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Abstract

This paper proposes a method to segment a set of models consistently. The method simultaneously segments models and creates
correspondences between segments. First, a graph is constructed whose nodes represent the faces of every mesh, and whose edges
connect adjacent faces within a mesh and corresponding faces in different meshes. Second, a consistent segmentation is created
by clustering this graph, allowing for outlier segments that are not present in every mesh. The method is demonstrated for several
classes of objects and used for two applications: symmetric segmentation and segmentation transfer.
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1. Introduction

The goal of our paper is to develop a method that can produce
a consistent segmentation of a set of meshes (Figure 1b). Such
a segmentation is useful for a number of applications. Parts
can be labeled and put into a knowledge ontology [24], they
can be interchanged as part of a modeling tool [15], and they
can be put into a searchable database [27]. In addition, we can
expand lexical databases such as Wordnet [6] from having part-
of relationships (“a seat is a part of a chair”) to having possibly
probabilistic spatial relationships (“some chairs have armrests,
which are oblong, in front of backs, and above seats”). All
these applications have at their heart the problem of this paper:
consistently decomposing a set of 3D models into parts.

Many methods have been proposed to segment an individ-
ual mesh into parts. While these methods have produced seg-
mentations of increasing quality, consistently segmenting a
set of meshes remains challenging. Some mesh segmentation
methods use heuristics designed to remain consistent between
meshes (such as the Shape Diameter Function [29]). However,
segmenting meshes individually ignores important cues avail-
able from processing a whole class of objects simultaneously.
While several methods [27, 15] have been proposed to segment
multiple objects, compared to our technique they have short-
comings, such as assuming that each mesh can be segmented
individually, or that each mesh has the same number of seg-
ments.

Our approach extends the idea of single-mesh segmentations
to a segmentation of multiple meshes: we simultaneously seg-
ment models and create correspondences between segments.
Specifically, we first build a graph whose nodes represent faces
of all the models in the set, and whose edges represent links be-
tween adjacent faces within a mesh, and between corresponding
faces of different meshes. We then cluster the graph, creating
a segmentation in which adjacent faces of the same model and
corresponding faces between different models are encouraged
to belong to the same segment.

Our approach has several advantages. First, segmenting a set
of objects in a class simultaneously can produce not only more
consistent results across the class, but also better individual seg-
mentations than segmenting each object separately (as demon-
strated in Figure 1). This is because a set of objects helps to
identify salient segments that are shared across the set, and be-
cause those models that have more obvious segmentation cues
help to segment more difficult models. Second, modeling tools
are often used to create an object via a hierarchy that is then
saved in VRML and other formats, and this hierarchy can be
used as “prior” segmentation to give cues to the desired seg-
ments. Our approach combines these prior segmentations with
other traditional segmentation cues, such as connected mesh
components, concavities, and short boundaries between com-
ponents. Third, by posing the problem as that of clustering a
graph representing all the meshes, our method allows for out-
lier segments in the resulting segmentation, such as detection
of armrests only on those chairs that have them. Finally, our
method handles models with disconnected components, which
is not the case for many other segmentation algorithms.

We demonstrate the effectiveness of our method on several
object classes. We then suggest two new applications of our
method: 1) creation of a symmetry-respecting segmentation of
a single model, and 2) transfer of segmentations between a set
of models of the same class.

2. Previous Work

We review previous work in several related categories: seg-
mentation of individual meshes, segmentation of sets of objects,
consistent parameterization, and semantic labeling.

Segmentation. Many mesh segmentation methods exist in the
graphics literature that aim to decompose a mesh into func-
tional parts; a recent survey can be found in [28] and [1], and
comparisons between several algorithms appear in [3]. These
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b) Consistent Segmentation

a) Individual Segmentations

Figure 1: Individual segmentations of a set of chairs are shown in (a). Instead, our method creates a consistent segmentation of a set of meshes (b), that allows
outlier segments, such as armrest segments in those chairs that have armrests. Consistent segmentations not only bring similar object parts into correspondence, but
create better part decompositions for each mesh than individual segmentations do. Note that in many individual segmentation, the backs of chairs are either broken
into several components, or aggregated with the rear legs.

