
Stripe Boundary Codes for Real-Time Structured-Light
Range Scanning of Moving Objects

Olaf Hall-Holt Szymon Rusinkiewicz
Stanford Universityy

Abstract

We present a novel approach to real-time structured
light range scanning. After an analysis of the underlying
assumptions of existing structured light techniques, we de-
rive a new set of illumination patterns based on coding the
boundaries between projected stripes. These stripe bound-
ary codes allow range scanning of moving objects, with
only modest assumptions about scene continuity and re-
flectance. We describe an implementation that integrates
these new codes with real-time algorithms for tracking
stripe boundaries and determining depths. Our system uses
a standard video camera and DLP projector, and produces
dense range images at 60 Hz with 100 �m accuracy over a
10 cm working volume. As an application, we demonstrate
the creation of complete models of rigid objects: the objects
are rotated in front of the scanner by hand, and successive
range images are automatically aligned.

1 Introduction

The automated computer acquisition of three-dimensional
shape is becoming increasingly important commercially,
with applications in fields such as computer graphics, vir-
tual and augmented reality, robot navigation, and manufac-
turing. For many of these applications, it is desirable to ob-
tain the 3D geometry of moving objects in real time. In ad-
dition, in many cases 3D scanning is practical only if costs
are low, precluding the use of specialized hardware.

Range scanning may be broadly divided into active
and passive methods. Active range scanning methods
(based on time of flight [3DV Systems], depth from defocus
[Nayar 96], or projected-light triangulation) typically per-
form well in the absence of scene texture, are computation-
ally inexpensive and robust, and return accurate, densely-
sampled range data. Of the active range scanning schemes,
those based on triangulation may be used with the largest
range of scene sizes and have the lowest hardware costs,
especially given the increasing capabilities and declining

yStanford Computer Graphics Lab
Gates Building 3B
Stanford University
Stanford, CA 94305
{olaf,smr}@graphics.stanford.edu

prices of computer-controlled projectors and video cameras.
Comparatively little research has been done, however, on
applying triangulation methods to scenes containing mov-
ing or deforming objects. Previously-studied systems that
allow object motion during scanning either use custom-
designed hardware [Gruss 92], make strong continuity as-
sumptions about the scene, or are variants of passive vision
methods that use a projected texture to aid in solving the
correspondence problem.

In this paper, we introduce a triangulation-based range
scanning system for moving scenes that returns dense range
images in real time (60 Hz). The system uses a new kind of
illumination pattern, based on time-coding the boundaries
between projected stripes. The boundaries are tracked from
frame to frame, permitting the determination of depths even
in the presence of moving objects in the scene.

We begin by presenting a classification of structured-
light scanning methods according to the reflectance, spatial,
and temporal coherence assumptions they make. We show
how previous approaches fit in this taxonomy, and present a
new set of assumptions that leads to a system optimized for
moving scenes. Next, we derive the stripe boundary codes
used by our system and describe the boundary tracking and
decoding algorithms used by our prototype implementation.
We present results from this system, and show how the scan-
ner may be combined with automatic alignment to allow the
rapid creation of complete models of rigid objects. Finally,
we discuss limitations of our current system and propose
some future enhancements to make the system less sensitive
to the presence of scene texture and depth discontinuities.

2 Structured-Light Code Taxonomy

The assumptions made in designing a structured light sys-
tem are often stated only implicitly, despite their impor-
tance. We characterize the space of structured light methods
in terms of the underlying assumptions they make about the
reflectance, space, and time coherence of the scene. We
then argue that there exists a relatively unexplored, practi-
cal combination of assumptions that leads to a new class of
structured light scanning methods.

1



2.1 Background

We shall consider the space of scanners incorporating a
single illumination source and a single detector (typically
a CCD camera), where depth is obtained by triangulation
[Posdamer 82, Besl 88]. The differences among these sys-
tems lie in the methods they use to form correspondences
between camera pixels and locations in the projected pat-
tern. Without loss of generality, we refer to these pattern
locations as “projector pixels.” To obtain correct depths,
each method must make certain assumptions about how the
scene transforms the projected light into the camera image.
In abstract terms, we may think of the scene as a function
that transforms projector pixels into camera pixels, and we
may consider the restrictions each scanning method places
on this transfer function.

