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Figure 1: We develop a no-reference metric for evaluating the perceptual quality of image motion deblurring results. The metric can be used
for fusing multiple deblurring results (b) of the same input image (a) to generate one with the best quality (e). (c) and (d) are the result of
simply averaging all deblurring results and the result of a naive fusion method, respectively. See text in Sec. 6.3 for more details. Original
image courtesy digital cat@Flickr.

Abstract

Methods to undo the effects of motion blur are the subject of intense
research, but evaluating and tuning these algorithms has tradition-
ally required either user input or the availability of ground-truth
images. We instead develop a metric for automatically predicting
the perceptual quality of images produced by state-of-the-art de-
blurring algorithms. The metric is learned based on a massive user
study, incorporates features that capture common deblurring arti-
facts, and does not require access to the original images (i.e., is “no-
reference”). We show that it better matches user-supplied rankings
than previous approaches to measuring quality, and that in most
cases it outperforms conventional full-reference image-similarity
measures. We demonstrate applications of this metric to automatic
selection of optimal algorithms and parameters, and to generation
of fused images that combine multiple deblurring results.
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1 Introduction

The wide availability and ever-increasing sophistication of modern
image processing and computational photography algorithms has
brought about a need to evaluate their results. For instance, for a
task such as image deblurring, a realistic characterization of image
quality and the presence or absence of artifacts is necessary to se-
lect between different methods, as well as to choose parameters for
each algorithm. Lacking an automated method for image quality
assessment, many systems resort to asking the user. This, how-
ever, becomes increasingly impractical if dozens of algorithms and
hundreds of parameter settings must be compared. While a large-
scale user study (using, for example, the Amazon Mechanical Turk)
might be able to compare many combinations of algorithms and pa-
rameters, it would be unrealistic to use this methodology for every
image that is processed. Finally, the lack of a high-quality “ground
truth” image in most applications precludes the use of traditional
metrics for image comparison, such as peak signal to noise ratio
(PSNR), structural similarity index (SSIM), or visual information
fidelity (VIF).

We explore a methodology in which image quality and artifacts
are scored according to some function of features that are com-
puted over the image. The function is learned based on thousands
of training examples provided in a massive online user study. By
picking the right features, and collecting enough user input, we are
able to obtain a metric that generalizes over images and over the
algorithms used to process them. We call this learned function a
perceptually-validated metric, as it is not built upon the underly-
ing psycho-physical mechanisms of the human visual system, but
rather can score image quality and artifacts consistently with human
ratings.

In this paper, we address the problem of motion deblurring or blind
deconvolution: undoing the (unknown) motion blur introduced by
camera shake. This is a problem that has been studied intensively
over the past several years [Fergus et al. 2006; Yuan et al. 2007;
Shan et al. 2008; Cho and Lee 2009; Krishnan and Fergus 2009;
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Whyte et al. 2010; Xu and Jia 2010; Cho et al. 2011; Levin et al.
2011; Zoran and Weiss 2011; Goldstein and Fattal 2012], but even
state-of-the-art methods may produce significant artifacts such as
noise and ringing. In surprisingly many cases, these algorithms
may produce even worse results than the input blurry image. This
makes it crucial to identify which methods are performing well on
which images.

The main contribution of this paper is a perceptually-validated met-
ric for evaluating the output of deblurring algorithms. Our key hy-
pothesis is that an image quality metric specialized to this prob-
lem will outperform general metrics, or ones specialized to differ-
ent problems. We therefore conduct a crowd-sourced user study
(Sec. 3), incorporating five deblurring algorithms applied to hun-
dreds of images, to learn the relative importance of the principal
artifacts of blind image deconvolution: ringing, noise, and resid-
ual blur. We design features (Sec. 4) to measure these artifacts,
and use them to obtain a mapping from a feature vector to image
quality (Sec. 5) that matches the users’ rankings as closely as pos-
sible. We find that in most cases this no-reference metric (i.e., not
having access to the ground-truth image, which is important for
real-world applications) outperforms existing no-reference image
quality metrics, as well as standard full-reference image compari-
son algorithms.

Our user study yields interesting conclusions about the relative im-
portance of different artifacts. For example, we find that large-scale
“ringing” is overwhelmingly harmful to perceived image quality,
to a much greater extent than noise and blur. These kinds of con-
clusions may have influence on the design of future algorithms for
deconvolution, or even other image processing tasks. The result-
ing metric also enables applications (Sec. 6) including automatic
selection of the best deblurring algorithm for a given image, auto-
matic parameter selection, and fusion of the highest-quality regions
of different deblurring results.

We summarize our contributions as:

• We learn a perceptually-validated metric for measuring the
quality of image deblurring.

• We provide to the community a data set with specially de-
signed input images, current state-of-the-art deblurring algo-
rithms’ results, and users’ feedback about their quality.

• We show applications that utilize our metric to automatically
produce an improved deblurring result.

• We analyze the impact of each artifact on perceptual quality,
which can guide the direction of future work and development
of deblurring algorithms.

2 Background and Related Work

Image deblurring. Motion blur caused by camera shake is a com-
mon problem observed in photos captured by hand-held cameras.
A blurred image b may be modeled as

b = l ∗ k + n, (1)

where l is a sharp latent image, k is a point spread function (PSF), or
a blur kernel, reflecting the trajectory of the camera shake, and n is
noise. Deblurring is the problem of solving for a sharp latent image
l, given a blurred image b. If k is known, the problem is called non-
blind deconvolution; otherwise it is called blind deconvolution.

Even non-blind deconvolution is an ill-posed problem, since the
PSF usually contains null frequencies and the noise level is un-
known. To resolve the ambiguity, different types of prior knowl-
edge are used. Levin et al. [2007] propose a natural image prior,

which approximates the heavy-tailed distribution of image gradi-
ents. Joshi et al. [2009] assume that within each small patch,
colors should be linear combinations of two colors. Zoran and
Weiss [2011] exploit patch priors trained on natural images.

Blind deconvolution (with unknown PSF) is even more ill-posed,
requiring applying strong priors on both the latent image and the
PSF. Fergus et al. [2006] assume that the gradients of natural im-
ages follow a heavy-tailed distribution and the PSF has a sparse sup-
port, and adopt a variational Bayesian approach to estimate a PSF.
Levin et al. [2011] assume similar properties on the gradients of
natural images, but use an expectation-maximization (EM) method
for optimization. Several recent approaches [Joshi et al. 2008; Cho
and Lee 2009; Xu and Jia 2010; Cho et al. 2011] rely on extracting
edge profiles for PSF estimation, under the assumption that edges
are sharp in natural images. Shan et al. [2008] exploit the sparsity
on both the latent image and the PSF, and also a local smoothness
prior to reduce ringing artifacts. Goldstein and Fattal [2012] exploit
the power-law dependence of the power spectra of natural images
for PSF estimation.