approaches aim to create segments that are well-formed ac-
cording to some pre-defined low-level criteria: the segments
are convex, boundaries lie along concavities, etc.. They use
techniques such as K-means [30], graph cuts [12], hierarchical
clustering [7, 8, 11], random walks [16], core extraction [13],
tubular primitive extraction [21], spectral clustering [19], and
critical point analysis [18]. While some research tries to use
segmentation criteria that are consistent between meshes in a
class (such as shape diameter function [29]) or between articu-
lated versions of a model (such as diffusion distance [5]), it is
difficult in general to run segmentation methods independently
on a set of meshes and obtain results with corresponding seg-
ments (Figure 1a). We expand such segmentation techniques to
simultaneously segment a set of meshes.

Segmentation of Sets of Objects. Several computer graphics
papers have been written that involve segmentation of sets of
objects. Part Analogies [27], for example, segments each model
into parts, and then creates a distance measure between parts
that takes into account both local shape signatures, and the
context of the parts within a hierarchical decomposition. The
main output of this is a catalog of parts with inter-part dis-
tances, which can then be used to create a consistent segmenta-
tion. We differ from this approach in that instead of first creat-
ing independent segmentations of the models and then finding
correspondences between these segments, we create segments
and correspondences between them simultaneously. Segment-
ing models and finding segment correspondences simultane-
ously improves segmentation quality because (i) a set of objects
helps to identify salient segments that are shared across the set,
and (ii) those models that have more obvious segmentation cues
help to segment more difficult models.

Another related work is Shuffler [15], a modeling tool that
allows the user to swap a segment in one mesh for a segment
in another. Shuffler creates a mutually consistent segmentation
between a pair of meshes, in which the segments are in one-
to-one correspondence. We differ from their approach in two
ways. First, while Shuffler’s method could in principle be ex-
tended to segmenting a set of objects, their work demonstrates

only pairwise segmentations. Second, we do not assume that
all models contain all parts but instead allow outlier segments,
making the problem more difficult, but allowing richer decom-
positions.

Some papers in the computer vision literature aim to obtain
a segmentation of the same object or similar objects in different
images: [17] creates an implicit shape model for segmenting a
class of objects from examples, [25] uses a generative graphi-
cal model to improve segmentation by using two images rather
than one, and [31] uses spectral clustering to find correspon-
dences and matching segments. The last method constructs a
Joint-Image Graph that encodes intra-image similarities as well
as inter-image correspondence, which is similar to the graph we
construct. Our method extends this idea to the 3D model do-
main, where the challenges lie not in disconnecting foreground
objects from a cluttered background, but in using geometry to
create precise segmentations.

Consistent Parameterization. Another approach to creating a
consistent segmentation may be to create a continuous mapping
between the objects, segment one of them, and transfer the seg-
mentation to the others. A large body of work exists that deals
with consistently parameterizing a set of meshes. Some papers
offer general methods for establishing a mapping between sur-
faces (e.g. [22, 14, 26]) while others focus on consistent param-
eterization for a particular class of objects such as faces [4] and
bodies [2]. Once such a mapping is created, surface attributes
such as texture coordinates or displacement maps can be trans-
ferred. Unfortunately, many real-world object classes have a
large degree of intra-class variation and inconsistent mesh qual-
ity and topology, making it difficult or impossible to find a sin-
gle consistent parameterization across the entire class, unless
the meshes are very similar (such as faces [4] or human bod-
ies [2]). For example, there is no continuous global mapping
from a chair with armrests to one without them. In this paper,
we propose a method to find consistent segmentations without
first finding a continuous parameterization.

Semantic Labeling. Several papers address the problem of as-
signing semantic labels to meshes. ShapeAnnotator [24] de-
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Figure 2: Schematic of our method. We create a graph whose nodes are mesh
faces, and whose edges connect adjacent faces within a mesh (green lines) and
corresponding faces in different meshes (red line). Some of the correspon-
dences are incorrect (such as the one labeled ‘A’). We find a clustering of this
graph (with clusters represented by the colored rendering) that represents a con-
sistent segmentation, allowing for outliers such as armrests.

scribes an effort to put 3D models into a knowledge base, and
consistently annotate their parts. They do not provide an auto-
matic algorithm to do so, instead offering a tool that presents
the output of several automatic segmentation algorithms such
as those described above, and allows the user to select sections
from each output to form segments and annotate them. Such
efforts would benefit from a tool such as ours that creates a
consistent segmentation of meshes automatically.