One class of scanners uses color coding to determine the
correspondence between camera and projector pixels. A
pattern consisting, for example, of colored dots [Davies 96]
is projected onto the scene, then the color observed at a lo-
cation is used to determine the camera-projector correspon-
dence. This type of method assumes that the scene does not
modify the colors from the projector to the camera, thus re-
stricting the allowable transfer functions to those that do not
modify colors. Effectively, this makes a reflectivity assump-
tion about the scene.

Another class of scanners encodes information into a
pattern in some neighborhood of projector pixels. For ex-
ample, Boyer and Kak describe a system in which location
in the projector image is identified by a color coding of adja-
cent stripes [Boyer 87]. The correspondence between cam-
era pixels and projector location can therefore be made only
if the scene “transfer function” preserves spatial neighbor-
hoods. We will call this a spatial coherence assumption.
Note that for this system, violation of the coherence as-
sumptions may cause small areas of incorrect depths around
the discontinuities. Thus, the system assumes local scene
coherence. In contrast, there exist systems for which the
spatial coherence assumption must be valid globally. For
example, Proesmans et. al. describe a system in which a
grid pattern is projected onto the scene, and the grid lines
visible in the camera image are followed to determine cor-
respondences between points in the camera and projector
images [Proesmans 96]. In this case, a single visible sur-
face is assumed, since the system relies on counting grid
lines.

A third way of encoding information into the projector
signal is to group pixels over time rather than space. For
example, in the system of Sato and Inokuchi [Sato 87], the
projector pixels are turned on and off over time, so that
when a camera pixel records a particular on and off in-
tensity pattern, the corresponding projector pixel can be
identified. A popular choice for this on-off pattern is a
set of Gray codes [Bitner 76], though other approaches
using black-and-white [Gartner 96], gray-level [Horn 99],

or color [Caspi 96] stripes, or swept laser stripes or dots
[Rioux 94], have been examined. The common underlying
assumption is temporal coherence of the scene, namely that
neighborhoods of pixels can be identified over time. Note
that all of the methods mentioned here make a global tem-
poral coherence assumption (i.e., that the scene is static);
we will discuss what it means to make a local temporal co-
herence assumption in the following subsection.

The design space for projected light illumination pat-
terns can therefore be described in terms of reflectance, spa-
tial coherence, and temporal coherence assumptions. The
strength of a spatial coherence assumption can be measured
by the number of pixels involved: if the patterns to be iden-
tified in a given camera image require a minimum of n pix-
els, then the smallest identifiable features in the scene must
occupy at least n camera pixels. The reflectance assumption
impacts the range of colors permitted in the scene, as well
as the frequency of textures.

Our goal in designing an illumination pattern is to enable
the scanning of moving scenes, with small feature sizes and
largely unknown reflectance properties. Stated in terms of
the above assumptions, this means that we would like to si-
multaneously minimize the spatial coherence, reflectance,
and temporal coherence assumptions required by our sys-
tem. This goal leads to the adoption of the following as-
sumptions:

� Most of the time, two horizontally adjacent camera
pixels will see the same surface.

� Most of the time, the reflectance of two horizontally
adjacent pixels is similar.

� Most of the time, projected features that persist for n
frames can be used in making correlations. In our im-
plementation, we use n = 4.

The last of these assumptions has not to our knowledge
been used in the same way before, so we will now look at
the implications of motion for structured light systems, in
particular explaining this last assumption more fully.

2.2 Space-time Coherence

In order to formalize the notion of temporal coherence, as
well as to define a metric of the strength of such assump-
tions (as we did for spatial coherence), we consider the ap-
pearance of a scene illuminated by a sequence of patterns
in (four-dimensional) space-time. We begin by examining
the simplified case of two-dimensional range scanning (i.e.,
working in a plane), with time as a third dimension.

