
To appear in the ACM SIGGRAPH conference proceedings

Inverse Shade Trees for Non-Parametric Material Representation and Editing

Jason Lawrence1 Aner Ben-Artzi2 Christopher DeCoro1 Wojciech Matusik3 Hanspeter Pfister3

Ravi Ramamoorthi2 Szymon Rusinkiewicz1

1Princeton University 2Columbia University 3MERL

Abstract
Recent progress in the measurement of surface reflectance has cre-
ated a demand for non-parametric appearance representations that
are accurate, compact, and easy to use for rendering. Another cru-
cial goal, which has so far received little attention, is editability: for
practical use, we must be able to change both the directional and
spatial behavior of surface reflectance (e.g., making one material
shinier, another more anisotropic, and changing the spatial “texture
maps” indicating where each material appears). We introduce an
Inverse Shade Tree framework that provides a general approach to
estimating the “leaves” of a user-specified shade tree from high-
dimensional measured datasets of appearance. These leaves are
sampled 1- and 2-dimensional functions that capture both the di-
rectional behavior of individual materials and their spatial mixing
patterns. In order to compute these shade trees automatically, we
map the problem to matrix factorization and introduce a flexible
new algorithm that allows for constraints such as non-negativity,
sparsity, and energy conservation. Although we cannot infer ev-
ery type of shade tree, we demonstrate the ability to reduce multi-
gigabyte measured datasets of the Spatially-Varying Bidirectional
Reflectance Distribution Function (SVBRDF) into a compact rep-
resentation that may be edited in real time.

Keywords: Light Reflection Models, Non-Parametric, Data-
Driven, Matrix Factorization, SVBRDF, BRDF

1 Introduction
The use of measured surface reflectance has the potential to bring
new levels of photorealism to renderings of complex materials.
Such datasets are becoming common, with recent work on acquir-
ing dense measurements of both individual materials [Marschner
et al. 1999; Matusik et al. 2003] and spatially-dependent re-
flectance [Dana et al. 1999; McAllister 2002; Lensch et al. 2003;
Han and Perlin 2003; Marschner et al. 2005]. The availability
of such data, however, has highlighted the difficulty of represent-
ing complex materials accurately using conventional analytic re-
flectance models [Ngan et al. 2005]. Non-parametric representa-
tions provide greater accuracy and generality, but so far have not
incorporated the important design goal of editability. That is, in
order to be useful in a practical production pipeline, an appearance
representation must let the designer change both the spatial and di-
rectional behavior of surface reflectance. This paper proposes a
compact tree-based representation (Figure 1) that provides the intu-
itive editability of parametric models while retaining the accuracy
and flexibility of general linear decomposition methods.

The concept of composing a complex shading function from a
tree-structured collection of simpler functions and masks was in-
troduced in the seminal “shade trees” work of Cook [1984]. We
develop an Inverse Shade Tree (IST) framework that takes as input
a measured appearance dataset and a (user-supplied) tree structure,
and fills in the leaves of the tree. In our trees, the leaves are sampled
curves and maps (i.e., 1-D and 2-D) representing intuitive concepts
such as specular highlight shape or texture maps. They are com-
bined at interior nodes, of which the most common is a sum-of-
products “mixing” node (other node types considered in this paper
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Figure 1: We introduce a non-parametric framework for decomposing mea-
sured SVBRDF data into a set of (a) spatially-varying blending weight
maps and (b) basis BRDFs. The basis BRDFs are factored into sampled
2D functions corresponding to (c) specular and (d) diffuse components
of reflectance (we show lit spheres rendered with these factors, not the
2D factors). These 2D functions are further decomposed into (e & f) 1D
curves. In addition to providing accurate interactive rendering of the origi-
nal SVBRDF, this representation also supports editing either (a ′) the spatial
distribution of the component materials or (b ′) individual material proper-
ties. The latter is accomplished by editing (e ′ & f ′) the sampled curves.
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include normal and tangent maps, as well as compositing operations
such as “over”). For example, in the first level of the tree in Fig-
ure 1, the Spatially-Varying Bidirectional Reflectance Distribution
Function or SVBRDF is composed of a sum of products of spatial
mixing weights (a) and basis BRDFs (b). The IST decomposition
proceeds top-down, at each stage decomposing the current dataset
according to the type of node encountered in the tree.

The editability of the resulting shade trees depends on having
their leaves correspond to pieces that are meaningful to the user. For
example, when decomposing an SVBRDF, we would like the result-
ing BRDFs to correspond to our intuitive notion of separate materi-
als, instead of being arbitrary linear combinations. For this reason,
this paper focuses on the “unmixing” problem, showing how to map
it to matrix factorization (Section 4). We introduce flexible algo-
rithms based on linear constrained least squares that are designed
to produce intuitive decompositions. These algorithms can incor-
porate constraints such as non-negativity, and provide control over
the sparsity in the decomposition (resulting in a continuous tradeoff
between pure factorization and clustering). As compared to exist-
ing methods, we maintain accuracy while producing editable parts-
based separations. When the original function is a SVBRDF, these
“parts” correspond to different materials; when the function is a
BRDF, these “parts” correspond to different scattering phenomena,
such as diffuse reflection, specularity, or back-scattering. In addi-
tion, our algorithms incorporate domain-specific constraints such
as energy conservation, and deal with practical issues such as large
datasets and confidence weighting. We expect these techniques to
be generally applicable to data dimensionality reduction applica-
tions, beyond the task of material representation addressed here.

We explore inverse shade trees in a prototype system that be-
gins with densely measured spatially-varying reflectance (with raw
dataset sizes of several gigabytes), and generates compact and intu-
itive trees. We demonstrate that the resulting trees permit real-time
non-parametric editing (Section 6) of materials and their spatial dis-
tribution, and analyze the accuracy (Section 7) of both the material
separation and BRDF decomposition stages.

2 Relationship to Previous Work
Parametric Models for Reflectance: Fitting analytic reflectance
models to data has been a widely-adopted approach, and some
models were in fact developed specifically for fitting to measure-
ments [Ward 1992; Lafortune et al. 1997]. Thus, one possible
representation of a measured SVBRDF is a collection of analytic
BRDF parameters at each surface location [McAllister 2002; Gard-
ner et al. 2003]. Such a representation provides for easy editing of
materials, and with the addition of a clustering step [Lensch et al.
2003] allows editing a single material everywhere it appears on a
surface.

These approaches, however, have several key drawbacks. Re-
ducing a dense set of measurements to a handful of parameters may
introduce significant error [Ngan et al. 2005]. Moreover, it requires
non-linear optimization, which is computationally expensive and
numerically unstable. Finally, clustering the values of the BRDF
parameters [Lensch et al. 2003] does not generate a desirable sepa-
ration of the component materials in the presence of blending on the
surface (even, in some cases, the trivial pixel-level blending present
at antialiased material edges). This is both because the problem is
underconstrained and because the parameters of most BRDF mod-
els are not linearly related.