3. Method

Our algorithm takes as input a set of meshes, and produces
as output a consistent segmentation, which assigns every face of
every model to a segment, so that, for example, all mesh faces
on seats of chairs belong to the same segment. This algorithm
proceeds in two main steps, as follows.

First, we create a graph that contains as nodes the faces of the
models. To this graph, we add two types of edges. Adjacency
edges connect neighboring faces within a mesh, and are re-
sponsible for intra-mesh segmentation. Their weights use cues
such as disconnected components and concavities to estimate
whether they cross a segment boundary. The adjacency edges
are similar to edges used in other segmentation algorithms and
encourage short segmentation boundaries along concave edges
(and, in our case, between disconnected components).

The other edges in our graph are correspondence edges.
These edges are created between closest point pairs of globally
aligned models. Ideally, correspondence edges link surfaces of
corresponding parts of different models. These edges are re-
sponsible for inter-mesh segmentation; that is, they encourage
corresponding parts of different meshes to aggregate into the
same segment.

The resulting graph is sketched in Figure 2, with adjacency
edges shown in green and correspondences edges in red. Note
that the correspondence edges are not always correct: the corre-
spondence edge labeled ‘A’ associates the armrest of one chair
with the back of another.

Given this graph, we create a consistent segmentation by
clustering its nodes into disjoint sets. This is done with a greedy
hierarchical algorithm that seeks to minimize an error function
similar to the normalized cut cost. The resulting clusters ag-
gregate mesh parts such that each part (i) is weakly connected
to the rest of the mesh and (ii) has more inter-mesh correspon-
dences to the other parts in the cluster than to parts outside of
the cluster. In Figure 2, these clusters are represented by mesh
face colors.

Our approach has the following advantages. It balances the
two smoothness constraints desirable in a consistent segmenta-
tion: adjacent faces should belong to the same segment, and
corresponding faces from different meshes should belong to
the same segment. Because these are not hard constraints, in-
evitable wrong correspondences can be corrected by strong ad-
jacency cues, and poor adjacency cues can be corrected by con-
sistent correspondences. For example, some of the faces of
a chair’s armrest may be initially erroneously found to corre-
spond to faces of another chair’s back (correspondence labeled
‘A’ in Figure 2). However, strong adjacency cues would pre-
vent a small part of an armrest from being cut from the rest
of the armrest and being associated with the “back” segment.
Conversely, a chair may have no adjacency cues to suggest that
its back should be separated from its rear legs (such as the first
chair of Figure 2). But, consistent correspondences between the
faces of this chair’s and other chairs’ rear legs would suggest
that they belong in a separate segment. Finally, posing the con-
sistent segmentation problem as a clustering problem allows for
outlying segments: it permits identifying parts such as armrests
only in those chairs that have them.

4. Implementation

The following two subsections describe in greater detail how
we build the graph for our method, and how we segment the
graph.

4.1. Graph Construction

The first step is to construct a graph, sketched in Figure 2,
whose nodes represent mesh faces, and whose edges encode
two kinds of weighted constraints: adjacency constraints, that
suggest that adjacent faces belong in the same segment, and cor-
respondence constraints, that suggest that faces from different
meshes that are in correspondence belong in the same part.

Adjacency Edges. Adjacency edges represent traditional seg-
mentation cues of single-mesh segmentations: segment bound-
aries should be small, should lie along concavities, and should
separate disconnected components. In addition, if the mesh
contains a part hierarchy (as meshes created with modeling
tools often do), the output should aim to respect this hierarchy.

Adjacency edges are formed between every pair of adjacent
faces. Weights are chosen such that the cost of a graph cut
corresponds to the perimeter of the enclosed segment, weighed
by the concavity of the edges, as in [9]. Namely, if θ is the
exterior dihedral angle of a mesh edge and l is its length, the

3



weight of the corresponding graph edge is min((θ/π)αl, l), with
α chosen to be 10. Finding segments of small cut cost in this
graph encourages segment boundaries to be small, and to lie
along concavities.