Let us consider a scene with objects moving in the plane.
By stacking up a series of snapshots of the scene at dif-
ferent times, we see that the objects trace out volumes in
three-dimensional space-time (Figure 1). A time-varying
light pattern projected onto the objects can then be visual-
ized as a two-dimensional light pattern projected onto these
volumes, and a series of (one-dimensional) camera images

2



t

ProjectorCamera

t

Codeword

Figure 1: A 2D (planar) scanning application examined in 3D space-time.
At top, we show a scene being scanned at three points in time. At bottom,
we show how the trajectory of each object may be thought of as defining
a solid in space-time. A sequence of 1D projected patterns becomes a 2D
pattern projected onto the objects in space-time, and local neighborhoods
(defining codewords) have both spatial and temporal extent. The relation
between 3D scanning and 4D space-time is analogous.

of the illuminated objects may be thought of as a 2D pic-
ture of the volumes. Thus, there is a direct correspondence
between moving-object, multiple-pattern range scanning in
the plane and single-frame correspondence methods (some-
times called one-shot methods) in 3D.

Given this analogy, we may apply some concepts of 3D
one-shot methods to the case of 2D moving-object range
scanning. For example, 3D one-shot methods often use light
patterns in which two-dimensional neighborhoods spec-
ify codes. In the 2D moving-object case, such neighbor-
hoods have both spatial and temporal extent, but the idea
of communicating a code via these two-dimensional neigh-
borhoods can still be used. Similarly, an analogy may be
formed between following a continuous grid line (in 3D
grid-based methods) and tracking a feature across several
frames (in the 2D case). The same analogies may be made
between moving objects in 3D and a single pattern in 4D.

Thus, we see that the notions of temporal and spatial co-
herence may be combined into a single concept of coher-
ence in space-time. We may then classify particular spatio-
temporal coherence assumptions according to the extent of
space-time neighborhoods over which the moving scene is
assumed to be continuous, and may therefore convey codes.
Thus, our assumption of temporal coherence over 4 frames
means that we are assuming neighborhoods of eight pixels
to form correspondences in space-time: two in each frame.
This implies the ability to track the movement of this pair
of pixels from one frame to the next.

2.3 Derivation of Stripe Boundary Codes

The assumptions given above limit the set of scenes that
our system will be able to scan. Making these assump-
tions explicit, in our case, also provides a set of tools for
designing an illumination pattern. We proceed with a sort of
worst-case analysis: if the scene behaves arbitrarily badly,
except where constrained by the above assumptions, what
approach to forming correspondences will still work?

� Since our spatial coherence assumption involves only
horizontally adjacent pixels, pixels on different scan
lines of the camera may not have anything in common,
and must be treated independently. Due to the epipolar
constraint, the independence of scan lines of the cam-
era implies independence of rows of pixels on the pro-
jector, and therefore we can design the projector illu-
mination pattern independently for different horizontal
rows. In particular, we use the same illumination pat-
tern for each row, which forms a stripe pattern.

� In order to allow the greatest possible variation in
scene reflectances, our system uses only black and
white stripes.

� Since at most two pixels of a given frame can be used
together to infer correspondences, the only projected
feature that we can reliably identify is the boundary
between two stripes. Thus, we will use a stripe bound-
ary code to convey information between projector and
camera.

Focusing on stripe boundaries has several advantages.
For example, if the stripes on either side of a stripe bound-
ary can each be assigned n different codes over time, then
roughly n2 distinct stripe boundaries can be identified in a
camera image, even if no scene feature is as wide as a stripe.
Also, under appropriate assumptions on the smoothness of
the scene geometry and texture, the stripe boundary may
be located with sub-pixel accuracy, thus increasing the ulti-
mate accuracy of the scanning system.

At this point the design of an illumination pattern has
been considerably constrained. The next section describes
a method for generating stripe boundary codes that can in-
corporate a variety of additional design criteria.

3 Designing a Stripe Boundary Code

Designing a stripe boundary code involves assigning a color
(black or white) to each stripe at each point in time, such
that each stripe boundary has a unique code (consisting of
the black/white illumination history on both sides of the
boundary) over the sequence of four frames. To maximize
spatial resolution, we would like the pattern to contain as
many boundaries as possible. In order to generate such pat-
terns, we form an analogy between stripe boundary codes
and paths in a graph, and search for a maximal-length path
that satisfies certain conditions.

