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Abstract

We describe a system for non-photorealistic rendering (NPR) of
virtual environments. In real time, it synthesizes imagery of
architectural interiors using stroke-based textures. We address the
four main challenges of such a system – interactivity, visual detail,
controlled stroke size, and frame-to-frame coherence – through
image based rendering (IBR) methods. In a preprocessing stage, we
capture photos of a real or synthetic environment, map the photos to
a coarse model of the environment, and run a series of NPR filters
to generate textures. At runtime, the system re-renders the NPR
textures over the geometry of the coarse model, and it adds dark
lines that emphasize creases and silhouettes. We provide a method
for constructing non-photorealistic textures from photographs that
largely avoids seams in the resulting imagery. We also offer a new
construction,art-maps, to control stroke size across the images.
Finally, we show a working system that provides an immersive
experience rendered in a variety of NPR styles.

Keywords: Non-photorealistic rendering, image-based rendering,
texture mapping, interactive virtual environments.

1 Introduction

Virtual environments allow us to explore an ancient historical site,
visit a new home with a real estate agent, or fly through the
twisting corridors of a space station in pursuit of alien prey. They
simulate the visual experience of immersion in a 3D environment
by rendering images of a computer model as seen from an observer
viewpoint moving under interactive control by the user. If the
rendered images are visually compelling, and they are refreshed
quickly enough, the user feels a sense of presence in a virtual
world, enabling applications in education, computer-aided design,
electronic commerce, and entertainment.

While research in virtual environments has traditionally striven
for photorealism, for many applications there are advantages to
non-photorealistic rendering (NPR). Artistic expression can often
convey a specific mood (e.g. cheerful or dreary) difficult to imbue in
a synthetic, photorealistic scene. Furthermore, through abstraction
and careful elision of detail, NPR imagery can focus the viewer’s
attention on important information while downplaying extraneous
or unimportant features. An NPR scene can also suggest additional
semantic information, such as a quality of “unfinishedness” that
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Figure 1: A non-photorealistic virtual environment.

may be desirable when, for example, an architect shows a client
a partially-completed design. Finally, an NPR look is often more
engaging than the prototypical stark, pristine computer graphics
rendering.

The goal of our work is to develop a system for real-time NPR
virtual environments (Figure 1). The challenges for such a system
are four-fold: interactivity, visual detail, controlled stroke size,
and frame-to-frame coherence. First, virtual environments demand
interactive frame rates, whereas NPR methods typically require
seconds or minutes to generate a single frame. Second, visual
details and complex lighting effects (e.g. indirect illumination
and shadows) provide helpful cues for comprehension of virtual
environments, and yet construction of detailed geometric models
and simulation of global illumination present challenges for a large
virtual environment. Third, NPR strokes must be rendered within
an appropriate range of sizes; strokes that are too small are invisible,
while strokes that are too large appear unnatural. Finally, frame-to-
frame coherence among strokes is crucial for an interactive NPR
system to avoid a noisy, flickery effect in the imagery.

We address these challenges with image-based rendering (IBR).
In general, IBR yields visually complex scenery and efficient
rendering rates by employing photographs or pre-rendered images
of the scene to provide visual detail. Not surprisingly, by using
a hybrid NPR/IBR approach we are able to reap the benefits of
both technologies: an aesthetic rendering of the scene, and visual
complexity from a simple model. More subtly, each technology
addresses the major drawbacks of the other. IBR allows us to
render artistic imagery with complex lighting effects and geometric
detail at interactive frame rates while maintaining frame-to-frame
coherence. On the flipside, non-photorealistic rendering appeases
many of the artifacts due to under-sampling in IBR, both by visually
masking them and by reducing the viewer’s expectation of realism.



At a high level, our system proceeds in three steps as shown in
Figure 2. First, during off-line preprocessing, we construct an IBR
model of a scene from a set of photographs or rendered images.
Second, during another preprocessing step, we filter samples of the
IBR model to give them a non-photorealistic look. The result is
a non-photorealistic image-based representation (NPIBR) for use
in interactive walkthroughs. Finally, during subsequent on-line
sessions, the NPIBR model is resampled for novel viewpoints to
reconstruct NPR images for display.
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Figure 2: Overview of our approach.