Despite the tremendous progress that has been made in recent years,
state-of-the-art deblurring methods still tend to generate noticeable
visual artifacts on real-world data, such as ringing, noise, residual
blur, etc. These artifacts may arise because: (1) the priors used
in existing methods are simplified approximations to natural im-
age statistics, thus may lead to estimation errors in the PSF and the
recovered image; (2) non-linear response curves and non-additive
noise in real-world images violate the linear blur model in Eqn. 1;
and (3) real-world images often contain spatially-varying blur that
may not be well approximated by a static PSF. There has been work
on estimating spatially-varying PSFs [Whyte et al. 2010; Gupta
et al. 2010; Ji and Wang 2012]; however, as the dimensionality
of the PSF increases, these methods are often less reliable and may
produce more severe artifacts, as shown in a recent study [Köhler
et al. 2012]. Schuler et al. [2012] detect spatially-varying PSFs for
images with optical aberrations. However, their method strongly
depends on the symmetry properties of optical aberrations, thus is
not general enough for handling motion blur.

Crowd-source analysis. In recent years, researchers have analyzed
problems related to perception using the data collected from large-
scale user studies. For example, Cole et al. [2009] study human
perception of line drawings depicting 3D shapes based on a gauge-
figure study. Chen et al. [2009] collect 3D segmentation results
from a user study, and analyze evaluation criteria based on them.
Secord et al. [2011] conduct a large study of viewpoint preferences
and develop a model for evaluating views of 3D models. These
approaches adopt the strategy of learning perceptual models or cri-
teria from a large-scale user study, then using them for producing
or evaluating visual results in a way that tries to match human judg-
ments. In this work we apply this strategy to a new problem: motion
deblurring.

Image quality metrics. Image quality metrics can be classified
into two categories: full-reference and no-reference, depending on
whether the ground truth image is needed. Commonly used full-
reference metrics include PSNR [Teo and Heeger 1994], multi-
scale SSIM [Wang et al. 2004], VIF [Sheikh and Bovik 2006],
HDR-VDP-2 [Mantiuk et al. 2011], and a linear combination of
them [Masia et al. 2012]. Although these metrics have been widely
used for evaluating subtle image corruption, they are not able to
measure the perceptual impact of the significant artifacts introduced
by a variety of graphics and vision algorithms, such as image de-
blurring, as we will demonstrate later, and photo-realistic rendering,
as demonstrated by Cadik et al. [2012].

On the other hand, many no-reference metrics, such as BIQI [Moor-
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Figure 2: Left: four ground truth images used in our user study,
which contains 40 images in total. Right: two PSFs used in the
study. Image courtesy (a) Craig Maccubbin, (b) Jun Seita, (c) Bob
Jagendorf, (d) uggboy@Flickr.

thy and Bovik 2010], BLIINDS [Saad et al. 2010], CORNIA [Ye
et al. 2012], LBIQ [Tang et al. 2011], and BRISQUE [Mittal et al.
2012c], use either supervised or unsupervised learning on a col-
lection of images and their subjective scores to produce a general
image quality metric. NIQE [Mittal et al. 2012b] uses unsuper-
vised learning without subjective scores. However, unlike our met-
ric, these metrics are not designed for the specific problem of image
deblurring, which generates unique artifacts such as strong ringing.

Image quality metrics have been successfully applied in a variety
of applications, such as automatic parameter selection [Zhu and
Milanfar 2010; Mittal et al. 2012a], blur-aware and noise-aware
downsizing [Samadani et al. 2010; Trentacoste et al. 2011], and
coded aperture design [Masia et al. 2012]. We will discuss the dif-
ference between these methods and our approach in more detail in
Sec. 4.2 and 6.1.

3 Data Sets and User Studies

To understand how human beings perceive different deblurring arti-
facts, we first conduct a massive crowd-sourced user study to eval-
uate the perceptual quality of deblurring results. Here we describe
the data set and the user study in more detail, then discuss some ma-
jor observations we draw from the user study results, which serve
as guidelines for our feature design in Sec. 4.

3.1 The Data Set

Our data set consists of synthetically motion-blurred images and the
deblurring results generated by different algorithms. The deblurring
results contain a large variation in quality: we intend to include
good results as well as ones that have significant artifacts of various
kinds.

Specifically, we begin with 40 sharp, high quality images of various
scenes as the ground truth, which cover a wide variety of common
scenes, such as landscape, cityscape, portrait, and indoor scenes.
As several deblurring algorithms rely on extracting edges in the im-
ages, we also include images with different amounts of structural
edges to have various levels of deblurring difficulty. Fig. 2 shows
four of them. We downsample them so that their longest edges are
768 pixels. We then synthetically blur them with two different PSFs
shown in Fig. 2, whose sizes are 27× 27 and 23× 23. In practice,
the first PSF is more difficult to deal with and is more likely to
cause ringing artifacts. The second PSF usually leads to relatively
good results with more subtle artifacts. They lead existing meth-
ods to produce results with different levels of artifacts. Finally, we

add Gaussian noise of three different levels (σ = 0.0, 0.01, 0.02) to
each blurred image, resulting in 40×2×3 = 240 blurred examples
in total.

We run five recent algorithms [Fergus et al. 2006; Shan et al. 2008;
Cho and Lee 2009; Levin et al. 2011; Goldstein and Fattal 2012]
with publicly-available executables on all the blurred images to
generate deblurring results. In doing so, we encountered some pro-
gram failures (roughly 0.08% of all test cases) due to the instability
of the research prototypes. For each sharp image, we obtain at most
30 deblurring results in this way. We call the collection of each
sharp image and its deblurring results a data group.

3.2 The User Study

We employ the Amazon Mechanical Turk (MTurk) for the crowd-
sourced user study, in which we ask users to compare and rank the
quality of deblurring results.

There are a few options for constructing such a study. The most
straightforward approach would be to ask each user to give a score
for each deblurring result. However, absolute scores are subjective
and inconsistent across users. Another choice would be to show all
results at the same time and ask the user to rank all of them. This
would solve the inconsistency issue, but the large number of images
in each data group would make this task tedious for users.