3



Consider a graph in which each node represents the
black/white illumination of a single stripe over four frames,
and all pairs of nodes are connected with edges. Each edge
represents a (time-varying) stripe boundary, since it lies be-
tween two (time-varying) stripes. This graph has 24 = 16
nodes and 120 (undirected) edges. A path through this
graph that traverses each edge at most once in each direction
corresponds to a stripe boundary code, since it specifies the
assignment of colors to stripes over time, with the property
that the code of each boundary is unique.

We may place additional restrictions on the stripe bound-
ary codes by modifying the graph and adding requirements
on how it is traversed. First, we avoid any stripe boundaries
that do not vary over time, since they will be indistinguish-
able (from the point of view of the camera) from texture
boundaries. This restriction is manifested in the graph by
deleting the edge between the two time-invariant color pro-
gressions, namely the edge between all black (0000) and all
white (1111).

A second, more sweeping restriction arises as follows. In
the complete graph, we allowed “boundaries” between any
two stripes, including two stripes of the same color. Such
a boundary cannot be seen in a camera image, so we call it
a “ghost” boundary. In our case, if we eliminated all ghost
boundaries, we would eliminate all but eight edges in the
graph, which would lead to very short solution paths.

In order to allow some ghost boundaries, there must be
a way to identify them implicitly in camera images. We
enable such a determination with the help of the follow-
ing restriction: we number the stripe boundaries according
to their position along a projector row, from 1 to m, and
restrict the locations of ghost boundaries to odd-numbered
positions in frames 1 and 3 and even-numbered positions in
frames 2 and 4. Thus, a given stripe boundary will be vis-
ible at least every other frame, and in any frame there will
be at most one ghost between any two visible boundaries.

To embed this restriction in the graph, we distinguish
edges according to the ghost boundaries they contain: an
edge is dotted if there are no ghost boundaries in frames 1
and 3, and solid if there are no ghost boundaries in frames
2 and 4. Edges that have no ghost boundaries in any frame
are dashed, and any remaining edges are deleted from the
graph, since they will not be used in any path. This restric-
tion reduces the number of (undirected) edges to 55, result-
ing in the graph of Figure 2. We then constrain our search
to paths in which the types of traversed links alternate be-
tween solid and dotted (where dashed is understood to stand
for either).

Since the problem as stated has many solutions, we may
impose additional conditions:

� We would like the effect of errors (i.e., misidentifying
a stripe boundary) to be as large as possible, so that
outliers are easier to identify and filter away. (This is

00111110

1011 0110

0100 1001

0001 1100

0000 1101

1010 0111

10000101 1111 0010

Boundary visible
at even times

Boundary visible
at odd times

Boundary visible
at all times

Figure 2: A graph used to determine a set of stripe boundary codes. We
look for a traversal of edges in this graph (with the understanding that each
edge may be traversed once in each direction), with the added constraint
that solid and dotted edges must alternate along the path. A dashed edge
may be substituted for either solid or dotted. As mentioned in the text, the
edge between 0000 and 1111 is missing: we disallow this stripe boundary
as a valid code, since it is too easy to confuse with static texture.

the opposite of the strategy adopted by [Jiang 94], in
which the aim is to minimize the size of errors.)

� We look for codes in which the distribution of stripes
of widths 1 and 2 (or, equivalently, the distribution of
ghosts) is as uniform as possible within each frame.

A maximal-length code will traverse each of the 55 edges
of the graph twice (once in each direction), so will have
2 � 55 = 110 stripe boundaries (and 111 stripes). Since we
only need to find the code once, we may use a brute-force
algorithm to search for paths in the graph. An example of
such a code is shown in Figure 3.

4 Implementation

We have implemented a prototype range scanning system
based on the stripe boundary codes described above. In
our system, a DLP projector cycles through the illumina-
tion patterns at 60 Hz., and a standard NTSC video camera
is used to capture images. The video is digitized and pro-
cessed in real time, and the system generates a new range
image every 1=60 sec.