This approach addresses many of the challenges in rendering
NPR images of virtual environments in real-time. First, by ex-
ecuting the most expensive computations during off-line prepro-
cessing, our system achieves interactive frame rates at run-time.
Second, by capturing complex lighting effects and geometric de-
tail in photographic images, our system produces images with vi-
sual richness not attainable by previous NPR rendering systems.
Third, with appropriate representation, prefiltering, and resampling
methods, IBR allows us to control NPR stroke size in the projected
imagery. Fourth, by utilizing the same NPR imagery for many sim-
ilar camera viewpoints rather than creating new sets of strokes for
each view, our system acquires frame-to-frame coherence. More-
over, by abstracting NPR processing into a filtering operation on
an image-based representation, our architecture supports a number
of NPR styles within a common framework. This feature gives us
aesthetic flexibility, as the same IBR model can be used to produce
interactive walkthroughs in different NPR styles.

In this paper, we investigate issues in implementing this hybrid
NPR/IBR approach for interactive NPR walkthroughs. The specific
technical contributions of our work are: (1) a method for construct-
ing non-photorealistic textures from photographs that largely avoids
seams in images rendered from arbitrary viewpoints, and (2) a mul-
tiresolution representation for non-photorealistic textures (called
art-maps) that works with conventional mip-mapping hardware to
render images with controlled stroke size. These methods are incor-
porated into a working prototype system that supports interactive
walkthroughs of visually complex virtual environments rendered in
many stroke-based NPR styles.

The remainder of this paper is organized as follows. In Section 2
we review background information and related work. Sections 3-5
address the main issues in constructing, filtering, and resampling
a hybrid NPR/IBR representation. Section 6 presents results of
experiments with our working prototype system, while Section 7
contains a brief conclusion and discussion of areas for future work.

2 Related Work

The traditional strategy for immersive virtual environments is to
render detailed sets of 3D polygons with appropriate lighting effects
as the camera moves through the model [21]. With this approach,
the primary challenge is constructing a digital representation for
a complex, visually rich, real-world environment. Despite recent
advances in interactive modeling tools, laser-based range-finders,
computer vision techniques, and global illumination algorithms, it
remains extremely difficult to construct compelling models with
detailed 3D geometry, accurate material reflectance properties, and

realistic global illumination effects. Even with tools to create
an attractive, credible geometric model, it must still be rendered
at interactive frame rates, limiting the number of polygons and
shading algorithms that can be used. With such constraints, the
resulting imagery usually looks very plastic and polygonal, despite
setting user expectations for photorealism.

In contrast, image-based modeling and rendering methods rep-
resent a virtual environment by its radiance distribution without re-
lying upon a model of geometry, lighting, and reflectance proper-
ties [5]. An IBR system usually takes images (photographs) of a
static scene as input and constructs a sample-based representation
of the plenoptic function, which can be resampled to render photo-
realistic images for novel viewpoints. The important advantages of
this approach are that photorealistic images can be generated with-
out constructing a detailed 3D model or simulating global illumi-
nation, and the rendering time for novel images is independent of a
scene’s geometric complexity. The primary difficulty is storing and
resampling a high-resolution representation of the plenoptic func-
tion for a complex virtual environment [23]. If the radiance dis-
tribution is under-sampled, images generated during a walkthrough
contain noticeable aliasing or blurring artifacts, which are disturb-
ing when the user expects photorealism.

In recent years, a few researchers have turned their attention
away from photorealism and towards developing non-photorealistic
rendering techniques in a variety of styles and simulated media,
such as impressionist painting [13, 15, 20, 24], pen and ink [28, 33],
technical illustration [11, 27], ornamentation [34], engraving [25,
26], watercolor [4], and the style of Dr. Seuss [18]. Much of this
work has focused on creating still images either from photographs,
from computer-rendered reference images, or directly from 3D
models, with varying degrees of user-direction. One of our goals
is to make our system work in conjunction with any of these
technologies (particularly those that are more automated) to yield
virtual environments in many different styles.