The work of Goldman et al. [2005] is most similar to our own.
They fit a convex combination of two analytic BRDFs (along with
surface normals) at each surface location. This results in a sparse,
non-negative representation, although their sparsity constraint is
less general than the one we introduce in Section 4.2.2. Moreover,
they use an isotropic Ward BRDF model which is more restrictive
than our data-driven approach.

In this paper, we solve the material separation problem using the
measurements directly, before fitting any secondary models to indi-
vidual BRDFs. This allows for arbitrary blending of materials, giv-
ing correct results when parametric approaches fail (see Section 7
for a comparison of accuracy). In addition, we use a non-parametric

representation of BRDFs based on a small set of intuitive curves,
providing both generality and greater accuracy for some classes of
materials that exhibit anisotropy or retroreflection.
Non-Parametric Models and Matrix Decomposition: Non-
parametric approaches, including basis function decomposi-
tion [Dana et al. 1999] and standard matrix rank-reduction algo-
rithms such as PCA, can retain high fidelity to the original data.
In the context of appearance representation, researchers have ex-
plored a variety of rank reduction algorithms, including variants of
PCA [Kautz and McCool 1999; Furukawa et al. 2002; Vasilescu
and Terzopoulos 2004], homomorphic factorization [McCool et al.
2001], ICA [Tsumura et al. 2003], k-means clustering [Leung and
Malik 2001], and NMF [Chen et al. 2002; Lawrence et al. 2004;
Peers et al. 2006].

Though our approach also falls in the category of dimensional-
ity reduction, we build on prior work by performing a multi-level
sequence of decompositions, rather than just a single one. More
importantly, motivated by an evaluation of existing methods, we
introduce a set of new matrix factorization algorithms (Section 4)
specifically designed to provide editable decompositions, a crite-
rion for which existing methods are not optimized.
Non-Parametric Material Editing: A data-driven approach to
BRDF editing has been proposed by Matusik et al. [2003], in which
a user labels directions (e.g., “shininess”, “rustiness”, etc.) in a
high-dimensional space of measured materials. The large number
of materials, and the uncompressed representation of each BRDF,
contribute to large storage requirements and inhibit interactive con-
trol. Though our BRDF editing system is also based on measured
data, we provide for direct manipulation of curves controlling the
reflectance instead of focusing on higher-level behaviors. In addi-
tion, our compressed representation and interactive renderer permit
real-time manipulation of materials, including spatial variation.

To our knowledge, only two systems have demonstrated material
editing via direct manipulation of low-dimensional factors of the
BRDF [Ashikhmin et al. 2000; Jaroszkiewicz and McCool 2003].
In these systems the user edits a 2D image, which is then used as a
component in a parametric or homomorphic-factored BRDF model.
We generalize this by allowing interactive control over all the 1D
and 2D factors necessary to specify a full SVBRDF.

3 System Overview
Although the shade tree framework could in principle represent
many types of appearance data, including BTFs, BSSRDFs, light
fields, and time-varying textures, this paper focuses on SVBRDFs.
Here we provide a brief overview of our full pipeline, ranging from
measurement through representation, rendering, and editing.
Appearance Acquisition: We used a spherical gantry with com-
puter control over camera and light source direction [Marschner
et al. 2005] to record a set of high-dynamic-range images of planar
samples with spatially-varying material under many illumination
and view directions. The choice to measure mostly-planar sam-
ples simplified the calibration and registration, but the techniques
presented here apply to arbitrary geometry. We acquired five dif-
ferent SVBRDFs that include layered materials, anisotropy, retro-
reflection, and spatially-varying normal and tangent directions 1.

After geometric and photometric calibration, the images are re-
projected onto the best-fit plane of the surfaces, yielding a uniform
spatial sampling (at approximately 500×500 points) of reflectance
measurements. Because the SVBRDF is a function of six variables
(i.e., it can be written S(u,v,ωi,ωo,λ ), where λ is discretized into
RGB or HSV bands), sampling the illumination and view direc-
tions uniformly and densely is impractical. Therefore, we sampled
the forward- and backward-scattering lobes of the reflectance more
densely than the other regions of the domain, yielding a total of
between 2,000 and 6,000 reflectance measurements for each point
on the surface. The scattered data are conceptually resampled onto
a uniform grid using the push-pull algorithm [Gortler et al. 1996]
with a Gaussian reconstruction kernel (as we shall see later, we
avoid a complete reconstruction by using a subsampling method).

1Complete dataset available at: http://ist.cs.princeton.edu
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Figure 2: We cast the SVBRDF decomposition depicted in Tree 1 as the
factorization of a matrix. (a) High-dynamic range images of a SVBRDF
captured with a spherical gantry are (b) organized into a matrix with rows
that vary along spatial position and columns that vary along incident and
outgoing angles. This matrix is factored into the outer product of (c) func-
tions of spatial position (“blending weights”) and (d) functions of incident
and reflected directions (i.e., “basis BRDFs” in tabular form). In this ex-
ample, we factor the SVBRDF of a holiday greeting card into four terms.

Decomposition: We produce a shade tree with a series of decom-
positions of the SVBRDF and, using the same algorithms, the com-
ponent BRDFs. For example, consider Figure 1(top), which shows
a few images from a dense set of measurements of the SVBRDF of
an anisotropic wallpaper sample. The first level of our decompo-
sition separates the SVBRDF into 4D functions that depend on di-
rections of incidence and reflection (“basis BRDFs,” shown in Fig-
ure 1b as lit spheres) and 2D functions of spatial position (“blend-
ing weights,” shown in Figure 1a). We represent the decomposition
with this tree diagram:

Tree 1: S(u,v,ωi,ωo,λ )
↓
∑

↙ ↘
⊗ ⊗

↙↘ ↙↘
T1(u,v) ρ1(ωi,ωo,λ ) T2 ρ2

Note that we have chosen to associate color (i.e., λ ) with the
BRDFs. However, if it were more convenient for later editing, we
could have associated color with the spatial blending weights in-
stead, resulting in a color texture and colorless basis BRDFs.

Although we have reduced the size of the original SVBRDF,
these basis BRDFs are still tabular representations of a 4D function,
making them unsuitable for interactive rendering or editing. To ad-
dress this, we further reduce the basis materials through a series of
decompositions into 2D functions and eventually into 1D curves.
Although we introduce these decompositions in the context of rep-
resenting the materials contained within a SVBRDF, they provide,
in general, an editable non-parametric representation of the BRDF.