Our algorithm for depth extraction consists of segment-
ing each video field into illuminated and unilluminated re-
gions (i.e., “black” and “white”), finding stripe boundaries,
matching these boundaries to those on the previous field,
and using information about the illumination history of each
boundary to determine the plane in space to which it corre-
sponds. Depth is then obtained via ray-plane triangulation.

We now discuss the tradeoffs made in implementing each
stage of this pipeline on current hardware, as well as pos-
sible extensions to these algorithms to make them more ro-
bust as hardware capabilities increase.

4



t

Figure 3: At top, a four-frame sequence of projected patterns satisfying the conditions in Section 3. Each pattern has 2 � 55 = 110 stripe boundaries (111
stripes), with the property that each stripe boundary has a unique code (consisting of the black/white illumination history on either side of the boundary over
the sequence of four frames). At bottom, a sequence of video frames of an elephant figurine illuminated with a stripe boundary code.

4.1 Segmentation Algorithm

Given the assumption of local coherence, we may assume
that whenever we see a strong gradient in image intensity it
is due to a projected stripe boundary. Therefore, we have
implemented a segmentation algorithm that finds large gra-
dients in intensity along camera image scanlines, and as-
sumes that these are the locations of stripe boundaries. For
scenes without high-frequency textures, we have found this
method to be effective and robust, while still running in real
time. In particular, we have found this method less sensitive
to variations in reflectivity and changes in ambient illumi-
nation than simple threshold-based segmentation.

4.2 Stripe Matching Algorithm

Since our approach relies on time-coding the boundaries
between stripes, a critical part of our algorithm is match-
ing the boundaries visible in each frame to those in previ-
ous frames. This is a nontrivial problem for two reasons.
First, the boundaries move from frame to frame, potentially
with large velocities. Second, the fact that our code con-
tains “ghost” boundaries means that not all boundaries are
visible in each frame.

It is the presence of ghosts (i.e., the inferred black-black
and white-white stripe “boundaries”) that distinguishes our
stripe matching problem from the traditional feature track-
ing literature. To make the problem tractable, we must use
the constraints presented in Section 3, namely that there
may be at most one ghost between each pair of visible stripe
boundaries, and that ghost must match to a visible stripe
boundary in the previous and following frames. These con-
ditions limit the possible matches and allow us to determine,
in many cases, whether certain boundaries should match to

Possible

Illumination Stripe Boundaries
Observed

Matches

?

Figure 4: Matching stripe boundaries becomes difficult in the presence of
“ghosts” (i.e., boundaries that could not be observed). Here, we show one
possible ambiguity, namely whether the center stripe boundaries in the two
frames should match to each other or should match to “ghosts” in the other
frame.

other visible boundaries or to ghosts. Even these condi-
tions, however, are not enough to disambiguate the situa-
tion shown in Figure 4. The two possibilities of having the
center stripes match to each other and having them match to
ghosts in the other frame are both allowed by the constraints
mentioned above.

Although there is a large literature on tracking algo-
rithms that could potentially be adapted to our applica-
tion, including multiple-hypothesis methods [Reid 79] and
methods that use velocities [Brown 97], most of these ap-
proaches are too slow for real-time implementation. There-
fore, we currently implement only a simple matching algo-
rithm that hypothesizes all possible locations of ghosts and
matches each visible boundary to the closest stripe or hy-
pothesized ghost in the previous frame. As discussed later,
this places a constraint on the maximum allowable veloc-
ity of stripes, hence limiting the speed at which objects in

5



the scene can move. We anticipate that future systems will
incorporate better matching heuristics, permitting correct
stripe matching in the presence of greater frame-to-frame
motion.

4.3 Decoding Algorithm

Once we have matched the stripe boundaries in one frame
to those in the previous frame, we propagate the illumina-
tion history (i.e., the color of the stripes on either side of the
boundary over the past four frames) of the old boundaries
to the new ones. If we have seen and successfully tracked
this boundary for at least four frames, this history identi-
fies it uniquely. The boundary remains identified at every
frame thereafter, since the four-frame illumination history
contains all four patterns.