Several stroke-based NPR systems have explored time-changing
imagery, confronting the challenge of frame-to-frame coherence
with varying success. Winkenbachet al. [32] and later Cur-
tis et al. [4] observed that applying NPR techniques designed
for still images to time-changing sequences yields flickery, jittery,
noisy animations because strokes appear and disappear too quickly.
Meier [24] adapted Haeberli’s “paint by numbers” scheme [13] in
such a way that paint strokes track features in a 3D model to pro-
vide frame-to-frame coherence in painterly animation. Litwinow-
icz [20] achieved a similar effect on video sequences using op-
tical flow methods to affix paint strokes to objects in the scene.
Markosian [22] found that silhouettes on rotating 3D objects change
slowly enough to give frame-to-frame coherence for strokes drawn
on the silhouette edges. We exploit this property when drawing
lines on creases and silhouettes at run-time. Kowalskiet al. [18]
extends these methods by attaching non-photorealistic “graftals” to
the 3D geometry of a scene, while seeking to enforce coherence
among the graftals between frames. The bulk of the coherence in
our system comes from reprojection of non-photorealistic imagery,
so the strokes drawn for neighboring frames are generally slowly-
changing.

Several other researchers, for example Horryet al. [17],
Wood et al. [35], and Bucket al. [1], have built hybrid NPR/IBR
systems where hand-drawn art is re-rendered for different views.
In this spirit our system could also incorporate hand-drawn art, al-
though the drawing task might be arduous as a single scene involves
many reference images.

In this paper, we present a system for real-time, NPR virtual
environments. Rather than attempting to answer the question “how
would van Gogh or Chagall paint a movie?” we propose solutions
to some technical issues facing an artist wishing to use NPR styles
in a virtual environment system. Two visual metaphors represent



the extremes in a spectrum of aesthetics one could choose for an
“artistic” immersive experience. On one extreme, we could imagine
that an artist painted over the walls of the model. In this case,
the visual effect is that as the user navigates the environment the
detailed stroke work is more or less apparent depending on her
distance from the various surfaces she can see. In the other extreme,
we could imagine that as the user navigates the environment in
real-time, a photograph of what is seen is captured, and an artist
instantaneously paints a picture based on the photograph. In this
case, the visual effect suffers from either flickering strokes (lack of
frame-to-frame coherence) or the “shower door effect” (the illusion
that the paintings are somehow embedded in a sheet of glass in front
of the viewer). Our goal is to find a compromise between these two
visual metaphors: we would like the stroke coherence to be on the
surfaces of the scene rather than in the image plane, but we would
like the stroke size to be roughly what would have been selected for
the image plane rather than what would have been chosen for the
walls. The difficult challenge is to achieve this goal while rendering
images at interactive rates.

We investigate a hybrid NPR/IBR approach. Broadly speaking,
the two main issues we address are: 1) constructing an IBR
representation suitable for NPR imagery, and 2) developing a IBR
prefiltering method to enable rendering of novel NPR images with
controllable stroke-size and frame-to-frame coherence in a real-
time walkthrough system. These issues are the topics of the
following two sections.

3 Image-Based Representation

The first issue in implementing a system based on our hybrid
NPR/IBR approach is to choose an image-based representation
suitable for storing and resampling non-photorealistic imagery.
Of course, numerous IBR representations have been described in
the literature (see [5] for a survey); and, in principle, any of
them could store NPR image samples of a virtual environment.
However, not all IBR representations are equally well-suited for
NPR walkthroughs. Specifically, an IBR method for interactive
walkthroughs should have the following properties:

A1) Arbitrary viewpoints: The image reconstruction method
should be able to generate images for arbitrary novel view-
points within the interior of the virtual environment. This
property implies a 5D representation of the plenoptic function
capable of resolving inter-object occlusions. It also implies
a prefiltered multiresolution representation from which novel
views can be rendered efficiently from any distance without
aliasing.

A2) Practical storage: The image-based representation should
be small enough to fit within the capacity of common long-
term storage devices (e.g., CD-ROMs), and the working
set required for rendering any novel view should be small
enough to fit within the memory of desktop computers. This
property suggests methods for compressing image samples
and managing multi-level storage hierarchies in real-time.

A3) Efficient rendering: The rendering algorithm should be
very fast so that high-quality images can be generated at
interactive frame rates. This property suggests a hardware
implementation for resampling.

Additionally, the following properties are important for IBR
representations used to storenon-photorealisticimagery:

B1) Homeomorphic reprojection: The mapping of pixel sam-
ples onto any image plane should be homeomorphic so that
strokes and textures in NPR imagery remain intact during im-
age reconstruction for novel views. This property ensures that
our method can work with a wide range of NPR filters.