For the example in Figure 1, each basis BRDF is decomposed
into two terms, each a product of 2D functions of half (ωh) and dif-
ference (ωd ) angles [Rusinkiewicz 1998]. For the shiny gold mate-
rial, one term corresponds roughly to the specular component of the
reflectance (Figure 1c), while the other represents near-Lambertian
diffuse (Figure 1d). For improved editability, we may further factor
the 2D functions into products of 1D curves defined on the corre-
sponding elevation and azimuthal angles (Figures 1e and f):

Tree 2: ρ(ωi,ωo,λ )
↓

Reparameterization
↓
∑

↙ ↘
⊗ ⊗

↙ ↘ ↙ ↘
fd(ωh) gd(ωd ,λ ) fs(ωh) gs(ωd ,λ )
⊗ ⊗ ⊗ ⊗

↙↘ ↙↘ ↙↘ ↙↘
sd(θh) rd(φh) sd(θd ,λ ) rd(φd) ss(θh) rs(φh) ss(θd ,λ ) rs(φd)
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Figure 3: We cast the BRDF decomposition in Tree 2 to matrix factoriza-
tion. Each (a) tabular BRDF (shown as a lit sphere) is (b) re-parameterized
and then rasterized into a matrix with rows that vary along the half-angle
and columns that vary with difference-angle. We factor this matrix into (c)
functions of the half-angle and (d) functions of the difference angle.

While the decomposition into 1D curves results in a simpler repre-
sentation and is desirable for isotropic BRDFs (which are invariant
to φh), we have found that it may reduce accuracy for some com-
plex anisotropic materials. In these cases, we terminate the decom-
position one level higher, resulting in 2D maps resembling those of
Ashikhmin et al. [2000] and Ngan et al. [2005].

Rendering and Editing: The measured materials may now be
rendered by re-composing the shade trees in a pixel shader; this
provides interactive feedback during editing. In most cases, the 1D
functions or curves at the leaves of the tree correspond naturally to
physical phenomena controlled by parameters in existing analytic
models. For example, the ss(θh) curve is related to the distribution
of microfacets on the surface, and hence determines the shape of
the specular highlight. The ss(θd ,λ ) curve describes the behavior
of the specular lobe as the view direction moves from normal in-
cidence to grazing, capturing Fresnel effects such as color shifts,
increased specular reflection, and a reduced diffuse term. Color
variation, such as in ss(θd ,λ ), can be represented with separate
curves for each RGB color component (Figure 1f), or in an alter-
nate colorspace such as HSV.

4 Algorithms for Matrix Factorization
We can cast the tree-structured decompositions described previ-
ously as a sequence of matrix factorizations. At the top-level
(Tree 1), we organize samples of a SVBRDF into a matrix that is
factored into the outer product of 2D blending weights and 4D basis
BRDFs (see Figure 2). At the second-level (Tree 2), we decompose
each basis BRDF into appropriate 2D factors by computing another
matrix factorization (see Figure 3).

There are a variety of algorithms available for computing these
factorizations. In Section 4.1, we compare existing approaches and
discuss the conditions under which they fail to provide a meaning-
ful decomposition. In Section 4.2, we introduce a new factoriza-
tion algorithm based on linearly constrained optimization that im-
proves the separation in challenging cases. One key benefit of this
new algorithm is that it can incorporate domain-specific constraints
for decomposing appearance data (Section 4.3). Lastly, we address
practical considerations related to scattered input data and matrices
whose sizes exceed the capacity of main memory (Section 4.4).

We will adopt the notation of [Lee and Seung 2000] to discuss
matrix factorizations. Specifically, a n×m input matrix V is ap-
proximated as the product of a n×k matrix W and a k×m matrix H
(V ≈WH). Rank reduction occurs when k is smaller than n and m,
and we are most interested in cases of extreme compression (e.g., n
and m are hundreds or thousands, while k is between 1 and 5). We
consider factorizations that minimize the Euclidean error,

‖V −W H‖2 = ∑
i j

(

Vi j − (W H)i j
)2

. (1)

To begin, we focus on SVBRDF decomposition, so that the original
data is in matrix V and the mixing weights and basis BRDFs end
up in W and H, respectively. Later, we will consider BRDFs, and
W and H hold sampled half-angle and difference-angle maps.
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Original Images

Ideal Decomposition

T1: silver foil T2: gold foil T3: blue paper T4: white paper

Figure 4: Two images (originals are HDR) from the “Season’s Greetings”
dataset, together with hand-generated mixing masks that would be produced
by an ideal decomposition. Notice that the separation is soft, with signifi-
cant blending between the gold foil and both the blue and white paper. Since
the blending weights in the bottom row are colorless scalars (the color for
this shade tree is in the BRDFs), we use grayscale images to visualize them.

Algorithm Properties:
Groups Linear Positive Sparse

SVD / ICA Yes No No
Homomorphic No Yes No

Clustering No Yes Yes
NMF / pLSI Yes Yes No

Our Method: ACLS Yes Yes Yes
Table 1: Comparison of matrix factorization algorithms. Existing methods
do not satisfy the three properties of linearity, positivity, and control over
sparsity, which are critical for a meaningful editable decomposition.

4.1 Evaluation of Existing Algorithms
We compare several classes of factorization algorithms suitable for
accurately representing measured appearance data, evaluating their
performance on the Season’s Greetings dataset shown in Figure 4.
This measured SVBRDF is of a holiday greeting card with four ma-
terials (blue and white paper, and gold and silver foil), as shown in
the ideal separation at bottom. Note that the materials are smoothly
blended over the surface. For example, the gold foil is present in
different amounts at the boundary between the gold border around
the word “Season’s” and the paper background (Figure 4, T2 and
T3). Also, the stripes in the background were created by halfton-
ing the gold material over the paper background. This is visible as
spatial blending between materials T2 and T4.

To represent these effects, while providing an editable decom-
position, we have identified three key properties of a factorization
algorithm. First, it should allow for a basis consisting of linear com-
binations of the input to resolve the blending of different materials.
Second, the algorithm should guarantee non-negativity to produce
a physically plausible result and favor parts-based decompositions.
Third, the algorithm should provide control over the sparsity of the
solution, favoring a representation that uses individual materials,
where possible, to represent the SVBRDF (as opposed to blending
between materials across the entire surface). Table 1 summarizes
these properties for different algorithm classes.
PCA/ICA: Two popular rank reduction algorithms are Principal
Component Analysis (PCA) and Independent Component Analy-
sis (ICA), along with extensions such as multilinear tensor factor-
ization [Vasilescu and Terzopoulos 2004]. The main advantage of
PCA is that it yields a global minimum of Equation 1. However,
these algorithms recover a basis that is orthonormal (for PCA) or
statistically independent (for ICA). These restrictions are not suffi-
cient to produce a meaningful description of the data. In particular,

Principal Component Analysis (RMS=0.016)

k-means with Re-projection (RMS=0.084)

Non-Negative Matrix Factorization (RMS=0.017)

T1 T2 T3 T4

Figure 5: Blending weights computed from the “Season’s Greetings”
dataset using the factorization algorithms discussed in Section 4. For PCA,
these terms are visualized as images where red and green correspond to
positive and negative values with luminance proportional to the magnitude.
For k-means and NMF, all values are non-negative and are visualized as
grayscale images. Note that neither PCA nor NMF provide a separation
of the data into distinct parts suitable for editing. Although clustering per-
forms better, it too fails to recover the desirable separation into the four
component materials present in this sample (Figure 4,bottom row). In par-
ticular, k-means assigns both the gold and silver foil to a single cluster (T1)
and combines the gold foil and paper into a separate term (T2).