To avoid these problems, in our study we ask users to compare the
quality of deblurring results pairwise. For each comparison a pair
of images is shown side-by-side, and the user is requested to choose
the one that has better visual quality (thus using a forced-choice
methodology). Each user session consists of 40 pairs of images in
total. Once all the pairwise comparison results are obtained, we use
them to fit a global ranking, as described in detail in Sec. 3.3.

To ensure the quality of the user study results, our user study in-
cludes a mechanism to detect and reject “bad” results produced by
malicious or careless users. For each data group, we include the
ground-truth sharp image in the user study. Specifically, among the
40 comparisons a user performs in one session, 13 of them include
ground-truth images, which are considerably better than most de-
blurring results. We reject results from users who ranked the ground
truth images lower than the deblurring results more than twice. Un-
der this design, the probability that randomly selecting an image
in each pair will pass the test is 1.12%, which means that we can
effectively reject outliers in the data.

In our study we collected 13, 592 user sessions from 1, 041 users,
and 4% of them were rejected by the sanity check. In the remaining
data, each pair was ranked by at least 20 different users.

3.3 Fitting a Global Ranking

The problem of fitting pairwise comparison results to a global
ranking has been well studied. We adopt the Bradley-Terry
model [Bradley and Terry 1952], which is widely used for this pur-
pose. The Bradley-Terry model generates a global “score” for each
data point from the pairwise comparison. Here we briefly review
how this model works. For each pair of images A and B, assuming
their scores are δA and δB , let δAB = δA− δB . We can then define
the relation between the probability pAB that one user chooses A
over B, and the score difference δAB as:

pAB =
eδAB

1 + eδAB
= logit−1(δAB), (2)



where logit(p) = log
(
p/(1− p)

)
. Here we see that:

pAB+pBA =
eδAB

1 + eδAB
+

eδBA

1 + eδBA
=

eδAB

1 + eδAB
+

1

1 + eδAB
= 1.

(3)

In the user study, since multiple users have compared A and B, we
denote the number of users who favor A as a, and the number of
users who favor B as b. Assuming the decisions are independent, a
should follow a binomial distribution Bin(a + b, a, pAB). There-
fore, the likelihood of (δA, δB) is:

L(δA, δB) = P (a, b | δAB) =

(
a+ b

a

)
pAB

a (1− pAB)b. (4)

The likelihood for all pairs (A,B) is:

L =
∏

(A,B)

(
a+ b

a

)
pAB

a (1− pAB)b, (5)

which is a function of δAB . Note that L only encodes the difference
between scores of images. In other words, L does not change if the
same offset ∆ is added to all δ. To resolve this ambiguity, we need
a reference image R with δR = 0. In our user study, we let all
ground truth images be the reference images. We then solve for δ
of all images by maximizing L.

3.4 Observations

Based on the user study results, we make the following qualitative
observations that provide useful insights for developing our metric:

• The main artifacts that appear in deblurring results include
noise, ringing, and blurriness, and these artifacts typically co-
exist in a deblurred image.

• In general users are very sensitive to ringing artifacts, which
unlike noise and blurriness do not exist in natural images. The
lowest-ranked images often contain strong ringing artifacts.

• The characteristics of the noise introduced by different deblur-
ring algorithms can be very different.

Fig. 3 shows an example of deblurring results from one data group.

We use these observations as general guidelines for designing low-
level image features used to train the perceptually-validated metric,
as detailed in the next section.

4 The Collection of Features

We now derive a set of low-level image features for assessing the
quality of deblurred images. These features serve as the basis for
learning our metric. In general, our expectations for good de-
blurring results are twofold: (1) naturalness: the deblurred image
should have a natural appearance; and (2) sharpness: the deblurred
image should be sharp and have as little residual blur as possible.
We design a collection of features to measure how well a deblurring
result meets each constraint. Note that not all features will be even-
tually used in the perceptually-validated metric, and we will discuss
how to select good features in Sec. 5.4.

4.1 Measuring Image Naturalness

The naturalness of a deblurring result describes the extent to which
it looks like a natural image captured by a camera. While it is hard

Figure 4: Typical ringing artifacts in deblurred images.

to measure naturalness directly, it is easier to describe artifacts that
often appear in deblurring results making them look unnatural. We
identify two dominant artifacts, which are common in deblurring
results — noise and ringing — and design our feature set with a var-
ious methods to measure them quantitatively.

4.1.1 Noise

There exists a vast amount of previous work on estimating and re-
moving image noise. Nevertheless, accurate noise estimation re-
mains a challenging problem. Given that different noise estima-
tion methods may work for different types of noise (e.g. chromatic
noise vs. luminance noise), we use multiple measures to assess the
amount of noise in a deblurred image. We briefly describe each
measure below. We refer the readers to the supplementary material
for details.

• Two-color priors [Joshi et al. 2009] assume that, in natural
images, colors within a local image neighborhood are linear
combinations of a primary and secondary color. Following
[Joshi et al. 2009], we find the two prevalent colors for each
local neighborhood, and measure the noise of each pixel based
on the two-color model.

• Sparsity priors (Sps) [Levin et al. 2007] assume that gradient
magnitudes of natural images follow a heavy-tailed distribu-
tion. We measure the norm of gradient magnitudes.

• Gradients of small magnitudes (SmallGrad) usually corre-
spond to noise on flat regions. We use the variance of the top
m% of smallest gradient magnitudes as a noise measure.

• MetricQ [Zhu and Milanfar 2009] is a no-reference metric
sensitive to both noise and blur, which is based on the fact
that noise and blur make an anisotropic patch more isotropic.

• BM3D [Dabov et al. 2007] is one of the state-of-the-art de-
noising methods. It takes a parameter σ that specifies the
noise level in the input image. We estimate the optimal value
of σ and include it in our noise feature set. Specifically, we
apply BM3D to the image with different values of σ, and
measure the errors of the results using a two-color prior. We
choose the smallest σ, whose error is smaller than a certain
threshold, as a noise measure.

4.1.2 Ringing

Ringing is perhaps the most common artifact one may observe in a
deblurred image. It often appears as un-natural wavy structures par-
allel to sharp edges (Fig. 4). Strong ringing artifacts may span large
image regions, or even the entire image. They are mainly caused by
inaccurate PSF estimation, but even with an accurate PSF, they can
still appear due to the Gibbs phenomenon [Yuan et al. 2007].