B2) Predictable reprojection: The reprojected positions of pixel
samples should be predictable so that the sizes and shapes
of strokes in reconstructed NPR images can be controlled.
This property allows the system to match the sizes and shapes
of strokes in NPR images to the ones intended by the scene
designer.

B3) Filter Flexibility: Pixel samples should be stored in a form
that makes NPR filters simple and easy to implement so that
support for multiple NPR styles is practical. This property
provides scene designers with the aesthetic flexibility of ex-
perimenting with a variety of NPR styles for a single scene.

We have considered several IBR representations. QuickTime VR
[2] is perhaps the most common commercial form of IBR, and its
cylindrical panoramic images could easily be used to create NPR
imagery with our approach. For instance, each panoramic image
could be run through an off-the-shelf NPR image processing filter,
and the results could be input to a QuickTime VR run-time viewer
to produce an immersive NPR experience. While this method may
be appropriate for some applications, it cannot be used for smooth,
interactive walkthroughs, since QuickTime VR supports only a
discrete set of viewpoints, and it would require a lot of storage to
represent the interior of a complex environment, thereby violating
properties ‘A1’ and ‘A2’ above.

Other IBR methods allow greater freedom of motion. However,
in doing so, they usually rely upon more complicated resampling
methods, which makes reconstruction of NPR strokes difficult for
arbitrary viewpoints. As a simple example, consider adding cross-
hatch strokes to an image with color and depth values for each
pixel. As novel images are reconstructed from this representation,
individual pixels with different depths get reprojected differently
according to their flow fields; and, consequently, the cross-hatch
stroke pattern present in the original depth image disintegrates
for most views. This problem is due to a violation of property
‘B1,’ which is typical of most view-dependent IBR representations,
including cylindrical panorama with depth [23], layered depth
images [29], light fields [19], Lumigraphs [12], interpolated views
[3], etc.

Our approach, based on textures, relies upon a hybrid geometry-
and image-based representation. Radiance samples acquired from
photographs are used to create textures describing the visual com-
plexity of the scene, while a coarse 3D polygonal model is used to
reason about the coverage, resolution, discontinuities, coherence,
and projections of radiance samples for any given view. This ap-
proach satisfies all of the properties listed above. In particular, sur-
face textures are a very compact form for the 5D plenoptic function,
as inter-object occlusions are implicit in the hidden surface rela-
tionships between polygons of the coarse 3D model (‘A1’). Also,
storage and rendering can take advantage of the plethora of previ-
ous work in texture mapping [14], including multi-scale prefiltering
methods (‘A1’), texture compression and paging algorithms (‘A2’),
and texture rendering hardware implementations (‘A3’), which are
available in most commodity PC graphics accelerators today.

Textures are especially well-suited for NPR imagery, as the map-
ping from the texture sample space to the view plane is simply a
2D projective warp, which is both homeomorphic (‘B1’) and pre-
dictable (‘B2’). As a consequence, our system can control the sizes
and shapes of rendered strokes in reconstructed images by pre-
filtering NPR textures during a preprocessing step to compensate
for the predictable distortions introduced by the projective mapping
(the details of this method appear in the following section). Finally,
we note that textures provide a simple and convenient representa-
tion for NPR filtering, as any combination of numerous commonly
available image processing tools can be used to add NPR effects to
texture imagery (‘B3’). For instance, most of the NPR styles shown
in this paper were created with filters in Adobe Photoshop.



!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!

(a) Build coarse 3D model (b) Capture photographs (c) Map photographs (d) Compute coverage

(e) Group texture (f) Generate art-maps (g) Run time walkthrough (h) Draw lines

Figure 3: Our process. Steps (a) through (f) happen as pre-processing, enabling interactive frame rates at run-time in steps (g) and (h).