they allow negative values in W and H, resulting in a representation
whose terms cannot be edited independently (Figure 5, top).
Homomorphic Factorization: Introduced in the context of
representing non-parametric BRDFs, Homomorphic Factoriza-
tion [McCool et al. 2001], decomposes a high-dimensional function
into a single product of an arbitrary number of lower dimensional
functions. Although it can support an arbitrary number of factors, it
does not allow linear combinations. Hence, this algorithm is not ap-
propriate for representing the SVBRDF as a sum of products of ba-
sis materials and spatial blending weights, or decomposing a BRDF
into a sum of diffuse, retroreflective and specular lobes.
Clustering: One popular method for clustering data is the k-
means algorithm [Hartigan and Wong 1979]. Like all clustering
algorithms, k-means partitions the input into disjoint sets, associat-
ing each point with a representative point called the cluster center.
This can be interpreted as a factorization of the SVBRDF, where
the cluster centers are stored in the matrix H and W is computed
by re-projecting the data onto this basis (using gradient descent for
example). In our experiments, clustering performs well on input
with a small basis that is well-separated over the surface. However,
when the SVBRDF exhibits blending of its component materials,
clustering typically fails to recover a useful basis. For example, in
Figure 5, middle, k-means has incorrectly assigned a single cluster
to the combination of the gold foil and paper (T2) while grouping
the gold and silver foils into a separate cluster (T1).
Non-Negative Matrix Factorization: Another matrix decompo-
sition approach is Non-Negative Matrix Factorization (NMF) [Lee
and Seung 2000]. Together with similar algorithms such as Prob-
abilistic Latent Semantic Indexing [Hofmann 1999], NMF guaran-
tees that both resulting factors contain only non-negative values.
One motivation for this constraint is to encourage the algorithm to
describe the input data as the sum of positive parts, thereby produc-
ing a more meaningful factorization. In our experiments, however,
the character of the decomposition is sensitive to small changes in
the data (including those due to measurement noise and misalign-
ment), and the non-negativity constraint is not always enough to
guarantee an editable separation (see Figure 5, bottom).
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SACLS: λ = 0.0, µ = 0.0 (RMS=0.017)

SACLS: λ = 5.0, µ = 10.0 (RMS=0.020)

SACLS: λ = 100.0, µ = 10.0 (RMS=0.023)

T1 T2 T3 T4

Figure 6: The blending weights computed from the “Season’s Greetings”
dataset using SACLS with different settings of λ and µ . Increasing values
of λ force the algorithm to behave more like clustering, trading numerical
accuracy for a more meaningful separation.

4.2 Our Method: Alternating Constrained Least Squares
We have seen that existing matrix factorization methods do not ful-
fil the three properties (linearity, positivity, sparsity) needed to pro-
duce meaningful, editable decompositions. We now describe a new
suite of algorithms that allow for these, while also supporting ad-
ditional domain-specific constraints such as energy conservation in
the SVBRDF and monotonicity of the BRDF (Section 4.3).

Our algorithm is built upon efficient numerical methods for solv-
ing linear constrained least squares (LCLS) problems of the form:

minimize
x∈Rn

1
2
‖b−Mx‖2 subject to l ≤

{

x
Ax

}

≤ u (2)

The n-element vector x is called the vector of unknowns, M is called
the least-squares matrix and b is the vector of observations. The
vectors u and l provide the upper and lower bound constraints of
both x and the linear combinations encoded in the matrix A, called
the general constraints. There are several algorithms available for
solving these types of problems. We use an inertia-controlling
method that maintains a Cholesky factorization of the reduced Hes-
sian of the objective function [Gill et al. 1984]. We use an imple-
mentation of this algorithm from the Numerical Algorithms Group
(NAG) library set, called nag-opt-lin-lsq [NAG 2005].

4.2.1 Non-Negative Factorization
As with NMF, we initialize W and H to contain positive random
values, and minimize Equation 1 by alternately updating these two
matrices. This problem is known to be convex in either W or H
separately, but not simultaneously in both. As a consequence, we
will present an algorithm that finds a local minimum of Equation 1.

Without loss of generality, we consider the case where both V
and W are row vectors (v ≈ wH). We later extend the discussion to
consider the entire matrix W . For a fixed H, we update our current
estimate of w by minimizing Equation 1, subject to the linear con-
straint w ≥ 0. To accomplish this, we solve the LCLS problem in
Equation 2, with M = HT , b = vT , and x = wT . To constrain the
solution to be non-negative, we set l = 0 and u = ∞.

We update the entire matrix W by computing the above solution
for each of its rows in turn. Similarly, we can transpose the problem,
take W to be the least-squares matrix M, and update our estimate of
H one column at a time. By alternating between estimating W and
H, we achieve a non-negative factorization of the input matrix V .
Because we are guaranteed never to increase Equation 1 after either
update, this algorithm, which we call Alternating Constrained Least
Squares (ACLS), is guaranteed to converge to a local minimum.

Compared to NMF, for which each iteration requires only a few
matrix multiplications, each iteration of ACLS is considerably more
expensive. On the other hand, each iteration of ACLS results in a
greater decrease in error and it converges with an order of magni-
tude fewer iterations. In our experiments, we have found the overall
computation time for these two algorithms to be comparable.

4.2.2 Sparsity
A non-negativity constraint is frequently not enough to provide an
intuitive parts-based decomposition. We introduce a modification
that considers the sparsity of the solution, providing a continu-
ous tradeoff between non-negative matrix factorization and cluster-
ing. We have found this flexibility to be effective for decomposing
SVBRDFs exhibiting complex blending of multiple materials.

In order to define sparsity, consider the SVBRDF factorization
shown in Figure 2. A sparse decomposition is one in which there
is a linear combination of relatively few basis materials at each sur-
face location. That is, each row of W has few non-zero entries.
Although there are several expressions that quantify this notion, we
require one that leads to a linear least-squares problem: it must be
quadratic in the elements of the row. Therefore, we define the spar-
sity penalty for a row w as the sum of the squares of all but one of
the coordinates of w (i.e., ∑i6= j w2

i , where the selection of j is dis-
cussed below). For a fixed H, we can combine this sparsity penalty,
weighted by a parameter λ , with the approximation error (1), which
gives a new error to be minimized:

‖v−wH‖2 +λ ∑
i6= j

w2
i . (3)

One potential problem with this formulation is that we can decrease
the overall error simply by decreasing the magnitude of all the el-
ements of w. To address this, we introduce an additional soft con-
straint that the L1 norm of w should be close to unity. As before,
we can add this penalty, weighted by the parameter µ , to the error:

‖v−wH‖2 +λ ∑
i6= j

w2
i + µ

(

1−∑
i

wi

)2
. (4)

Starting from Equation 4, we can write out the corresponding least-
squares matrix and observation vector to be used in Equation 2:

b =

(

vT
√µ

0

)

M =















— HT —

—
√µ . . .