Given a stripe boundary identification, we determine the
plane in space to which the boundary corresponds. We then
find the intersection of that plane with the ray correspond-
ing to the camera position at which the boundary was ob-
served; this determines the 3D location of a point on the
object being scanned. An important difference between our
approach and traditional projected-stripe systems based on
Gray codes is that this scheme only gives us depth values
at stripe boundaries. These depths, however, are very accu-
rate: we triangulate with an exact plane (the stripe bound-
ary), rather than a wedge formed by two planes (the stripe
itself). For smooth surfaces without high-frequency texture,
we may perform sub-pixel estimation of the location of the
stripe boundaries to further reduce depth errors (Figure 5).

Figure 5: Comparison of decoding accuracy with and without sub-pixel
estimation of stripe boundaries. At top, a rendering of a scanned target
with grooves ranging from 0.1 mm to 1.0 mm in depth. At center, the
depth profile of a slice through the target, if sub-pixel estimation of stripe
boundaries is not used. At bottom, the corresponding depth profile when
sub-pixel estimation is used.

5 Results

We have tested our implementation on a scene consisting
of an elephant figurine, approximately 10 cm in size, ro-
tated by hand at approximately 1 cm/sec. In Figure 6, we
compare our stripe boundary code system to a conventional

Gray code-based system for this scene. Note that because
the elephant was moving, the Gray code method gave erro-
neous results in regions in which stripes moved from frame
to frame. In contrast, our system produced correct results
in the moving-object case. Some statistics about our imple-
mentation are shown in Table 1, and statistics about the test
scene are shown in Table 2.

Table 1: Statistics about our range scanner implementation.

Frame size 200 x 200 (potentially 640 x 240)
Rate 60 Hz
Working Volume 6 cm x 12 cm x 16 cm
Sample Spacing 1.25 – 2.5 mm (X) x 0.75 mm (Y)
Accuracy < 100 �m (Z)
Computer System SGI Onyx2, 250 MHz MIPS R10000

Table 2: Statistics about our “elephant” test scene.

Total frames 16850
Total scanning time 4.7 min.
Avg. samples per frame 3680
Total range samples 62 M
Frames used for reconstruction 644
Samples used for reconstruction 1.3 M

5.1 Automatic Frame-to-frame Alignment

Although our implementation can be used for scanning non-
rigid (deforming) moving objects, if the objects are rigid we
may extend the system to automatically produce complete
3D models instead of just range images. The key is that be-
cause we gather data continuously, successive range images
of a rigid object moving at modest speeds are close to each
other. We can thus align consecutive range images, thereby
recovering the relative motion of the object and range scan-
ner. The algorithm we use to do this is iterative closest
points (ICP): for each sample in a range image, we find the
closest sample in the other range image and apply a rigid-
body transformation that minimizes the distances between
corresponding points [Chen 91, Besl 92]. This algorithm is
iterated until convergence.

The classic problem with ICP algorithms has been the
presence of a large number of local minima, leading to in-
correct solutions unless a good initial estimate of the rela-
tive alignment is available. Because our range images are
taken so close together, however, we know that the relative
transformation between any two consecutive range images
will be small. Thus, frame-to-frame ICP can be performed
completely automatically, with little danger of converging
to incorrect local minima unless the object being scanned
moves completely out of the field of view or contains patho-
logical geometric degeneracies.

Figure 7 shows 644 range images of the elephant, ob-
tained by moving the elephant in front of the scanner by
hand. Because our system acquires data at a high rate, this
represents only 4% of the frames gathered over approxi-
mately five minutes of scanning. The scans were automati-
cally aligned using frame-to-frame ICP, then additional cor-

6



Front View Top View

Gray Codes
Front View Top View

Stripe Boundary Codes

Figure 6: Comparison of range data acquired using Gray codes and stripe boundary codes on a moving scene consisting of an elephant figurine moving
over a black background (some raw video frames are shown in Figure 3). At left, a scene moving at approximately one pixel per frame, scanned using Gray
codes. Note the presence of incorrect geometry, especially near discontinuities. At right, the same scene scanned using our codes. Note that despite the
presence of motion we obtain correct geometry.