Our specific method for constructing textures from images pro-
ceeds as shown in Figure 3a-d. First, we construct a coarsely-
detailed polygonal model using an interactive modeling tool (Fig-
ure 3a). To ensure proper visibility calculations in later stages,
the model should have the property that occlusion relationships be-
tween polygons in the model match the occlusion relationships be-
tween the corresponding objects in the environment. Second, we
capture images of the environment with a real or synthetic camera
and calibrate them using Tsai’s method [30] (Figure 3b). Third, we
map the images onto the surfaces of the polygonal model using a
beam tracing method [9] (Figure 3c). The net result is a coverage
map in which each polygon is partitioned into a set of convex faces
corresponding to regions covered by different combinations of cap-
tured images (Figure 3d). Fourth, we select a representative image
for each face to form a view-independent texture map, primarily
favoring normal views over oblique views, and secondarily favor-
ing images taken from cameras closer to the surface. Finally, we
fill faces not covered by any image with a texture hole-filling algo-
rithm similar to the one described by Efros and Leung [8]. Note that
view-dependent texture maps could be supported with our method
by blending images from cameras at multiple discrete viewpoints
(as in [6, 7]). However, we observe that NPR filtering removes most
view-dependent visual cues, and blending reduces texture clarity,
and thus we choose view-independence over blending in our cur-
rent system.

4 Non-Photorealistic Filtering

The second step in our process is to apply NPR filters to texture
imagery. Sections 4.1 and 4.2 address the two major concerns
relating to NPR filtering: avoiding visible seams and controlling
the stroke size in the rendered images.

4.1 Seams

Our goal is to enable processing of IBR textures with many different
NPR filters. Some NPR filters might add artistic strokes (e.g.,
“pen and ink”), others might blur or warp the imagery (e.g., “ink
blot”), and still others might change the average luminance (e.g.,

“impressionist”) based on the pixels in the input texture. In all
these cases, seams may appear in novel images anywhere two
textures processed by an NPR filter independently are reprojected
onto adjacent areas of the novel image plane. As a consequence, we
must be careful about how to apply NPR filters so as to minimize
noticeable resampling artifacts in rendered images.

The problem is best illustrated with an example. The simplest
way to process textures would be to apply an NPR filter to each of
the captured photographic images, and then map the resulting NPR
images onto the surfaces of the 3D model as projective textures
(as in [6, 7]). Unfortunately, this photo-based approach causes
noticeable artifacts in reconstructed NPR images. For instance,
Figure 4a shows a sample image reconstructed from photographic
textures processed with a “ink blot” filter in Photoshop. Since
each photographic texture is filtered independently and undergoes a
different projective warp onto the image plane, there are noticeable
seams along boundaries of faces where the average luminance
varies (‘A’) and where the sizes and shapes of NPR strokes change
abruptly (‘B’). Also, since this particular NPR filter resamples the
photographic images with a large convolution kernel, colors from
occluding surfaces bleed across silhouette edges and map onto
occluded surfaces, leaving streaks along occlusion boundaries in
the reconstructed image (‘C’).

We can avoid many of these artifacts by executing the NPR
filter on textures constructed for each surface, rather than for each
photographic image. This approach ensures that most neighboring
pixels in reprojected images are filtered at the same scale, and
it avoids spreading colors from one surface to another across
silhouette edges. Ideally, we would avoid all seams by creating a
single texture image with a homeomorphic map to the image plane
for every potential viewpoint. Unfortunately, this ideal approach is
not generally possible, as it would require unfolding the surfaces of
3D model onto a 2D plane without overlaps. Instead, our approach
is to construct a single texture image for each connected set of
coplanar faces (Figure 3e), and then we execute the NPR filter on
the whole texture as one image (Figure 4b). This method moves all
potential seams due to NPR filtering to the polyhedral edges of the
3D model, a place where seams are less objectionable and can be
masked by lines drawn over the textured imagery.
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Figure 4: Applying NPR filters to surface textures avoids seams and warped
strokes in reconstructed images.

Figure 5: Scene rendered with art-maps.
The stroke size remains roughly constant
across the image.

4.2 Art Maps

This section addresses the problem of placing strokes into the
textures in such a way that we have control over stroke size in the
final image. Our challenge is a fundamental tension between frame-
to-frame coherence and stroke size appropriate for the image plane.
As the user moves toward a surface, the strokes on that surfacemust
change in order to maintain an appropriate size in the image plane.
Unfortunately, this means that we must either slowly blend from
one set of strokes to another set, or suffer from a “pop” when they
all change at once. Preferring the former effect, our compromise is
to choose slowly-changing strokes, with some amount of blurring
as they change, and to allow stroke size to vary somewhat with a
rangeof sizes nearly appropriate for the viewing plane.