These edges are sufficient to form a graph within connected
components of the mesh, but 3D models are often composed
of many disconnected components (in the examples in this pa-
per, the number of disconnected components ranges from 1
to 70). More adjacency edges need to be added to encourage
segment boundaries along disconnected components, while al-
lowing disconnected components to join into the same segment
when necessary. The details of these additional edges are de-
scribed below for completeness, but the key idea is illustrated
in Figure 3, where disconnected components are represented by
rectangles, and the new adjacency edges by green lines. These
edges are created such that those connected components that
are closer to each other (Figure 3a), and that are relatively close
along a larger surface area (Figure 3b), are more strongly con-
nected in the graph.

(a) (b)

Figure 3: Disconnected components are drawn as rectangles, which we connect
with (green) edges. We want components that are closer (a), and have more
surface area in proximity (b) to be more strongly connected.

In greater detail, if D is the diameter of the bounding box
of the mesh, we consider all pairs of disconnected components
whose closest distance d is less than .1D. We would like to
add edges to the graph (corresponding to the green lines in the
schematic of Figure 3) whose lengths are close to d. We let
deps = .005D be a measure of a “small” length, and we con-
sider d′ = 1.2(d +deps). We sample points on both components,
and for each point whose closest point on the other component
is closer than d′, we add an edge between the faces containing
the points. The weight of that edge is a decreasing function of
the distance times a constant; namely, we set it to kccC/(1+d′′),
where kcc is a constant that controls how important aggregating
faces within a connected component is versus aggregating con-
nected components, C is the average adjacency edge cost of the
mesh, and d′′ is the distance between the pair of points relative
to a small mesh distance (that is, divided by .005D). For set-
ting kcc, no heuristic is foolproof, but we find it helpful to set
kcc low enough so that each connected component is fully ag-
gregated before disconnected components are combined; after
a few experiments, we set it to kcc = .01.

Finally, we incorporate cues from a pre-existing part hier-
archy, if one is available. We do this by considering the leaf
nodes of the hierarchy as a “prior” segmentation, and encour-
aging segment boundaries along the boundaries of this “prior”
segmentation. Specifically, we lower the cost of edges that cut
across prior segmentation boundaries by a factor kprior (we use
kprior = 10).

Correspondence Edges. Correspondence edges link corre-
sponding faces from different meshes using a set of weighted
point correspondence pairs. While our algorithm accepts any
scheme that creates weighted correspondences between surface
points of different models, to avoid obscuring our main algo-
rithm, we only use the simplest such scheme: closest points in
the alignment that minimizes the Root Mean Square Distance
between a pair of meshes within the space of similarity trans-
forms. In particular, we align the pair of models with PCA,
and starting with the 24 possible axis orientations, run the ICP
algorithm, returning the alignment with the lowest RMSD. We
find that this method rarely fails to find the best similarity trans-
form relating a pair of models, and failure to find high quality
correspondences instead usually indicates the need to use non-
uniform scale or a non-linear alignment.

To form correspondence edges, we first align each mesh to
every other mesh. We then sample the surface of the “from”
mesh, and for each point, find the closest compatible point on
the “to” mesh. Compatibility is determined by whether the dot
product of the normals is greater than a threshold (we use .3). If
this closest compatible point is sufficiently close (within 20% of
the diameter of the bounding box of the model), we form a cor-
respondence edge between the face node containing the “from”
point, and the face node containing the “to” point. The result
is that the cut cost of the correspondence edges in a clustering
represents the surface area of each mesh of those points on the
mesh that are in different segments from their corresponding
points on other meshes.

4.2. Clustering

Given the graph constructed above, we need to define an er-
ror function and a procedure to minimize it that results in a seg-
mentation of the graph, grouping together adjacent and corre-
sponding faces of the input meshes. A number of segmentation
schemes can be adapted to this problem; we use as our basis the
hierarchical clustering scheme of [9], in which each face starts
in a separate segment, and segments are greedily merged in the
order that minimizes a normalized cut cost of the graph.