Since we have observed that ringing is one of the most annoying
artifacts in deblurring (Sec. 3.4), detecting and quantifying ring-
ing is crucial for assessing the quality of a deblurred image. Un-
fortunately, detecting ringing artifacts is not easy, as ringing is a
mid-frequency signal, which is mixed together with the image sig-
nal in the same frequency band. It is especially hard to detect
ringing in textured regions where rich mid-frequency image signal



(a) (b) (c) (d) (e)

Figure 3: Sample deblurring results from one data group. (a) ground truth; (b) a deblurring result with blur; (c, d) two deblurring results
with the same noisy input but different deblurring algorithms, yielding different types of noise in the results; (e) the lowest-ranked deblurring
result, which contains strong ringing. Please refer to the supplementary materials for the ranking of the full data group. Original image
courtesy Umberto Salvagnin.

exists. Methods have been proposed for measuring ringing arti-
facts [Marziliano et al. 2004], but most of them are only applicable
to small scale ringing caused by lossy compression such as JPEG
compression, and/or are full-reference metrics.

We introduce a new method to measure large-scale ringing caused
by motion deblurring. We design our method to be conservative:
it can reliably estimate ringing in flat regions, but is more conser-
vative in textured regions to avoid misclassifying image structures
as ringing, which will significantly damage the image quality as-
sessment. It is also consistent with human perception, as ringing
artifacts are more noticeable in smooth regions (Fig. 4).

Full-reference ringing detection. We first describe a full-
reference method, which forms the basis for the no-reference
method described later. The method begins with a deblurred im-
age l′ and the ground truth l, and applies the following steps:

1. We first align l and l′ and compute the gradient maps of l and
l′ as g(l) and g(l′).

2. We compute the difference map δg = max(g(l′) − g(l) ∗
kg, 0). kg is a scaled Gaussian function with a maximum
value of 1, which is convolved with g(l) to avoid misclassify-
ing residual blur as ringing artifacts. We take max(·) because
most ringing artifacts in l′ should have larger gradients than l;

3. Then, we compute the average of δg as a measure of ringing
artifacts in l′.

No-reference ringing detection (PyrRing). For no-reference
detection, we substitute l with the input blurry image b. As we
apply a low-pass filter in step 1, the error caused by this substitu-
tion is not significant. To further mitigate the error, we create an
image pyramid for both b and l′, and measure the ringing artifacts
on each level of the pyramid, then compute the average across all
levels as the final indicator of ringing artifacts. At coarse levels, the
downsized blurry input b will be closer to the downsized ground
truth l, leading to more accurate ringing detection. Thus, the final
ringing measurement computed from the pyramid is also more ac-
curate than the one directly computed from the original l′ and b.
Fig. 5 shows an example of our ringing detection.

Saturation. The ringing artifacts in images are usually accompa-
nied with overshoot and undershoot artifacts. We measure the pro-
portion of pixels with pixel value below 10 or above 245 (assuming
all pixel values are between 0 and 255) as the saturation feature.

4.2 Sharpness

An ideal deblurred image should be sharp and contain no residual
blur. On the other hand, an inaccurate PSF or too-strong regular-
ization in deconvolution may cause remaining blur in a deblurring

(a) (b)

Figure 5: Measuring ringing artifacts. (a) Deblurred image. (b)
Ringing feature response map. For visualization, we add up re-
sponses over all pyramid levels, and convert it into a grayscale im-
age where pixel intensities indicate the strength of the response.
Original image courtesy Tanaka Juuyoh.

result. We measure the blurriness of a deblurring result with the
following state-of-the-art sharpness measures from recent work:

• Autocorrelation (AutoCorr) of image derivatives can be an
effective way to measure the remaining blur, since it is close
to the autocorrelation of the blur kernel due to the power law
on the power spectrum of natural images [Field and Brady
1997; Goldstein and Fattal 2012]. Unfortunately, it is known
to be vulnerable to long straight edges. We detect long straight
edges using the Hough transform, and mask them out from
image derivatives before computing autocorrelation. We mea-
sure how much the autocorrelation map is spread out and use
it as a sharpness measure. Please refer to the supplementary
material for details.

• Cumulative Probability of Blur Detection (CPBD) is a
no-reference sharpness measure proposed by [Narvekar and
Karam 2011]. It defines sharp edges based on the notion of
“just noticeable blur”, and measures the proportion of sharp
edges as a sharpness measure.

• Local Phase Coherence (LPC) [Hassen et al. 2010] is a no-
reference sharpness measure based on the coherence of local
phase information across different scales.

• Normalized Sparsity Measure (NormSps) [Krishnan et al.
2011] is a measure that favors sharp images to blurry ones,
and was originally proposed for blind deconvolution.

Note that some previous approaches [Samadani et al. 2010; Trenta-
coste et al. 2011] also measure sharpness. However, Samadani et
al. [2010] use the shape of the PSF as its prior knowledge, and only
Gaussian function is tested. Similarly, Trentacoste et al. [2011]
make a strong assumption that the PSF is a Gaussian function.
In our application, we do not know the shape of the PSF, which
could be arbitrary. The PSFs estimated by different delurring algo-
rithms from the same input image are usually different, thus none
of their shapes can be trusted. Therefore, previous methods assum-
ing known (typically Gaussian) PSF shape are not suitable for our
application.



5 The Perceptually-validated Metric

In this section, we provide performance analysis on the features
defined in Sec. 4, and show that any single feature cannot cover
all kinds of artifacts that can appear in deblurring results. Then,
we train a perceptually-validated metric based on the user study re-
sults (Sec. 3) and a combination of features, and provide its perfor-
mance analysis. For performance analysis on each feature and our
trained metric, we first begin by describing our evaluation method.

5.1 Evaluation Method

To evaluate a feature and our metric, we adopt the idea of ranking
comparisons to evaluate how well a feature or a metric can distin-
guish the relative quality difference between different deblurring
results. Specifically, we compute the feature/metric scores f for
all images in the data set, and then rank the images based on f . We
then compare this ranking with the “ground truth” score δ. δ is gen-
erated by fitting a Bradley-Terry model to the user data (Sec. 3.3)
for all data sets in our experiment, except for the synthetic single-
distortion image data sets (Sec. 5.2). If these two rankings correlate
well, then the feature in question is a good stand-in for the perceived
quality of a deblurred image.

Two widely used methods for comparing ranking results are
Spearman’s rank correlation [Spearman 1904] and Kendall τ dis-
tance [Kendall 1938]. However, these methods are not suitable in
our application, because they do not consider two important factors.
First, the distance between two adjacent images in the ground truth
ranking is not uniform. Therefore, reversing a pair with a larger
distance is worse than reversing a pair having a smaller distance.
Second, accurate ranking among relatively good results is more im-
portant than ranking among bad ones for real applications, because
bad deblurring results are typically so bad that the exact ranking
among them is meaningless.