Our solution relies on the observation that the stroke size prob-
lem is analogous to choice of filter for projected imagery in pho-
torealistic environments using conventional texture mapping. As
the user navigates a photorealistic environment, the goal of texture
mapping hardware is to select for every pixelp a filter f for the
texture such that the size off varies with the size of the texture
space pre-image ofp. Likewise, our goal is to place each strokes
in the texture such that as the user navigates the environment, the
relative sizes ofs andf in texture space stay constant. Thus, our
strategy for management of stroke size is to leverage the great deal
of work on pre-filtering imagery for texture mapping, most notably
mip-maps [31]).

Figure 6: Art-maps work with conventional mip-mapping hardware
to maintain constant stroke size at interactive frame rates.

We use a construction that we call “art-maps.” The key idea is
to apply strokes to each level of the mip-map, knowing that it is
suitable for projection to the screenat a particular size. Figure 6
shows an example. To create this mip-map hierarchy, we simply
filter the photorealistic images as in normal mip-mapping, but then
apply an NPR filter to each level independently.

The strokes at each level of the mip-map hierarchy vary in size
in powers of two relative to the whole image, just as pre-filtered
mip-map levels vary the filter kernel size. Thus, when conventional
texture mapping hardware selects a level of the mip-map hierarchy
from which to sample a pixel, it will automatically choose a pixel
from a set of strokes of the appropriate size. Furthermore, as it
blends between levels of the mip-map hierarchy, it will likewise
blend between strokes of appropriate size. So the effect is that
strokes remain affixed to the surfaces in the scene, but as the
user navigates through the environment, the strokes have roughly
constant size in the image plane, as shown for example in Figure 5.
Note that at locations marked ‘D’ and ‘E’ the stroke size is roughly
the same. (In contrast, without art-maps, the strokes in these
locations varies with the distance between the surface and the
camera, as can be seen in Figure 4.) As the user moves toward
a wall, the strokes shown for that wall will slowly blend from
the strokes in one mip-map level to the next to maintain roughly
constant image-space size. As the viewer moves, there is frame-
to-frame coherence in the mip-map level chosen for the wall,
and therefore there is visual coherence in the strokes. We suffer
some amount of blending of strokes, because the mip-map level is
generally non-integer; but we prefer this to either popping or lack
of control over stroke size. The benefits of art-maps are that they
are very simple to implement, and that they permit interactivity by
relegating expensive NPR filtering to a preprocess and by exploiting
texture mapping hardware for sampling at runtime.

A known problem for conventional mip-maps is that for very
oblique polygons the mip-map is forced to choose between aliasing
and blurring for one or both of the principle directions [14]. This
problem is due to a round filter kernel in image space projected to a
very oblong shape in texture space, which forces the use of a kernel
that is either correctly sized in its long direction (giving aliasing in
the short direction) or correctly sized in its short direction (giving
blurring in the long direction). This filter problem manifests itself
as stretched strokes when art-maps are applied (Figure 7a). A
number of solutions to this problem have been proposed [14] – art-
maps will work with any of them that stores multiple prefiltered



(a) art-maps only (b) with rip-maps (c) varying strokes

Figure 7: Art maps using generalizations of mip-maps.

versions of a texture (e.g., for different perspective warps). We
have experimented with a generalization of mip-maps, called “rip-
maps” [16]. As shown in Figure 8, rip-maps contain a cascading
series of pre-filtered, off-angle images of the texture. An obliquely-
projected texture may select one of the off-axis images from the
rip-map; in the case of rip-maps with art-maps, the stroke shape
will be corrected, as shown in Figure 7b. Our prototype renders this
scene by recursively dividing textured polygons, selecting among
rip-map textures in the subdivided regions. This method allows
interactive control over stroke sizes in different areas of the image
plane, as illustrated in Figure 7c; in this example, we use small
strokes in the upper part of the image, and smoothly vary stroke size
down to large strokes at the bottom of the image. Unfortunately,
our current software implementation of rip-mapping is too slow for
real-time rendering of complex scenes, and thus we use art-maps
with conventional mip-mapping for our interactive walkthrough
system. We note that it might still be possible to control the sizes
of rendered strokes on a per-surface basis using various texture
mapping parameters (e.g., LOD bias) that guide the selection of
mip-map levels.