To measure adjacency error Ead j, we use the same area-
weighted normalized cut cost as in [9], which is the sum of
the adjacency edge cut cost of each segment normalized by the
area of the segment. For correspondence error Ecorr, we use the
normalized cut error of the correspondence edges, which is the
sum of the correspondence edge cut cost of each segment nor-
malized by the total cost of the correspondence edges attached
to nodes in the segment. These errors represent quantities of
different dimensionalities, so we form our segmentation error
as the weighted product of the two:

Eseg =
(
Ead j

)α
(Ecorr)1−α

where α controls the trade-off between merging segments
within a mesh (towards α = 1) and merging segments in close
correspondence between different meshes (towards α = 0).

Similarly to [9], our method of (approximately) minimizing
the above error is hierarchical clustering: we start with each
face in its own segment, and greedily merge segments in the
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order that yields the least error. However, there are two difficul-
ties with this approach directly applied to the above error. The
first is that the adjacency error encodes several cues (concavity,
disconnected components, pre-existing segmentation) that vary
widely from mesh to mesh and are difficult to normalize among
meshes. This may result, for example, in one mesh having the
same error with two segments as another mesh may have with
twenty. The second problem is that merging in order of Eseg

is relatively slow, since the contribution of each segment to the
error is complicated, whereas merging in order of Ead j can be
done relatively quickly with a priority queue since each poten-
tial segment merge affects the error as only a function of the
two segments involved.

Due to these two reasons, we split our method into two steps.
First, we oversegment each mesh independently to some preset
number of segments, which is assumed to be an oversegmen-
tation of the final result, by merging to minimize only Ead j.
This initial oversegmentation is similar to the idea of super-
pixels [23] in computer vision. Note that while this stage is
executed independently for every model, we do not try to seg-
ment the model to its final decomposition into natural parts; we
merely aim for an oversegmentation, which is a much easier
problem. Following this stage, we perform a slower segmenta-
tion of the entire graph representing all the models in the class
by, at each iteration, considering all potential segment merges
and computing the full Eseg for each (we use α = .01 in this
step). Note that while inter-mesh segmentation only begins at
the second stage, intra-mesh segmentation continues.

Finally, to compensate somewhat for the greedy nature of the
algorithm and to allow the correction of a poor choice of seg-
ments to merge, we perform border refinement every kbr steps
during the second segmentation stage (we use kbr = 12). In this
step, we check over all graph nodes adjacent to each segment
boundary, and expand the segment to contain an adjacent node
if that expansion decreases the error. In all, two parameters are
manually chosen for each consistent segmentation: the number
of parts to oversegment each model to in the first phase, and the
final number of segments in the consistent segmentation.

4.3. Running Time
Our algorithm has three main time-intensive stages. First,

the graph is constructed; in particular, adjacency edges between
disconnected components and correspondence edges are cre-
ated. If there are m meshes, with n vertices, and d discon-
nected components per mesh, with the aid of a kd-tree the time
complexity is O(md2n log n) and O(m2n log n) for disconnected
component and correspondence edges respectively. This stage
took about 20 seconds for the chair example shown in Figure 1
on a 2GHz PC (the chairs class has 16 chairs, with a num-
ber of faces ranging from 168 to 9272, with an average 2296
faces per chair, and a number of connected components rang-
ing from 1 to 16, with an average of 8). Second, each mesh is
independently oversegmented; the running time for this over-
segmentation is O(mn log n), and it took about a further 5 sec-
onds for the chair example. For classes with many models, the
most time-consuming stage is the final stage, in which we con-
sider potential merges between segments of the oversegmented

(b) Prior Segmentation

(c) Output Consistent Segmentation

(a) Connected Components

Figure 4: For the right-most chairs of Figure 1, we show the connected compo-
nents (a) and prior segmentation (b) that serve as cues for segmentation. These
cues are helpful, but inconsistent between different models. We replicate the
consistent segmentation results for these models in (c).

meshes at every iteration. The complexity of this stage is in-
dependent of mesh resolution. If the oversegmentation creates
k segments per mesh, there are O(mk) merges to perform, and
a potential O(m2k) merges to check at every iteration, so the
complexity is O(m3k2). This stage takes about 3 minutes for
the chair example (which was oversegmented to k = 13 seg-
ments). In all, the algorithm takes several minutes for the most
complicated experiments in this paper. Many optimizations can
be made to improve this. In particular, it is likely that not all
pairs of meshes need to be considered for correspondence, and
a constant number of corresponding meshes may be sufficient
for each mesh.