√µ —
√

λ . . .

√
λ 0

√
λ . . .

√
λ















. (5)

The 0 in the bottom row of M will be at the jth position.
Putting things together, we estimate w by iterating over the pos-

sible values of j (in practice this corresponds to the rank of the
approximation and is small) and minimizing Equation 4; we retain
the w that corresponds to the selection of j with the smallest error.
The entire matrix W is estimated one row at a time in this fashion.
We alternate between updating our estimate of W and H until the
error converges to a local minimum. Assuming that both W and
H are initially inside the feasible region, each iteration cannot in-
crease Equation 4, so this algorithm, which we call Sparse Alternat-
ing Constrained Least Squares (SACLS), is guaranteed to converge.
This is a critical property, and one not shared by some previous
approaches to sparse factorization (such as that of Hoyer [2002]),
which include a normalization step that can increase error.

The parameter λ influences the sparsity of the factorization,
ranging from pure matrix factorization (λ = 0) to pure clustering
(λ → ∞). The parameter µ , in contrast, determines the extent to
which we insist that the sum of material contributions at each loca-
tion is 1. We have found the algorithm to be somewhat less sensitive
to the selection of this parameter. As with previous work in low en-
tropy coding [Olshausen and Field 2002], we define both λ and µ
in units of the variance in V . This provides more intuitive control
over these values, but trial and error is still required to determine
their appropriate settings. Figure 6 illustrates the impact of differ-
ent settings of λ on the decomposition.
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Principal Component Analysis (RMS=0.014)

Non-Negative Matrix Factorization (RMS=0.015)

k-means with Re-projection (RMS=0.029)

SACLS with λ = 100.0,µ = 800.0 (RMS=0.022)

Figure 7: Visual comparison of the spatial blending weights computed by
several linear factorization algorithms on the “Wood+Tape” dataset. Our
method (bottom row) provides control over sparsity and guarantees the com-
ponent BRDFs are physically plausible (energy conserving and reciprocal).
This aids in providing automatic separation of the measured data into its
component materials and provides a final representation that can be edited
(Figure 13).

4.3 Domain-Specific Constraints
One advantage of the ACLS algorithm is that it can be eas-
ily extended to include additional linear constraints beyond non-
negativity and sparsity. In this section, we introduce several useful
constraints in the context of representing the SVBRDF and BRDF,
including energy conservation and monotonicity.

4.3.1 SVBRDF Constraints: Energy Conservation

When factoring the SVBRDF, we can extend ACLS to guarantee
that the basis BRDFs conserve energy. For convenience, suppose
that H contains values of the BRDF for different light positions and
a single viewing direction (these techniques can readily be extended
to multiple viewing directions). In this simplified case, we can con-
strain the BRDF at the jth row of H to conserve energy by bounding
the sum of its values, each weighted by the solid angle:

∑
i

H ji ∆ωi ≤ 1. (6)

This constraint is incorporated into the ACLS framework by
first linearizing the matrices V and H into column vectors ṽ =
(V11 V12 . . .Vmn)

T and h̃ = (H11 H12 . . .Hkm)T . From Equation 2,
we set b = ṽ, x = h̃, and define M and A as follows:

M=









w11 0 · · · 0 w12 0 · · · 0
.

.

.

0 · · · 0 wm1 0 · · · wmk









A=









∆ω1 · · ·∆ωm 0 · · · 0
.

.

.

0 · · · 0 ∆ω1 · · ·∆ωm









Finally, we set the boundary constraints (i.e., l and u) to guaran-
tee that H is non-negative and the sums encoded in the matrix A
lie between 0 and 1. By solving Equation 2 under these substitu-
tions, we guarantee that the BRDFs encoded in H conserve energy.
With the added constraint on the parameterization of the BRDF that
φd +π → φd , we can also guarantee reciprocity. To our knowledge,
this is the first factorization algorithm that guarantees an SVBRDF
decomposition into physically plausible non-parametric BRDFs.
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Figure 8: Accuracy of representing four different SVBRDFs with four pos-
sible linear decomposition algorithms. For each dataset, the SACLS al-
gorithm provides a representation with comparable numerical accuracy to
existing data-driven approaches.

Reciprocity and energy conservation constraints were used to
perform material separation on all the samples considered in this
paper. Figure 7 shows our separation for the Wood+Tape dataset.
This particularly challenging SVBRDF consists of a piece of oak
partially covered by semi-transparent tape and retro-reflective tape.
Note that the tape completely disappears at certain incident and
reflected directions (Figure 13, left column). On this data, PCA
and NMF produce decompositions with significant mixing, while
clustering improperly groups regions of the wood grain with the
tape (Figure 7). On the other hand, SACLS correctly separates
the SVBRDF into two different types of wood grain, a tape layer
smoothly blended over the wood, and two separate terms for the
retroreflective materials. We have observed similarly intuitive ma-
terial separation results for all the datasets. Moreover, this intu-
itive separation comes at little or no decrease in the numerical ac-
curacy. Figure 8 shows the cosine-weighted RMS error (defined as
the square root of the sum of squared differences between the orig-
inal images and the reconstruction, weighted by cos(θi)) produced
by four decomposition algorithms, for a range of different terms
(number of materials).

4.3.2 BRDF Constraints: Value and Monotonicity

At the second level in our tree-structured decomposition (Tree 2),
we factor a tabular BRDF into the sum of terms, each a product of
functions of half- and difference-angle. As with the SVBRDF, this
is equivalent to factoring a matrix (Figure 3).

Factoring the BRDF into multiple 2D terms using standard non-
negative factorization (Section 4.2) generally yields factors that are
arbitrary linear combinations whose values should not be indepen-
dently edited. To address this, we allow for two types of constraints
on these factors. First, we can constrain one of the half-angle terms
in Figure 3c to remain at a constant value while allowing the rest
of the factorization to update normally. This has the effect of sepa-
rating the BRDF into a lobe with uniform θh dependence (typically
diffuse-like terms, though not restricted to be perfectly Lambertian)
plus a lobe with arbitrary half-angle distribution (usually a specular
lobe). In all cases, the dependence on the difference angle is re-
tained, allowing for Fresnel effects such as color shifts, increased
specular reflection, and a reduced diffuse term.

Additionally, we can constrain the half-angle dependence of the
“specular” term to be monotonically decreasing in θh, resulting in
more physically plausible highlights. We constrain the derivative
of fi to be negative at each sample. Because this is a linear oper-
ator (e.g., central differences), it can be directly encoded into the
matrix A along with the settings l = −∞ and u = 0 in Equation 2.
Figure 9 provides an example of using both value and monotonicity
constraints for the shiny gold foil ρ2 from Figures 2 and 3.
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Original BRDF

↗

↘

Standard Non-Negative Factorization
(RMS=0.133)

Value/Monotonicity Constraints
(RMS=0.164)

Figure 9: The ACLS algorithm can be extended to incorporate value and
monotonicity contraints. We factor a tabular BRDF (left) into the sum of
two terms. At top, we use basic non-negative factorization (Section 4.2).
At bottom, the two terms are computed by constraining one term to have
uniform θh dependence while the other is monotonically decreasing in θh.