5 Interactive Walkthrough System

During the run-time phase, we simulate the experience of moving
through a non-photorealistic environment by drawing surfaces of
the coarse 3D model rendered with their art-map textures as the
user moves a simulated viewpoint interactively.

Our run-time system loads all art-map levels for all surfaces
into texture memory at startup. Then, for every novel viewpoint,
it draws surfaces of the 3D model with standard texture mip-
mapping hardware using the pre-loaded art-maps (as described in
Section 4). The rendering process is fast, and it produces images
with relatively high frame-to-frame coherence and nearly constant
size NPR strokes, as blending between art-map levels is performed
in texture mapping hardware on a per-pixel basis according to
estimated projected areas.

To facilitate management of texture memory, we break up large
textures intotilesbefore loading them into texture memory, and we
execute view frustum culling and occlusion culling algorithms to
compute a potentially visible set of surface tiles to render for every
novel viewpoint [10]. These methods help keep the working set of
texture data relatively small and coherent from frame-to-frame, and
thus we can rely upon standard OpenGL methods to manage texture
swapping when the total texture size exceeds texture memory.

Figure 8: Art-maps can be applied to other, more generalized mip-
mapping techniques such as RIP-maps.

Our hybrid geometry- and image-based approach allows us not
only to render NPR textured surfaces, but also to augment the re-
sulting images with additional visual information. For example,
we sometimes apply photorealistic textures to an object in order
to differentiate that object from others in the scene. We also use
run-time geometric rendering to highlight interesting features of
the environment. For instance, we draw wavy lines over silhouette
edges and creases at the intersections of non-coplanar polygons,
which helps mask objectionable artifacts due to seams and unnatu-
rally hard edges at polygon boundaries. In our implementation, the
lines are drawn as a 2D triangle strip following a sinusoidal back-
bone along the 2D projection of each visible edge in the 3D model.
Since the frequency of the sine function is based on screen space
distances, all of the lines drawn have a consistent “waviness,” re-
gardless of their orientation relative to the viewer. The lines help to
clarify the geometry of the environment, especially when the NPR
filter used is very noisy or produces low contrast textures. See Fig-
ure 3h for an example.

6 Experimental Results

We have implemented the methods described in the preceding
sections in C++ on Silicon Graphics/Irix and PC Windows/NT
computers and incorporated them into an interactive system for
walkthroughs of non-photorealistic virtual environments.

To test the viability of our methods, we have performed exper-
iments with several virtual environments rendered with different
NPR styles. Tables 1 and 2 show statistics logged during our pro-
cess for three of these environments, two of which are synthetic
(“Museum” and “Gallery”) and one of which is a real building cap-
tured with photographs (“Building”). All times were measured on a
Silicon Graphics Onyx2 with a 195MHz R10000 CPU and Infinite-
Reality graphics.

Examining the timing results in Table 2, we see that the pre-
processing steps of our method can require several hours in all.
Yet, we reap great benefit from this off-line computation. The re-



Model
name

Number of
polygons

Surface area
(inches2)

Number
of photos

Number
of faces

Number of
textures

Total MBs
of textures

Total MBs
of art-maps

Gallery
Museum
Building

192
76

201

2,574,400
421,520
931,681

46
93
18

414
282
815

73
42

114

82
104
118

109
138
157

Table 1: Quantitative descriptions of test environments and preprocessing results.

Preprocessing Run-time
Model
name

Capture
photos

Calibrate
photos

Map
photos

Create
textures

Hole
filling

Create
art-maps

Run
NPR filter

Total
preprocessing

Draw
images

Draw
lines

Total
per frame

Gallery
Museum
Building

1m 40s
1m 52s

2h

—
—
2h

0.4s
0.8s
5.8s

3m 30s
2m 53s
4m 22s

2h 02m
3h 34m
3h 40m

10m
8m

14m

30m
40m
50m

2h 47m
4h 26m
8h 48m

0.017s
0.017s
0.056s

0.025s
0.014s
0.037s

0.042s
0.031s
0.093s

Table 2: Timing results for each stage of our process.

sult is visually compelling imagery rendered at interactive frame
rates with high frame-to-frame coherence during run-time. Aver-
age frame refresh times measured during interactive walkthroughs
of each model are shown in the right-most column of Table 2. The
corresponding frame rates range from 11 to 32 frames per second,
which are adequate to provide a convincing illusion of presence as
the user moves interactively through a non-photorealistic environ-
ment.