We thus propose a new ranking metric, named weighted Kendall τ
distance, for performance evaluation. We first define a set D(δ,f)

of pairs (i, j), whose orders by δ and f do not agree, i.e., (δi −
δj)(fi − fj) < 0. Kendall τ distance is defined as the cardinality
ofD(δ,f). As this distance is solely defined based on the cardinality,
it has the problems mentioned above. To overcome those problems,
we define a weighted distance as:

M(δ, f) =
∑

(i,j)∈D(δ,f)

∣∣(max(δi, δj)− δmin

)
(δi − δj)

∣∣ , (6)

where δmin is the worst B-T score. For comparison with other fea-
tures whose scores have different scales, we use a normalized ver-
sion of Eq. (6), which is defined asM(δ, f) = M(δ, f)/M(δ,−δ),
where M(δ,−δ) is the maximum mismatch generated by compar-
ing against the exact opposite ranking.

The two factors in Eq. (6) are the key difference between weighted
Kendall τ distance and the conventional Kendall τ distance. The
first factor (max(δi, δj)− δmin) in Eq. (6) is larger for the highly-
ranked images in the B-T model, placing an emphasis on them
relative to images with worse rankings. The second factor (δi −
δj) measures mis-ranking between the target feature and the B-T
model. Note that if we simply add up 1 for all pairs (i, j) in D(δ,f)

instead of these two factors, Eq. (6) becomes the Kendall τ distance.

5.2 Evaluating Features on Single-Distortion Images

Based on the evaluation method proposed above, we first evaluate
the usefulness of each feature on different kinds of artifacts. We
design three new data sets. Each one contains only one artifact
among noise, blur and ringing.
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Figure 6: The mean weighted Kendall τ distance from each in-
dividual feature and our LR metric to the ground truth. Lower is
better. The error bars indicate the standard error of the distance.

• Noise: The noise data set consists of deblurred images with
different noise levels. To generate deblurred images, we gen-
erated synthetically blurred images with different amounts of
Gaussian noise, and applied different deblurring algorithms.
The standard deviation of Gaussian noise varies from 0 to
0.04 with the step 0.004 (assuming that image intensities are
normalized into [0, 1]). We used 16 original sharp images and
five different deblurring algorithms to build a data set consist-
ing of 16× 5 = 80 data groups.

• Blur: We add synthetic motion blur with PSFs with the same
pattern but different sizes onto a sharp image to build a data
group. Specifically, each PSF is resized with ratio from 0.25
to 2.25 with the step 0.25. The images blurred with larger
PSFs are more blurry. We use 16 sharp images, and eight
original PSFs to build a data set consisting of 16 × 8 = 128
data groups.

• Ringing: Inaccurate PSFs often cause ringing artifacts. Thus,
we generate a series of inaccurate PSFs by upsampling the
true PSF. We found higher upsampling ratio yields more se-
vere the ringing artifacts. Therefore, in each data group, we
use a non-blind deblurring algorithm with Gaussian derivative
prior to deblur images using increasingly upsampled versions
of the true PSF. We use 16 sharp images and eight original
PSFs to build a data set consisting of 16 × 8 = 128 data
groups.

Since we intentionally create images with increasing amounts of
artifacts in each group, here the ground truth score of the i-th image
δi is specially defined as δi = i instead of conducting a user study.

We measure the quality of our features on these three data sets.
Fig. 6 shows the mean weighted Kendall τ distance of each indi-
vidual feature. We make the following observations:

• All noise features except MetricQ mis-classify blurry images
as good images.

• Sharpness features work moderately well on the noise data
set. However, MetricQ and LPC mis-classify images with
ringing artifacts as good images.

• PyrRing works well on images with ringing artifacts. Satura-
tion, AutoCorr, and NormSps also have good performance on
the ringing data set.

In summary, all of these features perform quite well on at least one
data set. However, none of them are able to work on all the three



data sets just by themselves, motivating our approach (described in
the next section) of using learning algorithms to combine features.
We refer the readers to the supplementary materials for additional
evaluation of each feature on our user study data set.

5.3 Learning a Metric

To derive a quality metric, we first define a metric as a mapping
function from a feature space X to a scalar in [0,∞). The fea-
ture space X is defined as the concatenation of all features defined
earlier. Statistical regression methods are used to fit the mapping
function f(x) based the user study results.

In this work we use a commonly-used regression method: Logistic
Regression (LR) [Hilbe 2009]. LR is a well-known generalized
linear regression method, which is also used for deriving scores for
the Bradley-Terry model. Similarly to Sec. 3.3, suppose we have
a pair of images (A,B), and there are n user study submissions
for this pair with a submissions favoring image A over B and b
submissions favoring B over A. As in Sec. 3.3, we can define the
following logistic regression model:

pAB = logit−1(γ · (xA − xB)), (7)

where xA and xB are feature vectors of images A and B, respec-
tively, and γ is the parameter vector for logistic regression. Then,
following a similar approach to Sec. 3.3, we can derive the likeli-
hoods for all pairs (A,B), which have the same form as Eq. (5).
The derived likelihoods are functions of γ, and we can solve for γ
with Maximum Likelihood Estimation.

Once γ is obtained, a metric f(x) can be derived as follows:

f(x) = γ · (x− xO), (8)

where xO is the feature vector of the ‘ideal’ sharp image. Since
γ · xO is a constant, it can be omitted and the final form of f(x)
becomes:

f(x) = γ · x. (9)

5.4 Feature Selection

Our collection of features described in Sec. 4 contains 11 different
features. To train a perceptually-validated metric, the straightfor-
ward solution is to use all of the features, but this increases the
chance of overfitting. In addition, features have redundancy be-
tween each other. We therefore design the following four cross-
validation tests in order to select the optimal subset of features:

1. Divide the 40 data groups into five sets, in which each has
eight data groups. For each set, use all images in this set for
testing, and all images in all other data groups for training. By
rotating the testing set we get five cross-validation errors. The
mean error is then recorded as the average performance.

2. Similar as Test 1, but only use images blurred by the first PSF
for training, and images blurred by the second PSF for testing,
and measure the cross-validation error.

3. Similar as Test 1, but only use images with the noise levels 0
and 0.02 for training, and images with the noise level 0.01 for
testing, and measure the cross-validation error.