4.4 Practical Considerations
To make these factorization algorithms practical, there are several
issues we must consider. First, for most real-world data, the level
of confidence of each measurement is not uniform across the in-
put matrix V . For example, reflectance measurements from grazing
angles will be less accurate then those from perpendicular angles.
Additionally, some regions of the domain are not measured, produc-
ing “holes” in the input. We would like to associate a “confidence”
with each value in the matrix in order to allow scattered data inter-
polation across missing regions in the input. Second, because of the
high dimensionality and resolution of our datasets, the sizes of the
matrices we factor often exceed the capacity of main memory. Fi-
nally, to help avoid incorrect local minima we initialize ACLS from
multiple starting positions.

4.4.1 Missing Data and Confidence Weighting
We incorporate a confidence matrix C into our objective function to
weight the contribution of each element in V towards the error:

∑
i j

(

Ci j
(

Vi j − (W H)i j
)

)2
. (7)

An element with a confidence of 0 will have no effect on the fac-
torization, seamlessly allowing for missing data. We can incorpo-
rate C into any ACLS variant through a simple modification to the
least-squares matrix M and the observation vector b in Equation 2.
For convenience, consider estimating a single row in W (denoted w)
for a fixed H according to the corresponding rows in V and C (de-
noted v and c respectively). The related linear constrained problem
from Equation 2 will have b j = c jv j and M jk = c jHk j . Note that
this reduces to standard ACLS for c j = 1. Figure 10 shows the per-
formance of confidence-weighted ACLS on a controlled example,
where 50% of samples of a BRDF are removed.

In practice, we use the push-pull algorithm [Gortler et al. 1996]
with a Gaussian kernel to reconstruct V from scattered data. We
associate a confidence with each matrix cell that is proportional to
its total weight at the top-level of the reconstruction pyramid. The
confidence of cells that correspond to incident or reflected direc-
tions below the horizon are set to zero. The choice of interpolation
method will affect the final output. We experimented with several
techniques and found the push-pull algorithm to provide the best
trade-off between quality and computational effort.

4.4.2 Subsampling for Large Datasets
Due to the high-dimensionality of the datasets we are interested
in factoring, V often exceeds main memory. However, its rank is
significantly smaller then the resolution of our measurements (i.e.,
k � m). We exploit this rank-deficiency by computing a basis for a
subset of the complete data (call this V ′). We use whichever variant
of ACLS is appropriate to compute: V ′ ≈ W ′H. Because we dis-
carded only complete rows of V , the matrix H can be thought of as
an estimate of its basis. The original data is projected onto H using

(a) Original
Data

(b) Tabular
Representation

(c) Half of Data
Removed

(d) Confidence
Matrix

(h) Final
Reconstruction

(g) 20 Iterations (f) 5 Iterations (e) 1 Iteration

θh

φd

×4

Figure 10: Using a measured BRDF as input (a) we construct a data matrix
indexed by θh and φd shown in (b). (Note: we show only one section of
the complete data matrix by omitting variation in θd). For this test, we
removed 50% of the data values to produce the matrix in (c) and compute
a confidence matrix (d) where measured values have a confidence of 1 and
missing values have a confidence of 0. We show the factorization computed
by confidence-weighted ACLS after one (e) and five (f) iterations. After 20
iterations (g), we produce a matrix that approximates the original.

ACLS to estimate W while holding H fixed. This procedure re-
quires storing only one row of V , one row of W and the complete H
matrix in main memory at any given time. We can similarly reduce
V by computing a factorization over a subset of the columns.

This strategy converges at least as quickly as standard ACLS
even for aggressive downsampling. If the sample size is too small,
however, the basis of V ′ will not accurately represent V , and the
error will increase. For the datasets we consider, this situation only
arises when using less than 0.01% of the original matrix.

In practice, we reconstruct the SVBRDF datasets containing
isotropic materials at an angular resolution of 100×30×15 (θh ×
θd × φd), while representing anisotropic datasets with a 64 × 64
parabolic map [Heidrich and Seidel 1999] for the half-angle term
at 30×15 different positions of θd and φd respectively. The spatial
resolution of the samples are approximately 5002. If we were to
represent the SVBRDF matrix explicitly, this would require 125GB
of memory for the isotropic case, and 5,149GB for anisotropic
samples. Instead, we rely on subsampling: we compute blending
weights using 50 columns of the original matrix at qualitatively dif-
ferent positions (i.e., specular highlights, back-scattering, perpen-
dicular and grazing angles), and reconstruct full resolution tabular
BRDFs at 100 randomly selected positions.

The top-level decomposition takes ∼2 hours for each dataset and
those at lower levels in the tree require ∼30 minutes. In our exper-
iments, these running times scale linearly with the input.

4.4.3 Initialization of ACLS
While the simplest strategy for all ACLS variants is to initialize the
matrices W and H with random positive values (subject, of course,
to any additional desired constraints such as monotonicity), the fact
that ACLS performs local minimization leaves it susceptible to lo-
cal minima. We have found that a more robust strategy is to first
run k-means clustering with a relatively large k (for example, 20),
then initialize ACLS with a random subset of the cluster centers.
For even greater robustness, we repeat the ACLS minimization with
many randomly-chosen subsets of cluster centers, and take as our
final result the one with smallest error. In our experiments, this
strategy is robust in avoiding incorrect local minima, and amelio-
rates the undesirable lack of provable global convergence (shared
by all algorithms considered here, except PCA).

5 Normal and Tangent Estimation
For materials containing normal variation or (for anisotropic mate-
rials) variation in tangent direction, we can augment our SVBRDF
decomposition tree with the addition of normal and/or tangent
maps. If both are present, we are effectively estimating a full rotated
coordinate system at each spatial location, thus capturing effects
similar to those recently demonstrated by Marschner et al. [2005].
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Normal/Tangent Original Shade Tree
Map Image Reconstruction

Figure 11: Normal and tangent maps. Left: We show N · L of the Dove
normal map for a near grazing light direction. For tangent maps, we set
the hue of each pixel to be the tangent direction. Note that this direction is
undefined in regions with isotropic reflectance. Middle: original images.
Right: images rendered using a 3-term shade tree with normal and tangent
maps (note: blending weights not shown).