Another result is the demonstration of our system’s flexibility
in supporting interactive walkthroughs in many NPR styles. Fig-
ures 9a-c show screen shots of the walkthrough program with the
“Museum” environment after processing with different NPR filters.
Creating each new set of NPR textures took around 40 minutes of
preprocessing time, as only the last step of the preprocess (“run
NPR filter”) had to be re-done for each one. Then, the run-time
program could immediately provide interactive walkthroughs in the
new style. Figures 9d-f show images of the “Building” environment
rendered in a watercolor style from different viewpoints. Each im-
age took less than 1/10th of a second to generate. Notice how the
size of the strokes in all the images remains relatively constant, even
for surfaces at different distances from the viewer.

The primary limitation on the complexity of virtual environ-
ments and the resolution of imagery rendered with our system is the
capacity of graphics hardware texture memory. In order to maintain
interactive frame rates, all texture data for every rendered image
must fit into the texture cache on the graphics accelerator (64MB in
our tests). As a result, the number of surfaces in the virtual environ-
ment and the resolution of captured textures must be chosen judi-
ciously. So far, we have generally constructed group textures with
each texel corresponding to a 2 by 2 inch region of a surface, and
we decompose group textures into 512 by 512 pixel tiles that can
be loaded and removed in the texture cache independently. With
these resolutions, our test environments require between 109MB
and 157MB of texture data with art-maps (see the right-most col-
umn of Table 1), of which far less than 64MB is required to ren-
der an image for any single novel viewpoint (due to view frustum
culling and occlusion culling). In our experiments, we find that
the standard OpenGL implementation of texture memory manage-
ment is able to swap these textures fast enough for interactive walk-
throughs, at least on a Silicon Graphics Onyx2 with InfiniteReality
graphics. While the frame rate is not perfectly constant (there are
occasionally “hiccups” due to texture cache faults), the frame rate
is usually between 10 and 30 frames per second – yielding an inter-
active experience for the user. More sophisticated texture manage-
ment and compression methods could be used to address this issue
in future work.

7 Conclusion

This paper describes a system for real-time walkthroughs of non-
photorealistic virtual environments. It tackles the four main chal-
lenges of such a system – interactivity, visual detail, controlled
stroke size, and frame-to-frame coherence – through image-based
rendering of non-photorealistic imagery. The key idea is that an
image-based representation can be constructed off-line through a
sequence of image capture and filtering steps that enable efficient
reconstruction of visually detailed images from arbitrary view-
points in any non-photorealistic style. The technical contributions
of this work include a method for constructing NPR textures that
avoids seams in novel images and a multiscale texture representa-
tion (art-maps) that provides control over the size of strokes during
interactive rendering. This work suggests a number of areas for
future investigation:

Augmenting the scene with geometry-based elements.Real-time
NPR rendering of simple geometric objects in the scene – perhaps
architectural accents such as a plant or a chair rendered in the NPR
styles of Goochet al. [11] or Kowalskiet al. [18] – would enhance
the sense of immersion while not greatly slowing our system.

View-dependent rendering. We have observed that many view-
dependent geometric and lighting effects are visually masked by
non-photorealistic rendering (see Section 3). Nonetheless, view-
dependent texture mapping (e.g. [6, 7]) offers an opportunity to
capture these effects for even better fidelity to the environment.

Better stroke coherence. As mentioned in Section 4.2, runtime
blending between neighboring levels of the mip-map hierarchy
causes visual blending between strokes in the art-maps. It may be
possible to achieve better coherence between neighboring levels of
the mip-maps, most likely by designing customized NPR filters that
deliberately assign strokes in multiple levels of the art-maps at once.
The desired visual effect might be that strokes grow and eventually
split apart, rather than fading in, as the user approaches a surface.
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(a) Museum, drybrush

(d) Building, watercolor

(b) Museum, pastel

(e) Building, watercolor

(c) Museum, van Gogh

(f) Building, watercolor

Figure 9: Images of artistic virtual environments rendered during an interactive walkthrough.
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