5. Results

In this section, we discuss some results of our method, and
suggest several applications. We discuss three scenarios: the
standard use of our algorithm to make consistent segmentations,
the creation of a symmetric segmentation of a single mesh, and
segmentation transfer between meshes of the same class.

5.1. Consistent Segmentations

The basic application of our method is to take as input a set
of models and create a consistent segmentation. These mod-
els may be pulled automatically from the Internet, categorized
automatically or semi-automatically, and then processed with
our method to create a database of segments which may then be
used in modeling or animation. We demonstrate the utility of
our method for this application with models from the Viewpoint
database, a commercial database containing household objects
and furniture.
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Figure 1b shows the results of segmenting a set of chairs.
To give an example of the adjacency cues for this set, the con-
nected components and prior segmentations are shown for sev-
eral of the chairs in Figure 4. Note that while these are helpful
cues, they are inconsistent between different meshes. There are
instances where final part boundaries did not lie along bound-
aries in connected components or prior segmentation, and most
connected components and prior segments do not correspond
to the final parts. These cues had to be combined to form the
segmentations: some chairs relied more heavily on connected
components, others on prior segmentations, and yet others used
cues from the underlying geometry, such as concavity (the back
and seat of several chairs would have been one segment if only
prior segmentation or connected components were used). De-
spite these challenges, our method was able to create a con-
sistent segmentation, and also find the outliers: armrests were
found in those chairs that had them, enriching the resulting seg-
mentations. Finally, Figure 1a shows the chairs segmented in-
dividually to the same number of segments achieved in the con-
sistent segmentation. This illustrates how segmenting the chairs
in a group enhances individual segmentations: many of the cues
to segment back legs from the backs of chairs come from cor-
respondences to other chairs.

Consistent Segmentations Individual

Segmentations

Figure 5: Results of consistent segmentations of several classes are shown to
the left of the dotted line. Note that in many cases, the ability of our method to
find outlier segments is helpful. To the right of the dotted lines are individual
segmentations of the last models in the row. These individual segmentations
fail to identify important segments that can be identified by comparing to other
models in the class.

We show similar results for several other object classes in

Figure 5. To the left of the dotted line, we show the consis-
tent segmentations of several sets of objects: outlets, brooms,
tables, and swivel chairs. To save space, we do not show the
connected component and prior segmentation cues, but, simi-
larly to the example in Figure 1, these cues are inconsistent be-
tween models, and the results used a combination of connected
component, prior segmentation, and geometry cues. Most of
these classes show examples where the possibility of outlier
segments is helpful. The plugs and middle screw of outlets,
the cylindrical elements around table tops and the legs of the
four-legged table, and the armrests of swivel chairs would not
have been identified if every object were required to have every
part. Finally, to the right of the dotted lines are those mod-
els found immediately to the left of the dotted line segmented
individually (to the same number of segments). These exam-
ples demonstrate how segmentations of sets of objects enhance
the individual segmentations. For tables, for example, compar-
ison to other tables makes clearer that the leg stands are a more
important segment than a frequently disconnected component
joining the stand to the top.

5.1.1. Symmetric Segmentations
It is desirable that the segmentations of symmetric or nearly

symmetric objects be symmetric. However, most segmenta-
tion methods do not not produce symmetric results when run
on nearly symmetric models. Figure 6a, for example, shows
the results of the hierarchical segmentation algorithm we use
in our clustering phase on two nearly symmetric models. Such
segmentations of nearly symmetric objects are often not sym-
metric for two reasons. First, segments are treated one at a
time in many algorithms, and an asymmetry forms when, for
example, one human arm is processed before the other–the seg-
mentation errors become different after the merge and the al-
gorithm may proceed differently when it gets to the other arm.
Second, slight asymmetries in triangulation and geometry re-
sult in asymmetries in energies. To overcome such deficiencies,
we take a “symmetry-aware” processing approach as proposed
in [10].