All these effects are captured with the following tree, which we use
instead of Tree 1:

Tree 3: S(u,v,ωi,ωo,λ )
↓

Normal/tangent mapping
↙ ↓ ↘

n(u,v) t(u,v) ∑
↙ ↘

⊗ ⊗
↙↘ ↙↘

T1(u,v) ρ1(ωi,ωo,λ ) T2 ρ2

We estimate normal and tangent directions at each spatial posi-
tion in three stages. First, we fit a generic BRDF with an anisotropic
Gaussian specular lobe (i.e., a Ward BRDF) at each location, with
the rotation angles defining the coordinate system as free param-
eters to the fit. Using these initial orientation estimates, we build
the matrix described in the previous section and compute its k-term
factorization. We then refine our estimates using this factorization,
again solving for the best-fit normal and tangent. We can repeat
these steps until the overall error converges, though in practice we
found that two iterations are sufficient to accurately recover the fine
geometric surface detail present in our samples and required ∼10
hours of total processing time. We show the final normal maps and
tangent maps for two datasets in Figure 11.

6 Results: Editing
The benefit of obtaining a decomposition of the SVBRDF into a
meaningful shade tree is that any leaf node may be independently
edited. In this section, we describe several possible edits at both
the material level (altering the spatial texture of which component
material appears where) and at the BRDF level (changing salient as-
pects of a material’s reflectance using our curve-based model). The
supplementary video shows further real-time editing results. While
most of these edits are straightforward given our intuitive shade tree
representation, they are to our knowledge the first demonstration
of non-parametric editing of spatially-varying measured materials,
and would not be easy with alternative matrix factorization meth-
ods, which do not provide a meaningful separation of materials or
individual BRDFs.

6.1 SVBRDF Editing
Changing Spatial Distribution of Materials: Perhaps the most
obvious edit is to change the spatial distribution or “texture” of the
basis materials. In Figures 1 and 12 we have changed the texture by
re-painting the blending weight maps. To achieve the edit shown in
Figure 13, we first define a transparency mask for the tape as the

Figure 12: A key benefit of our framework is that it supports editing. Here
we change the normal map and blending weights in the Season’s Greetings
shade tree: we retain the original BRDFs, but spell a slightly embossed
SIGGRAPH 2B0ST0N6 (compare to Figure 4, top row).

Original Reconstruction Removed Tape
Figure 13: The Wood+Tape dataset consists of a piece of oak partially cov-
ered by semi-transparent tape and retroreflective bicycle tape. Left: Three
original images illustrate that the tape disappears for some incident and
reflected directions, making this a challenging dataset to separate into its
component materials. Middle: Reconstruction provided by a shade tree
with five terms, computed using the ACLS algorithm. Right: We edit the
weight maps to remove the tape. Although our separation was not perfect,
the resulting edits display few artifacts.

Original Metallic-Blue Nickel
Figure 14: An example of material transfer: one of the subtrees of our
decomposition is completely replaced with a different one. Here, we re-
place one of the component BRDFs with several materials from Matusik’s
database [2003], while retaining spatial texture and normal maps.

product of its blending weights and a user-set constant. Our result-
ing shade tree composites the tape over the additional layers using
this mask. Because our separation was not perfect for this chal-
lenging case, we manually repaired some error in the wood blend-
ing weights below the tape. We can also interactively re-position
the tape (shown in the supplemental video) or remove it altogether.
This edit would not be possible using the decompositions achieved
by alternative algorithms (Figures 7 and 18).
Changing or Combining Basis Materials: Figure 1 shows an
edit in which one of the component materials was made less shiny
(using the BRDF curve editing techniques discussed below), while
the hue of the other material was changed. A related edit involves
completely replacing basis materials with other measured BRDFs.
In Figure 14 we replace the metallic-silver BRDF in the Dove data
with several measured BRDFs from the Matusik [2003] database.

8
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(a) Changing diffuse color by (b) Varying highlight shape by (c) Smoothing noisy data by (d) Desaturating toward grazing by
editing sd(θd ,λ ) curve editing fs(ωh) map editing ss(θh) curve editing ss(θd ,λ ) curve

Figure 15: Our system allows for BRDF edits similar to those available with parametric representations, implemented by moving or warping the 1D curves
and 2D maps defined in Tree 2.

6.2 BRDF Editing
The BRDF edits available using our representation include many
that have become familiar to users of parametric models, but have
thus far not been easy to perform with non-parametric BRDFs. Sev-
eral possibilities are shown in Figure 15:
a. The diffuse color is changed by editing the sd(θd ,λ ) curve.

Since this is represented in HSV space, it is easy to make
changes to the overall color while maintaining any desaturation,
color shift, or Fresnel effects present in the original data.

b. The shape of the highlight is represented by the fs(ωh) map (or
the ss(θh) and rs(φh) curves if a decomposition into 1D fac-
tors has been performed). Warping this maintains the shape of
the highlight while making it narrower or wider, or varying the
amount of anisotropy.

c. One drawback of measured data is that it contains noise that
may be difficult to remove when using previous non-parametric
representations. Although our curve-based model is faithful to
the measured data, we can remove noise by smoothing the 1D
curves. In the figure, we demonstrate this by smoothing the
ss(θh) curve to remove some noise in the specular highlight.

d. The Fresnel reflection law predicts that specular highlights will
become stronger and less saturated towards grazing incidence.
We may introduce such an effect, or exaggerate it, by editing
the ss(θd ,λ ) curve.

Additional effects possible in our framework include changing
retroreflective behavior (via the sd(θd) curve), simulating the color
shift of gonio-apparent paints (via the ss(θd ,λ ) curve), and intro-
ducing nonphotorealistic behavior by quantizing the curves.

7 Comparison to Analytic Models
Our ACLS algorithm was designed to create meaningful decompo-
sitions into non-parametric shade trees that can be edited. We have
compared to previous matrix factorizations algorithms that do not
provide separations useful for editing—indeed, this was not their
design goal. Previous methods for creating intuitive decomposi-
tions are those that fit a parametric BRDF model at each point, fol-
lowed by clustering to give a user control of individual materials
everywhere they appear on the surface [Lensch et al. 2003]. In this
section, we compare to these methods, showing our higher qualita-
tive and quantitative accuracy.

For these comparisons, we use the Ward BRDF model (as did
Goldman et al. [2005]). We use the anisotropic version and aug-
ment it for retro-reflective materials with a back-scattering lobe
consisting of a Gaussian function of θd . While other models like

Lafortune can have an arbitrary number of terms, it is difficult to
stably fit more than 2-3 lobes, and the form of this model does not
represent complex materials and anisotropy well [Ngan et al. 2005].
SVBRDF Accuracy: Figure 16 shows a comparison of our algo-
rithm and approximating the SVBRDF as unique parametric fits at
each surface position, as well as the result of clustering these fits.
Due to the inherent flexibility of our non-parametric representation,
it introduces less error than clustering at any given term count. In
fact, with only 2 materials, we are more accurate than fitting an
independent Ward model to each position.