Figure 7: At left, a photograph of an elephant figurine. At center, 644 range images of the elephant obtained using our system by manually moving the
elephant in front of the scanner. The individual scans are color coded, and have been automatically aligned using an ICP algorithm. At right, a unified model
of the elephant, obtained by combining the scans with the VRIP algorithm.

respondences were computed and an optimal global regis-
tration among all the scans was found using a relaxation
technique [Pulli 99]. Finally, the scans were merged into
a single mesh using the VRIP algorithm [Curless 96]. The
alignment and merging are currently performed offline; for
this example, they took approximately 30 minutes.

5.2 Limitations

Although we have demonstrated a system capable of real-
time range scanning, our implementation has several limi-
tations on its applicability:

Texture: As mentioned in Section 4.1, we currently as-
sume that scene texture varies slowly in order to segment
illuminated and unilluminated regions. If the scene does
contain step-edges in texture, our segmentation algorithm
may report false positives (as well as some false negatives).
Even though we have designed our code such that static
stripe boundaries correspond to illegal codewords, our sys-
tem may obtain incorrect geometry in the presence of mov-
ing texture.

Structured-light methods for static scenes often compen-
sate for texture by adding an additional all-white frame.
This allows them to determine the reflectance seen at each
pixel, and use this reflectance estimate during segmentation
of the remaining frames. Such an approach could also be
implemented in the moving scene case, though it would
require frame-to-frame tracking of the reflectance at each
point. In addition, the presence of extra all-white frames
would reduce the rate at which depths are returned. An al-
ternative solution might be based on simultaneous acquisi-
tion at multiple wavelengths; this would not reduce the rate
of capture.

Silhouettes: Another aspect of our current system that
could be made more robust is the handling of silhouette
edges and disocclusion of geometry from behind silhou-
ettes. Currently, we must wait at least four frames before
we have enough data to identify a new stripe, since the code
is four frames long. Shortening this delay would be possible
by assuming greater temporal coherence. For example, we
could attempt to identify a new stripe as soon as it appears
by looking ahead three frames. Such a look-ahead scheme

7



could also be used improve robustness, by providing addi-
tional hints of whether a given stripe was misidentified (i.e.,
it is likely that there was an error in tracking if the observed
code at a stripe is not the same as the codes four frames ago
and four frames into the future). Introducing such an al-
gorithm based on look-ahead, however, would not only in-
troduce additional latency into the system, which might be
undesirable in certain applications, but also reduce the abil-
ity to identify short-lived features (specifically, those that
appear then disappear again between four and eight frames
later).

Object Motion: Because our prototype implementa-
tion was designed to run in real time on present hardware,
we were limited to simple algorithms for stripe boundary
matching and decoding. In practice, this requires objects in
the scene to move relatively slowly (between one-fourth and
one-half stripe-width per frame) in order for boundaries to
be matched correctly. For our prototype, this corresponds to
a constraint that objects move a maximum of approximately
10% of our working volume per second. We anticipate that
future systems could incorporate more sophisticated track-
ing algorithms to allow for greater object speeds.

Intrusiveness: For many potential applications of a
range scanning system (in particular, any applications in-
volving people), it is distracting to have visible flashing
lights. Such applications would require making the illumi-
nation patterns imperceptible, either by projecting them in
the infrared or by using a time-multiplexed light cancella-
tion technique [Raskar 98].

6 Conclusion

We have presented an analysis of structured-light scanning
in terms of reflectance, spatial, and temporal coherence as-
sumptions. Based on this examination, we have derived a
new set of illumination codes optimized for moving scenes,
and implemented a prototype system capable of obtaining
range images at video rates. We have shown that this sys-
tem may be used to obtain complete models of rigid objects
rapidly and automatically, without the need for calibrated
object motion.

In addition to addressing the limitations mentioned in
Section 5.2, future work on this system might focus on ex-
tensions to high-speed cameras, multiple cameras and pro-
jectors, and automated methods for calibrating the scan-
ner. For the case of rigid objects, we are currently work-
ing on methods to perform alignment and merging in real
time. This would have the advantage of giving the user in-
stant feedback about the location of unscanned areas in the
model, allowing for easier determination of when the object
has been scanned completely.

Because our system uses off-the-shelf components and
is computationally inexpensive, it permits a variety of po-
tential applications in such fields as tele-immersion or robot

guidance. In addition, since moving the scanner is equiv-
alent to moving the scene, making the scanner portable
would permit real-time digitization of buildings, rooms, or
movie sets.