(a) Non-symmetric Segmentations (b) Symmetric Segmentations

Figure 6: Using intra-model constraints to create a symmetric segmentation (b)
of models that would have otherwise been segmented asymmetrically (a).

Our method places intra-model correspondence constraints
between symmetrically corresponding points instead of be-
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tween points on different meshes. To get these constraints, we
can use a method such as [10], which finds surface mappings
between corresponding parts of nearly symmetric objects. For
the two examples shown here, the symmetry is so close to per-
fect that it is sufficient to create closest-point correspondences
to the reflection of the model. In Figure 6b, we show segmen-
tations of the models created with our method, with constraints
added from a global reflective symmetry. Note that not only
does this result in correspondences between symmetric seg-
ments, but also produces better segmentations: the asymmetric
cuts above the chest of the human model, and across the face
of the dog are eliminated. While we demonstrate results for the
simple case of one strong global symmetry, since our method
takes as input any weighted point correspondences, it can also
be used for multiple, local, and partial symmetries.

5.1.2. Segmentation Transfer
In many scenarios, it may be helpful to start with example

segmentations of objects and transfer the segmentations to pre-
viously unsegmented meshes. These example segmentations
may come in the form of labels from a user interface, previ-
ously existing examples, or the result of other algorithms that
may be tuned to find specific object parts. Here, we explore
three such scenarios: transferring segmentations from a single
example to a set, using a set of segmented examples to segment
a new model, and taking advantage of partially segmented data
to complete the segmentations. Our algorithm can handle any
mixture of these constraints.

Consider the three biplanes in Figure 7. They have no prior
segmentation, and their connected components are shown in
Figure 7a on the left. Note that here, connected components
mostly represent an oversegmentation; however, for example,
in the third plane, the top and bottom wings as well as their
vertical supports are all one connected component, where we
would like to create four segments (blue arrow). We can run our
method, as usual, to create a consistent segmentation (right col-
umn of (a)). This segmentation may not match the desired one;
for example, it may be better for the horizontal tail stabilizers
to be represented as two segments, and to separate the vertical
tail stabilizer from the body (red arrow). Below, we describe
three scenarios in which additional constraints (in the form of
“known” segments) may be used to improve the situation and to
transfer segmentations from examples. The only change needed
to our method to reflect these constraints is to start with the
faces merged into those segments that are “known”, and to pre-
vent two “known” segments from merging.

In the first scenario, we can use a segmented example mesh to
label a set of other meshes in the class. This segmented example
may be generated in real time with an interface, or it may come
from an existing repository or other external sources. In our
example, such a scenario is represented in Figure 7b on the left.
The first plane is segmented, and used as a template for the
other two planes. The result is shown on the right of Figure 7b.
Compared to the baseline consistent segmentation result, the
horizontal tail stabilizers are recognized as two segments, and
the vertical stabilizer is separated from the body.

In the second scenario, there exists a fully segmented set of
models belonging to some class. We would like to augment
this set with a new, unsegmented model. This scenario is rep-
resented in Figure 7c on the left: the first two planes are seg-
mented, and the third is not. Using these two models, we seg-
ment the third plane; the segmentation is shown on the right
of Figure 7c. Compared to the baseline consistent segmenta-
tion case, the stabilizers are segmented correctly following the
examples. Compared to using one segmented example, since
more precise correspondences are available, the propeller seg-
ment is smaller and better resembles the example propeller seg-
ments, although it also includes a small part of the plane that is
not the propeller (green arrow).

In the third scenario, the input is a partially segmented set
of meshes. Such a partially labeled set can come from several
sources. One possibility is to use the labels created by users
during modeling, and attached to object parts. While these la-
bels are not consistent, it is conceive able that parsing them
and using a lexical database such as Wordnet [6] will create
proper associations. Alternatively, one may use automatic de-
tectors that are trained to find specific object parts. Note that in
this scenario, these partial segmentations offer much more in-
formation than the “prior” segmentation shown, for example, in
Figure 4b: for this application, we assume that those segment
boundaries that are provided are correct, and that segments of
the same type provided in different meshes are associated with
each other. We simulate this situation by manually segment-
ing the biplanes of Figure 7, and randomly removing half of
the segments. The input is shown on the left in Figure 7d, and
the output shown on the right. Note that, again, compared to
the unconstrained segmentation, the rear stabilizers are found
as desired.