4. Similar as Test 1, but only use images with the first PSF and
noise levels 0 and 0.02 for training, and images with the sec-
ond PSF and noise level 0.01 for testing, and measure the
cross-validation error.

Features Sps SmallGrad MetricQ

Scaled Weights 0.7344 0.1774 0.4106

Features NormSps AutoCorr CPBD

Scaled Weights 0.7998 1.9179 0.4722

Features PyrRing Saturation

Scaled Weights 1.7671 0.2283

Table 1: Scaled weights of the selected features.
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Figure 7: The weighted Kendall τ distance of different metrics on
four different cross-validation test sets (see Sec. 5.4). The error
bars indicate the standard error of the distance.

In this way, Tests 2–4 perform validation not only on image sets that
were omitted from training, but also on PSFs (Tests 2 and 4) and
noise levels (Tests 3 and 4) that were not used during training. This
provides a better measure of generalization than cross-validation
over images alone, as in Test 1.

Since we have 11 different features, there are only 211 − 1 = 2047
possible combinations of features. Therefore, we exhaustively
search through all possible combinations, and select the one that
generates the best average performance of the four tests.

In the end, this method selects the following features: Sps, Small-
Grad, MetricQ; PyrRing, Saturation; AutoCorr, CPBD, NormSps.
Table 1 demonstrates the weights of these features in our metric.
Here the weights are scaled with the standard deviation of the fea-
tures to reveal the importance of each feature. We have the follow-
ing observations: First, all three types of single-distortion artifacts
are included with non-trivial weights, which confirms our obser-
vation that they are all relevant to deblurred image quality. Sec-
ond, the sharpness features have the highest overall weight, which
is reasonable because this metric is for deblurring. Third, ringing
features have a higher overall weight than noise features, which
confirms our observation that users are sensitive to ringing artifacts.

Fig. 6 demonstrates that our LR metric performs very well on all
three types of data sets. Fig. 7 compares the performance of our
metrics trained with the optimal subset of features and three existing
full-reference metrics (PSNR, multi-scale SSIM, VIF, and HDR-
VDP-2), using the evaluation method described in Sec. 5.1. Our
LR metric is competitive with all full-reference metrics. Given that
our metric is not only competitive with the existing ones but is also
no-reference (i.e., does not require ground truth), we believe that its
performance is promising for real-world applications, as shown in
Sec. 6.

5.5 Validation of User Study on Mechanical Turk

Because users on Amazon Mechanical Turk are unsupervised and
come from all over the world, the variance of data can be consid-
erably larger than in controlled in-lab psychophysical experiments.
We therefore analyze the repeatability of our user study.

There are several ways to evaluate the consistency of a user study. A



common approach might be to look at inter-subject variance. How-
ever, since paired comparison actually expects (and indeed relies
on) disagreement on pairs of images that have similar quality, inter-
observer variance is not applicable for this methodology.

To avoid this problem, we instead measure the inter-phase variance
of our user study experiments. We repeat user study experiments of
five out of the 40 data groups on Amazon Mechanical Turk, three
months after the original experiments, and fit a new score δ′ for
each image in the data groups.

• Consider the original δ as the reference. The weighted
Kendall τ distances of the new δ′ of the five data groups are
all below 1.21× 10−3.

• Consider the new δ′ as the reference. The weighted Kendall
τ distances of the original δ of five data groups are all below
1.35× 10−3.

These two results prove that our user study results are stable.

6 Applications and Results

We now demonstrate how our deblurring quality metric can be ap-
plied in different application scenarios.

6.1 Automatic Parameter Selection

In previous work image quality metrics have been applied to auto-
matically select good parameter settings for image processing al-
gorithms, such as image denoising [Zhu and Milanfar 2010; Mittal
et al. 2012a]. We demonstrate that our metric is helpful for parame-
ter selection in a new problem: motion deblurring. We observe that
there are two important parameters that almost all deblurring algo-
rithms require: (1) the regularization strength for the final non-blind
deconvolution step, which controls the trade-off between noise and
residual blur in the final result; and (2) the maximum PSF size. We
found that existing deblurring systems are sensitive to these two
parameters, and there is no principled way to find good settings for
them. Thus, previous deblurring methods often require extensive
manual parameter tuning to generate good results.

To demonstrate that our metric can be used for automatic parameter
selection, we conduct an experiment with six synthetic examples
that are not included in our user study data set. The images are
blurred with two PSFs that are also different from those used in the
study. Gaussian noise with σ = 0.01 is added to each test image
to form a parameter selection dataset. For this study we choose two
algorithms:

1. The fast PSF estimation approach proposed by Cho and
Lee [2009] to estimate PSFs, and a non-blind deblurring
method with a Gaussian prior for generating the final result,
which is formulated as:

argmin
l

{
‖b− l ∗ k‖2 + λC

(
‖fx ∗ l‖2 + ‖fy ∗ l‖2

)}
, (10)

where the first term is a data fidelity term, and the second
term is a regularization term. λC is a regularization weight,
and fx and fy are first-order derivative filters along the x and
y directions.

2. The PSF estimation approach proposed by Levin et al. [2011],
and with the non-blind deblurring method with a sparse
derivative prior proposed by them:

argmin
l

{
‖b− l ∗ k‖2 + λL

(
2∑
i=1

|fi ∗ l|α + 0.25

3∑
i=1

|gi ∗ l|α
)}

,

(11)
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Figure 8: The mean weighted Kendall τ distance of full-reference
(PSNR, SSIM, VIF, HDR-VDP-2) and no-reference (CORNIA,
NIQE, BRISQUE, LR) metrics against the Bradley-Terry model on
the data set of automatic parameter selection. Lower values indi-
cate better performance.

where the f1 and f2 are first-order derivative filters, and g1,
g2, and g3 are second-order derivative filters. α is 0.8 to im-
pose sparsity.

To select the PSF size, we try a sequence of different sizes from
11 × 11 to 61 × 61 with a step size of 5, while fixing the regular-
ization strength λC = 2−3 and λL = 2−8, and use our metric to
find the PSF size which results in the highest score. Secondly, we
fix the selected PSF size, and apply a sequence of different λC val-
ues: {2−9, 2−8, . . . , 23} and λL values: {2−14, 2−13, · · · , 2−2},
and use our metric again to find the optimal value for λ.

