of equalizing the maximum amount
of displacement that can be contributed by a point due to
“torque” (i.e. rotation) to the amount of displacement due
to “force” (i.e. translation).

Finally, we only want to add those constraints that will
pull the meshes to the alignment that is the global optimum.
That is, we want to make the error landscape around the
global minimum steep, while keeping the landscape shal-
low around the local minima to allow the algorithm to es-
cape. The global minimum is achieved when the points in�

align exactly with their correct mates in � . In this case
the normals in Equation 2 are the same for points � � and
 � . Therefore, to constrain the correct transformations, we
should analyze and constrain the covariance matrix that is
computed using both points and normals from the mesh

�
.

We will call this matrix W� .

3.2. Optimizing the Measure

As discussed above, our measure of stability is the con-
dition number � of the matrix W  . In order to optimize
our stability measure, we first need an estimate of what the
eigenvectors of the linear system would be if uniform sam-
pling were used. Given a single mesh, we can directly com-
pute its covariance matrix using Equation 4, where the � �
associated with the points � � come from the mesh

�
. How-

ever, in a registration problem only those points that lie in
the overlap between two meshes should contribute to the
matrix computation. Thus, we may obtain the estimate of
the covariance matrix as follows:

A1 Let �� be a set of points randomly selected from
�

.
The size of �� should be chosen so that once the points
outside of the overlap area are discarded, there are still
enough points to reliably determine the covariance ma-
trix for the overlap region. The number of points de-
pends on the size of the overlap region between the two
meshes, the resolution of the mesh, and the magnitude



of noise in the input data. In our experience with the
Forma Urbis Romae dataset [7], for meshes that over-
lap by ����� , the number of points necessary for the
eigenvectors to stabilize is on the order of several hun-
dred.

A2 For each ��� �  , we need to determine whether it
belongs to the overlap area. We find its closest point 

in � and check if it lies on the boundary of the mesh� . If 
 � belongs to the boundary, then � is outside the
overlap area [14] and we discard it. Otherwise, it is
added to the set of overlap points �  .

A3 We form the covariance matrix W  of the points in � 
and compute its eigenvectors X � _/_,_ X�� . We computeW� according to Equation 4, but use both points and
normals from

�
.

We now use these computed eigenvectors to obtain a better
sampling of the mesh

�
in the overlap region.

B1 Let � be the initial set of candidate points. Ideally, �
will contain all points on

�
that belong to the overlap

area. We will discuss how to obtain the set � later.
Form a 6-vector � � � % � � 'G� � �I� � + for each point in
� . Notice that here � � is the normal of the point � � as
opposed to the normal of its closest point mate.

B2 Form six sorted lists � ��_,_/_ � � . Each list � � contains
the vectors � � sorted in decreasing order based on the
magnitude of the dot product � � ! X � . The magnitude
of this dot product determines how much a given point
constrains each eigenvector X � . Hence, points in each
list are sorted in order of decreasing contribution to
geometric stability.

B3 We now try to equally constrain all eigenvectors of W  .
We will maintain an estimate of how each eigenvec-
tor is constrained by the already chosen points. Let< � _,_/_ < � be the sums of �	� � ! X � � # over the already cho-
sen points. �	� � ! X � � # is the amount of error incurred if
the point � � is moved from its optimum position by the
transformation X � . Therefore, we can think of these
totals as our current estimate of the eigenvalues. We
choose the next point from the sorted list that has the
smallest total. This corresponds to the most uncon-
strained eigenvector.

B4 Let � be the chosen point. We compute �	� � ! X � � # for
each eigenvector X � and update the running totals.

Notice that this sampling strategy does not take into ac-
count the mesh � . We can think of this strategy as con-
straining the all transformations when

�
is aligned to a copy

of itself in the overlap region. Assuming that we are align-
ing two ideal, overlapping scans of the same object, this
exactly corresponds to constraining the covariance matrix
when we reach the global minimum. Once the points are

sampled from
�

, we can compute their closest points in� . We then proceed with the rest of the ICP algorithm as
usual, now using the normals from � for the minimization
of Equation 2.

4. Accelerations and Enhancements

The sampling algorithm as it is described above contains
two sources of inefficiency.

First, in Step B2, we have to perform 6 sorts of the set
of vectors formed in Step B1. To reduce the cost of these
sorts, we instead sort the points into a specified number of
bins. The points are left unsorted within each bin. Although
not optimal, this still produces a good sampling, and the
approximation error can be bounded by the size of the bins.
Thus, the second step can be done in time proportional to

�


.
Second, in Step B1, we need to form the set � of points

in the overlap between
�

and � . A brute-force approach
would be to test each point in

�
for overlap with � as de-

scribed in Step A2. Even using an efficient nearest-neighbor
data structure such as a k-d tree, this can be expensive for
large meshes. It can also be wasteful if we only intend to use
a small set of points for computing the aligning transform.