6. Conclusion

We present a method that takes as input a set of meshes, and
produces a consistent segmentation from several inconsistent
cues. The method is demonstrated on several examples, and
two more specific applications are suggested: symmetric seg-
mentations of a single mesh and segmentation transfer between
meshes belonging to the same class.

As this is a prototype system, there are several limitations.
First, our method uses parameters to balance the relative impor-
tance of various segmentation cues. These parameters could,
in principle, have been learned from example segmentations.
Instead, we set them experimentally to favor aggregating adja-
cent, convex faces, followed by adjacent, concave faces, then
close disconnected segments, and then distant disconnected
segments, with faces within “prior” segments aggregating be-
fore faces across prior segmentation boundaries. We did not
fine-tune these parameter values - most of them are our initial
choices, so the values are reasonable, but by no means optimal.

Second, as implemented, our method is limited to those cases
in which satisfactory correspondences may be created through
a global similarity alignment. These correspondences do not
need to be perfect (in none of our examples were the correspon-
dences perfect), since segmentation cues can compensate for
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(a)

(b)

(c)

(d)

Input Output

(Connected Components) (Consistent Segmentation)

(Example Segmentations) (Segmentation Transfer)

Figure 7: Our method can transfer segmentations from example meshes. Consider the three biplanes, whose connected components are shown on the left side of
(a). We can run our method, as usual, to create a consistent segmentation (right column of (a)). This segmentation may not match the desired one; for example,
it may be desirable to separate the three stabilizers in the back of the plane (red arrow). We can use the first plane as an example to segment the others (b). This
segments the stabilizers correctly, but may miss other desired details. For example, the propeller segment may be too large (green arrow). In (c), we use the example
segmentations of the first two planes to segment the third. Compared to (b), this creates more precise restrictions, and creates a smaller propeller segment. Our
method can also handle constraints in which segments are partially given, and the remainder is required to be filled in. In (c), we randomly choose half of the
segments to be known, and use these as examples to generate the segmentation in the right column.

(a) Alignment (a) Consistent Segmentation

Figure 8: An example of how a poor alignment (a) hampers the resulting con-
sistent segmentation (b). Note that due to the poor alignment, the heads of the
animals are not found to correspond, the hoofs are sometimes labeled as outly-
ing segments, and the back of the horse is found to correspond to the tail of the
giraffe.

errors in correspondences. However, better alignments produce
more consistent segmentations. Figure 8 shows an example of
how a poor alignment can hamper the resulting segmentation.

Note that because of the poor alignment, the heads of the ani-
mals are in separate segments, some of the hoofs are outlying
segments, and the back of the horse is merged with the tail of
the giraffe. To improve the results of such cases, it may help
to consider non-rigid alignments, or part-based correspondence
methods.

Third, we consider only low-level cues: adjacency and point
correspondences. Better segmentations may be achieved by ex-
panding the alignment error function to include shape signa-
tures and contextual cues. The heuristics used in Part Analo-
gies [27] and Shuffler [15], for example, include such terms.

Finally, our method takes as manual input the number of de-
sired segments. Ideally, this number would be determined auto-
matically: perhaps studying the behavior of our error function
as segments are merged will suggest heuristics to automate the
final number of clusters (e.g., as in [12]).

7. Acknowledgments

We would like to thank Aim@SHAPE and Viewpoint for 3D
models. We acknowledge NSF (CNFS-0406415, IIS-0612231,

8



and CCF-0702672) and Google for providing funding to sup-
port this project.

References
[1] Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N.,and Azariadis,

P. 2007.3D mesh segmentation methodologies for CAD applications.
Computer-Aided Design & Applications 4, 6, 827-841.

[2] Allen, B., Curless, B., and Popović, Z. 2003. The space of human body
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