To evaluate the parameter selection results, we conduct another
pair-by-pair user study on the parameter selection data set, where
each pair was ranked by at least 20 users. The Bradley-Terry model
is then used to get a ground truth score for each image in this data
set. We compare our Logistic Regression (LR) metrics with ex-
isting full-reference (PSNR, SSIM, VIF, and HDR-VDP-2), and
a few state-of-the-art general-purpose no-reference image quality
metrics, including CORNIA [Ye et al. 2012], BRISQUE [Mittal
et al. 2012b] and NIQE [Mittal et al. 2012c]. Fig. 8 shows the mis-
match scores of each method.

The following conclusions can be drawn from this experiment:

• For tuning λ, HDR-VDP-2 and our LR have the best perfor-
mance. SSIM and the three no-reference metrics work rea-
sonably well. PSNR and VIF perform worst.

• For tuning the maximum PSF size, all full-reference metrics
and our LR have very good performance. However, the other
no-reference metrics perform badly.

Overall, our LR achieves the best mean Kendall τ distance. We run
a one-tailed paired t-test with confidence level 0.95 to compare our
method against each other method to check the statistical signifi-
cance of its superiority. The p-value is below 0.05 for each metric
except HDR-VDP-2, which suggests that our LR metric is statisti-
cally significantly better. The p-value for HDR-VDP-2 is 0.4864,
which indicates that our LR metric is statistically comparative with
it. Note that HDR-VDP-2 is a full-reference metric, while ours is
no-reference.

In order to better understand why our LR metric outperforms other
metrics in general but not in λ tuning, we provide the following
case studies. The full set of images and their rankings can be found
in the supplementary materials.



Figure 9: Deblurring results with max PSF size of 21 and 61. Orig-
inal image courtesy Semio@Flickr.
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Figure 10: Comparing performance of different metrics in Case 1.
Closer to the ground truth curve means better performance.

Case study 1. The test image “road” is challenging for PSF es-
timation, because there are too few strong edges that PSF estima-
tion methods typically rely on. Inaccurate PSF estimation will in
turn introduce strong ringing artifacts into the deblurring results, as
shown in Fig. 9. In particular, more severe ringing artifacts can be
observed with larger PSF sizes. In Fig. 10 we compare the full-
reference and no-reference metrics with the ground truth, which is
obtained by the Bradley-Terry model. Here we normalize the out-
puts of all metrics to make them lie in [0, 1]. It shows that the full-
reference metrics and our LR metric yield nearly the same trend as
the ground truth, indicating a correct evaluation of the perceptual
quality of the results. In contrast, the results of other no-reference
metrics such as CORNIA, NIQE, and BRISQUE present large di-
vergence from the ground truth, indicating poor performance. This
is because the artifacts in deblurred images, particularly the resid-
ual motion blur and the very severe ringing artifacts, are quite dif-
ferent from artifacts in general-purpose image quality assessment
data sets, thus the no-reference metrics trained from general data
sets cannot work well on deblurred images.

Case study 2. On the other hand, when it comes to the trade-off
between a little amount of residual blur and noise (i.e. the selection
of λ), the problem is quite similar to general-purpose image quality
assessment, as there are very few deblurring-specific artifacts in-
volved. In this case, the general no-reference metrics perform much
better, as shown in the comparison in Fig. 11. The peak of the truth
curve indicates perceptually the best result. Images to its left are
too noisy, and those to its right are too blurry. It shows that NIQE
and our LR metric best match the left part of the truth curve; how-
ever, for the right part of the truth curve, we observe that all metrics
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Figure 11: Comparing performance of different metrics in Case 2.

favor blurry images slightly too much, including our metric.

6.2 Algorithm Selection

Given a blurry input image, we can apply different algorithms to
deblur it, and then use our metric to automatically choose the best
result. To demonstrate this we test our metric on the recently con-
structed motion blur data set proposed by Köhler et al. [2012],
which contains real motion-blurred images and their corresponding
sharp latent images, as well as deblurring results from eight dif-
ferent algorithms. There are four scenes in this data set, and each
is blurred with 12 camera motion trajectories controlled by a robot.
The 3rd trajectory is trivial, and all algorithms achieve good results.
The 8th, 9th, and 10th trajectories are so large that no algorithm can
generate reasonable results. We omit these four trajectories. We
also omit the results of [Fergus et al. 2006], because they consis-
tently contain saturated pixel values in the blue channel, possibly
due to an improper parameter setting. In total we thus have 32 data
groups, each deblurred by seven different algorithms.

We applied our metric to rank the images in each data group. To
evaluate the results, we conduct another pair-by-pair user study
on this data set, where each pair was ranked by at least 20 users.
The Bradley-Terry model is then used to get a ground truth score
for each image in this data set. Fig. 12 shows the mean weighted
Kendall τ distance from all metrics to the Bradley-Terry model. For
this application, our LR metric performs slightly better than all full-
reference metrics except SSIM, and significantly better than all the
other no-reference metrics. We run a one-tailed paired t-test with
confidence level 0.95 to compare our method against each other
method. The p-values are 0.1159, 0.0340, and 0.1068 when we
compare LR to the full-reference metrics PSNR, VIF, and HDR-
VDP-2. The p-values are all below 10−4 when we compare LR to
all other no-reference metrics. In Fig. 13 we show the result of one
data group. The ranking generated by our LR metric matches well
with the ranking given by the Bradley-Terry model, particularly for
top three images.

6.3 Image Fusion

In addition to selecting the single best-performing algorithm for an
input image, we can go further and use our metric to select the best
local regions from multiple deblurred images and fuse them into a
deblurred image that is better than any one result. This can also be
used to handle spatially-varying blur. Specifically, we could esti-
mate multiple PSFs from different local regions of an input image,
and use them to generate multiple deblurring results. Our metric is
then used to automatically find good regions in different versions
and stitch them together to form the best possible result.

We conduct an experiment to validate this idea. First, we create
several images with spatially-varying blur, using the tools provided
by Whyte et al. [2010], and add Gaussian noise with σ = 0.001 to
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Figure 13: Using our metric for algorithm selection. The images are sorted by our LR metric with decreasing quality from left to right. The
white numbers on top of images are the ranking given by the Bradley-Terry model.
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Figure 12: The mean weighted Kendall τ distance of full-reference
(PSNR, SSIM, VIF, HDR-VDP-2) and no-reference (CORNIA,
NIQE, BRISQUE, LR) metrics against the Bradley-Terry model on
the data set of algorithm selection. Lower values indicate better
performance.

them. Fig. 14(a) shows one of these examples. We design a simple
algorithm to deblur these images. First, we divide the image into
a 3 × 3 grid of regions, and estimate a blur kernel in each region
using the kernel estimation method in [Cho and Lee 2009]. We then
use the non-blind deconvolution method from the same approach to
recover a latent image from each kernel, resulting in nine deblurred
images in total. Each deblurred image has some good regions, but
also has severe artifacts in other areas.