A simple improvement that we implemented in our sys-
tem is to process all the points in

�
regardless of whether

they are in the overlap area. This allows us to delay the
overlap test until Step B3. At that time, we can perform this
test the same way as in Step A2 of the matrix estimation al-
gorithm. If � � does not belong to the overlap area, we do not
update the totals and choose the next point. This method is
more efficient than the brute force approach (if we use fast
sorting), since we perform only as many nearest-neighbor
tests as dictated by the sampling rate. We can use the clos-
est points computed as a result of the overlap test for mini-
mization of Equation 2. In practice, this makes the amount
of wasted work inversely proportional to the size of overlap
region. With this implementation, ICP using our sampling
strategy takes about 5 times longer per iteration than ICP
using uniform sampling when input meshes overlap by half
their area.

A faster solution is to use the set of points computed in
by the initial eigenvector estimation (Steps A1-A3) to gen-
erate more points in the overlap area. We can generate more
such points by crawling the mesh

�
starting as these seed

points. If we are given a point cloud with no connectivity,
we can crawl the k-d tree used for the closest point com-
putation instead. This allows us to quickly generate a large
set of points in the overlap area for the set � and avoids
wasting work performing nearest-neighbor tests for points
that are clearly outside the overlap area. The small number
of points outside the overlap area generated by this method
can be discarded when their mates in � are determined for
error minimization. This optimization makes our algorithm



3 times slower per iteration than conventional ICP. We ex-
pect that with a more careful implementation we can make
our sampling strategy perform comparably to ICP with uni-
form sampling.

5. Results

We have applied our sampling algorithm to several types
of synthetic and real data.

The first test case is two planar patches with two grooves
forming an X (Figure 4). Each patch has independently
added Gaussian noise. This test case is similar to the one
used by Rusinkiewicz [11] for normal-space sampling. Fig-
ure 5 shows the convergence rates for aligning these patches
using uniform sampling, normal-space sampling, and our
covariance-based sampling. Both normal-space and co-
variance sampling are able to find the correct alignment,
while uniform sampling does not align the grooves cor-
rectly. Normal-space sampling takes more iterations to con-
verge since distributing the points equally throughout the
sphere of normals puts an equal number of points in the flat
areas of the patches as it does in the grooves. Covariance
sampling instead picks only those points that form a good
basis for the normals.

Figure 4: Two planar patches with 1 mm deep grooves. Each
patch has independently added zero-mean Gaussian noise with
variance 0.05 mm. Initial condition number is 66.1. Condition
number after selecting ����� of the points with our algorithm is
3.7.
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Figure 5: Convergence rates for “incised plane” meshes for uni-
form, normal-space and covariance sampling.

Figure 8 shows the points picked by the sampling algo-
rithm to constrain the eigenvectors of the covariance ma-
trix. To simplify the visualization, we use a smaller ver-
sion of the incised plane model and assume that the entire
mesh is within the area of overlap. The initial covariance
analysis reveals three unstable eigenvectors with approxi-
mately equal eigenvalues: two translations in the 9 : plane
and rotation around ; . Notice that most of the points are
picked from the areas in the grooves, since they are the ones
that constrain the unstable eigenvectors. A few points from
the corners are picked to additionally stabilize the rotations
around the diagonals.

Figure 6 shows two spherical patches with grooves and
noise. Here, covariance sampling in the only method that
finds the pose that correctly aligns the grooves (Figure 7).

Figure 6: Two spherical patches with 1 mm deep grooves. Each
patch has independently added zero-mean Gaussian noise with
0.05 mm variance. This dataset has three unstable rotations. Initial
condition number is 26.9. Condition number after selecting �����
of the points with our algorithm is 4.1.
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Figure 7: Convergence rates for “incised sphere” meshes for uni-
form, normal space and covariance sampling

We have also applied our algorithm to real scan data.
Figure 9(a) shows the sampling of two scans from the
Forma Urbis Romae dataset [7]. Similar to the “incised
plane” example, these meshes exhibit translational sliding
in the plane and rotational sliding around the vector perpen-
dicular to the plane of the meshes. Most of the samples are
placed into the incisions on the scans to constrain the scans
from sliding and rotating in their common plane. It took



(a) (b) (c) (d)

Figure 8: Points picked by our sampling algorithm for a patch with two grooves. (a) Points constraining two unstable translational
eigenvectors. (b) Points constraining the unstable rotation. (c)-(d) Two remaining rotations are stable so they only require a few points.
The eigenvector corresponding to translation in � is well constrained by the already picked points and does not contribute to the sampling.