References

[3DV Systems] 3DV Systems, Inc. “ZCam,” Web page:
http://www.3dvsystems.com/

[Boyer 87] Boyer, K. L. and Kak, A. C. “Color-Encoded Struc-
tured Light for Rapid Active Ranging,” Trans. PAMI, Vol. 9,
No. 1, 1987.

[Besl 88] Besl, P. “Active Optical Range Imaging Sensors,” Ma-
chine Vision and Applications, Vol. 1, 1988.

[Besl 92] Besl, P. and McKay, N. “A Method for Registration of
3-D Shapes,” Trans. PAMI, Vol. 14, No. 2, Feb. 1992.

[Bitner 76] Bitner, J. R., Erlich, G, and Reingold, E. M. “Effi-
cient Generation of the Binary Reflected Gray Code and its
Applications,” CACM, Vol. 19, No. 9, 1976.

[Brown 97] Brown, R. G. and Hwang, P. Y. C. Introduction to
Random Signals and Applied Kalman Filtering, 3 ed., John Wi-
ley & Sons, 1997.

[Caspi 96] Caspi, D. and Kiryari, N. “Range Imaging with Adap-
tive Color Structured Light,” Trans. PAMI, Vol. 20, No. 5, 1996.

[Chen 91] Chen, Y. and Medioni, G. “Object Modeling by Reg-
istration of Multiple Range Images,” Proc. IEEE Conf. on
Robotics and Automation, 1991.

[Curless 96] Curless, B. and Levoy, M. “A Volumetric Method
for Building Complex Models from Range Images,” Proc. SIG-
GRAPH, 1996.

[Davies 96] Davies, C. and Nixon, M. “Sensing Surface Discon-
tinuities via Coloured Spots,” Proc. IWISP, 1996.

[Gartner 96] Gartner, H., Lehle, P., and Tiziani, H. “New, Highly
Efficient, Binary Codes for Structured Light Methods,” SPIE,
Vol. 2599, 1996.

[Gruss 92] Gruss, A., Tada, S., and Kanade, T. “A VLSI Smart
Sensor for Fast Range Imaging,” Proc. IEEE Int. Conf. on In-
telligent Robots and Systems, 1992.

[Horn 99] Horn, E. and Hiryati, N. “Toward Optimal Structured
Light Patterns,” Image and Vision Computing, Vol. 17, 1999.

[Jiang 94] Jiang, X. and Bunke, H. “Range Data Acquisition by
Coded Structured Light: Error Characteristic of Binary and
Gray Projection Code,” SPIE, Vol. 2252, 1994.

[Nayar 96] Nayar, S. K., Watanabe, M., and Noguchi, M. “Real-
Time Focus Range Sensor,” Trans. PAMI, Vol. 18, No. 12,
1996.

[Posdamer 82] Posdamer, J. L. and Altschuler, M. D. “Surface
Measurement by Space-encoded Projected Beam Systems,”
Computer Graphics and Image Processing, Vol. 18, 1982.

[Proesmans 96] Proesmans, M., Van Gool, L., and Oosterlinck,
A. “One-Shot Active 3D Shape Acquisition,” Proc. ICPR,
1996.

[Pulli 99] Pulli, K. “Multiview Registration for Large Data Sets,”
Proc. 3DIM, 1999.

[Raskar 98] Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin,
L., and Fuchs, H. “The Office of the Future: A Unified Ap-
proach to Image-Based Modeling and Spatially Immersive Dis-
plays,” Proc. SIGGRAPH, 1998.

[Reid 79] Reid, D. “An Algorithm for Tracking Multiple Tar-
gets,” Trans. Auto. Control, Vol. 24, No. 6, 1979.

[Rioux 94] Rioux, M. “Digital 3-D Imaging: Theory and Appli-
cations,” SPIE, Vol. 2350, 1994.

[Sato 87] Sato, K. and Inokuchi, S. “Range-Imaging System Uti-
lizing Nematic Liquid Crystal Mask,” Proc. ICCV, 1987.

8