Because the RMS error is dominated by large values of the
BRDF, arising from either shiny materials or measurements near
grazing angles, it is important to also provide a qualitative compar-
ison as done in Figure 17. Note that the Ward model is unable to
match the irregular shaped anisotropic highlight in the wallpaper
(the supplemental video contains additional comparisons). In the
bottom of Figure 17, it also poorly approximates the shiny materi-
als for positions outside their specular highlights. This is a common
problem that occurs when the error of the analytic fit is dominated
by the large values of the BRDF near specularities and grazing an-
gles. Because we represent the BRDF as a sampled function, our
shade tree is flexible enough to match the measured appearance of
these datasets qualitatively better than the analytic model.
SVBRDF Material Separation and Editability: We also evalu-
ate our approach in its ability to provide a final separation of ma-
terials that is suitable for editing. We present qualitative compar-
isons of the separation achieved using our techniques, and paramet-
ric clustering, for two particularly challenging cases.

The top rows of Figure 18 show the separation of the Season’s
Greetings dataset into four blending weights computed from clus-
tering Ward fits (top row), and using our ACLS algorithm (second
row). Note that clustering the parameters improperly assigns a clus-
ter to the combination of the gold foil and white paper (top row, sec-
ond image) in addition to incorrectly combining the gold and silver
foils into a single cluster (top row, left). ACLS correctly associates
the four component materials with unique terms, providing a final
separation that can be edited (Figure 12).

The bottom pair of rows in Figure 18 show separation results for
the Wood+Tape dataset. In this case, the parametric approach is un-
able to recover the transparent tape layer, as its reflectance is always
observed in combination with the underlying wood. This results
in a separation that incorrectly assigns the same cluster to regions
of the wood grain and the tape (second to bottom, third column).
On the other hand, ACLS (bottom row) automatically separates the
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Figure 16: Quantitative comparison of representing a measured SVBRDF
using the Ward BRDF and k-means clustering vs. our method for increasing
number of clusters/terms. For reference, Figure 17 shows a visual compar-
ison of the reconstructions of these methods for different numbers of terms.

Visual Comparison: Wallpaper #1

Ward Ward Original SACLS
Unclustered 2 Clusters Image 2 Terms
RMS=0.062 RMS=0.087 RMS=0.038

Visual Comparison: Season’s Greetings

Ward Ward Original SACLS
Unclustered 4 Clusters Image 4 Terms
RMS=0.375 RMS=0.432 RMS=0.291

Figure 17: Visual comparison between unclustered Ward model (fit inde-
pendently to each spatial location), clustered Ward fits, original images,
and our method. We also list the RMS values shown in Figure 16.

SVBRDF into two distinct types of wood grain, a separate layer
for the semi-transparent tape, and separate terms for the two colors
of the retroreflective bicycle tape. This produces a shade tree with
components appropriate for rendering and editing (Figure 13).
BRDF Accuracy: We compare the accuracy of our decomposi-
tion of the BRDF into 2- and 1-D factors with fitting the anisotropic
Ward BRDF model to the original measurements. In Figure 19, we
show both numerical and qualitative analysis of the error in using
these techniques to represent (top) retroreflective bicycle tape and
(bottom) green anisotropic wallpaper. Recall that the original mea-
surements are rasterized into a uniformly spaced table of values
organized into a matrix. This introduces error into the approxima-
tion, which is quantified between the second and third columns in
Figure 19. Further decomposing this tabular BRDF into 2D fac-
tors and 1D curves introduces additional error, as shown in the two
rightmost columns. Along the leftmost column, we show quali-
tative comparisons and error numbers for using the Ward BRDF
model to approximate these original measurements. The fixed form
of the parametric model leads to higher qualitative and quantitative
error for some light sources and views. In particular, the analytic
model overestimates the magnitude of the back-scattering lobe near
θd = 0. Moreover, the precise shape of the anisotropic highlights
(for wallpaper) is not well approximated by an elliptical Gaussian.

Separation using k-means on Ward Parameters

Separation using ACLS

Separation using k-means on Ward Parameters

Separation using ACLS

Figure 18: Visual comparison of the separation achieved by applying k-
means clustering to the fits of a Ward BRDF and that computed by the ACLS
algorithm for two different datasets. We computed four terms (resp. clus-
ters) for the (top two rows) “Season’s Greetings” dataset and (bottom two
rows) the “Wood+Tape” dataset. For the ACLS algorithm, we weighted the
sparsity and L1 norm constraints with λ = 100.0 and µ = 10.0 for Season’s
Greetings, and λ = 100.0 and µ = 800.0 for Wood+Tape.

8 Limitations
The approach in this paper is designed for a variety of real-world
spatially-varying materials. An important assumption, however, is
that BRDFs are blended linearly over the surface, as in most real
materials. It is theoretically possible for the 6D SVBRDF to vary
smoothly, but not be easily expressible as a linear combination of
basis materials or 4D BRDFs. In these cases, alternative represen-
tations may be more compact but not editable, since this has not
been addressed by previous techniques. Another limitation on this
work is that we must build a regularly-sampled data matrix before
applying our factorization. By contrast, methods such as nonlinear
parameter fitting, homomorphic factorization, or radial basis func-
tion interpolation operate directly with scattered input data. In prac-
tice, our use of confidence weighting and subsampled reconstruc-
tion minimizes the resampling error and additional computational
time associated with our use of regularly-sampled matrices.

9 Conclusions and Future Work
We have introduced a non-parametric Inverse Shade Tree frame-
work for representing and editing measured spatially- and
directionally-dependent surface appearance. The representation is
more accurate than parametric models, more intuitive than other
non-parametric methods, and well-suited for interactive rendering
and editing.

As future work, we would like to investigate algorithms that au-
tomatically infer the structure of the tree according to the data, in-
cluding automatic selection of the number of terms to use at each
decomposition. In addition, we may simultaneously decompose the
same dataset into multiple trees, any of which may be edited de-
pending on the desired change. Another direction for future work
is to incorporate additional aspects of reflectance variation such as
displacement maps, sub-surface scattering, or fine geometric detail
typically represented as Bidirectional Texture Functions (BTFs).

Another avenue of future work is related to the ACLS techniques
we have proposed. Their flexibility and provable local convergence
make them ideal candidates for a broad range of dimensionality
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Retroreflective Bicycle Tape

Ward Fit Original Tabular 2D Factors 1D Factors
RMS=0.092 RMS=0.030 RMS=0.039 RMS=0.043

Green Anisotropic Wallpaper

Ward Original Tabular 2D Factors 1D Factors
RMS=0.044 RMS=0.027 RMS=0.039 RMS=0.041

Figure 19: Analysis of the error introduced by several levels of our tree-
structured decomposition for BRDFs, and comparison with Ward fits. For
each material, the top and bottom rows show parabolic maps of ωh distri-
butions at (θd = 15◦,φd = 90◦) and (θd = 45◦, φd = 90◦) respectively.

reduction applications in data mining and other machine learning
contexts. We wish to evaluate the efficiency and noise-tolerance
properties of ACLS, and investigate the impact of various types of
additional linear constraints.
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