(a)

(b) (c)

Figure 9: Aligning two scans of Forma Urbis Romae fragment
033abc. (a) Points selected by our sampling strategy are in black.
Notice that in the outlined region there are relatively fewer con-
straints to prevent horizontal sliding than vertical sliding. (b)
Therefore uniform sampling cannot align the vertical grooves in
the outlined region as evidenced in this Z-buffer rendering of the
two meshes by the fact that the vertical grooves are obscured. (c)
Covariance sampling produces the correct alignment making all
the grooves visible.

ICP 25 iterations to converge to the correct alignment (Fig-
ure 9(c)) from a rough manual positioning of the scans us-
ing our sampling strategy. Each input mesh contains about
300,000 points, and the algorithm was subsampling 7 � � of
the points from each mesh to be used in alignment. With
these settings, each iteration of ICP using our stable sam-
pling took 5 seconds on a 400MHz Pentium II. One iteration
of ICP using uniform sampling took 1.5 seconds, however
when started from the same position, uniform sampling is
unable to correctly align the vertical grooves (Figure 9(b)).

We have performed some initial experiments with using
the output of geometrically stable ICP in the global relax-
ation algorithm of Pulli [10] using the Forma Urbis Ro-
mae dataset. The results seem to suggest that scans that
are aligned pairwise using our sampling strategy “hold to-
gether” better than those aligned using uniform sampling.
Figure 10 shows the residual error between the pair of scans
from the Forma Urbis dataset examined above after the en-
tire set of views has been processed by the global relaxation
algorithm. Scans aligned with uniform sampling (Figure 10
(a)) have been pulled apart by as much as a millimeter,
while those aligned by our algorithm (Figure 10 (b)) stayed
together. A system for global registration of meshes that
uses our sampling is presented in a companion paper [6].

We also investigated the influence of noise on the perfor-
mance of our sampling strategy. Since the algorithm prior-
itizes the points based on their influence of the covariance
matrix, it is possible that it can favor areas with significant
noise, since the points there can look like good features for
the algorithm to sample. Smoothing the input data can elim-
inate some of the false features and improve the sampling.
However, if the meshes are smoothed too much, the sam-
pling algorithm can still fail since the true features will be
smoothed away. Figure 11 shows success and failure cases
of smoothing the noisy data to improve the sampling.

(a) (b)
Figure 10: A visualization of residual error in the overlap portion
of the pair of scans in Figure 9 after they and their partners have
been processed by Pulli’s global registration [10]. Meshes in (a)
were aligned using uniform sampling. Meshes in (b) using our
geometrically stable algorithm. Error is in mm, black corresponds
to 0, white to 1. The maximum error in (a) is over 1 mm, while the
maximum error in (b) is 0.3 mm.



(a) (b)

(c) (d)
Figure 11: Effect of noise on covariance sampling. (a) A noisy
patch with a cross in the center. The width of the grooves, indi-
cated by black arrows, is 10 mm, the depth is 1 mm, the mean
height of the noise is 0.2. Since the groove is shallow, the normals
of points in the groove are comparable to normals of the noisy flat
areas and the algorithm cannot distinguish between features and
noise. (b) Performing 6 iterations of simple smoothing by aver-
aging neighbors removes most of the noise but keeps the feature.
(c) A similar patch, but the width of the groove is only 1 mm. (d)
Since the size of the feature is comparable to the size of the noise,
smoothing removes the noise and most of the feature, which means
all areas of the patch now look identical, and covariance-based
sampling fails.

6. Conclusions

We have presented a point selection strategy that im-
proves geometric stability of the ICP algorithm. This tech-
nique is aimed at sampling those features of the input
meshes that provide the best convergence of the algorithm
to the correct pose. The sampling strategy is based on es-
timating the transformations that can cause unstable sliding
in the ICP algorithm and picking points that best constrain
this sliding.

Several directions are possible for future work. The cur-
rent technique treats all eigenvectors of the covariance ma-
trix the same and tries to constrain them equally. However,
the geometry of the input meshes outside the overlap area
can have an effect on how we want to constrain the trans-
formations within the overlap area. In particular, if a mesh
extends far beyound the overlap area, small misalignments
in rotation can become amplified. We would like to investi-
gate sampling methods that take this leverage into account,
and in general are able to assign different weights to differ-
ent eigenvectors.

While we only address the stability of pairwise align-
ment of meshes in this paper, a similar stability analysis
can be applies to a larger collection of meshes, e.g. to the
global relaxation step of the mesh alignment pipeline. Point
selection for maximizing stability of a large set of scans is
substantially more difficult than the pairwise step, since we
have to consider how sliding of a single scan pair will affect
the entire system. We also discuss this issue in more detail
in a companion paper [6].
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