To fuse these results, we first align all images using normalized
cross correlation. We then apply our metric on small regions sur-
rounding each pixel, yielding an evaluation score for each pixel in
each image. We divide each image into overlapping patches with
11 × 11 pixels, and for each patch, we select the one from all re-
sults with the highest mean metric values. The selected patches are
stitched together using graph cuts and Poisson blending [Pérez et al.
] to generate the fused result.

Fig. 1 and Fig. 14 show two examples of fusing multiple deblurred
images. We compare our results with two methods. In the first
method, we compute the average of all images, which is helpful
for reducing artifacts that are uncorrelated in each deblurred image.
For the second method, in each deblurred image we pick the same
region that the algorithm uses to estimate the blur kernel, and com-
bine them to obtain a naive fusion result. As shown in these exam-
ples, our results contain fewer artifacts and have better visual qual-
ity compared with results generated from these methods, as well as
the individual images. Fig. 15 shows our fusion result on a real-
world spatially-varying blurry photo from [Whyte et al. 2010]. Our
result is comparable to the result of the spatially varying deblurring
algorithm [Whyte et al. 2010]. Note that in this test case [Whyte
et al. 2010] uses an additional sharp noisy image as auxiliary infor-

mation, while ours does not.

For a better comparison, we conduct a user study on a collection of
19 synthetic images with spatially-varying blur. Users were asked
to do pairwise comparison as we described in Sec. 3. Each pair of
images is compared at least 37 times. The proportion of users who
favor our fusion results over that of the simple averaging method
and the naive fusion method are 802/828 (96.86%) and 644/838
(76.85%), respectively. The proportion of users who favor the
naive fusion results over the simple averaging results is 724/818
(88.51%). A randomized permutation test on the distributions of
users’ preferences shows the statistical significance (p � 0.01) of
all these results. Please refer to the supplementary materials for the
collection of images used in our user study.

7 Conclusion and Future Work

We have demonstrated a perceptually-validated no-reference metric
for evaluating the quality of image deblurring results. To achieve
this we conduct a user study to collect users’ evaluations on the vi-
sual quality of deblurred images. By studying user data we identify
the three most common deblurring artifacts, and design a collec-
tion of features for measuring them. We further show how to select
an optimal subset of features and use them to train a metric. Ex-
tensive evaluation shows that this outperforms state-of-the-art no-
reference metrics, and matches or outperforms full-reference met-
rics, for evaluating deblurred images. Finally, we demonstrate that
our metric can be used for improving image deblurring by parame-
ter selection, algorithm selection, and fusion of multiple results.

As discussed in Sec. 6.1, our metric currently favors slightly-blurry
results, a common problem for all metrics we have tested. As future
work, we plan to explore how to remove this bias from the metric.
We would also like to explore how to design better image deblur-
ring algorithms that explicitly maximize the evaluation score of the
metric to generate results with high visual quality.

Acknowledgements

We would like to thank Sylvain Paris, Rebecca Fiebrink, Su Xue,
and the Princeton University Graphics Group for their helpful dis-
cussion, and the SIGGRAPH Asia reviewers for their comments.
We also thank various Flickr users for sharing their photos, and the
authors of previous work for sharing their code and data. This work
is supported by NSF grants CCF-1012147, CCF-1027962 and a gift
from Adobe.

References

BRADLEY, R. A., AND TERRY, M. E. 1952. Rank analysis of
incomplete block designs: I. the method of paired comparisons.



(a) (c)(b) (d) (e)

Figure 14: Using our metric to fuse multiple deblurring results from an image which contains spatially-varying blur. (a) The input image
with spatially varying blur, as well as the PSFs at the four corners. (b) Four out of the nine deblurring results produced with the deblurring
algorithm in [Cho and Lee 2009] that has the assumption of spatially invariant blur. (c) the result by simply averaging all deblurring results.
(d) result by the naive fusion method (see Sec. 6.3). (e) our fusion result. Original image courtesy Alex Brown.

(a) (c) (d) (e)(b)
Figure 15: Using our metric to fuse multiple deblurring results of a real-captured spatially-varying blurry photo from [Whyte et al. 2010].
(a) The input blurry image. (b) the result by simply averaging all deblurring results. (c) result by the naive fusion method. (d) result of [Whyte
et al. 2010]. (e) our fusion result.

Biometrika 39, 3/4.

CADIK, M., HERZOG, R., MANTIUK, R., MYSZKOWSKI, K.,
AND SEIDEL, H.-P. 2012. New measurements reveal weak-
nesses of image quality metrics in evaluating graphics artifacts.
ACM Trans. Graphics 31, 6 (Nov.).

CHEN, X., GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. A
benchmark for 3D mesh segmentation. ACM Trans. Graphics
28, 3.

CHO, S., AND LEE, S. 2009. Fast motion deblurring. ACM Trans.
Graphics 28, 5.

CHO, T. S., PARIS, S., HORN, B., AND FREEMAN, W. 2011. Blur
kernel estimation using the Radon transform. In Proc. CVPR
2011.

COLE, F., SANIK, K., DECARLO, D., FINKELSTEIN, A.,
FUNKHOUSER, T., RUSINKIEWICZ, S., AND SINGH, M. 2009.
How well do line drawings depict shape? ACM Trans. Graphics
28, 3.

DABOV, K., FOI, A., KATKOVNIK, V., AND EGIAZARIAN, K.
2007. Image denoising by sparse 3-D transform-domain collab-
orative filtering. IEEE Trans. Image Processing 16, 8.

FERGUS, R., SINGH, B., HERTZMANN, A., ROWEIS, S. T., AND
FREEMAN, W. T. 2006. Removing camera shake from a single
photograph. ACM Trans. Graphics 25, 3.

FIELD, D. J., AND BRADY, N. 1997. Visual sensitivity, blur
and the sources of variability in the amplitude spectra of natu-
ral scenes. Vision Research 37, 23.

GOLDSTEIN, A., AND FATTAL, R. 2012. Blur-kernel estimation
from spectral irregularities. In Proc. ECCV 2012.

GUPTA, A., JOSHI, N., ZITNICK, L., COHEN, M., AND CUR-
LESS, B. 2010. Single image deblurring using motion density
functions. In Proc. ECCV 2010.

HASSEN, R., WANG, Z., AND SALAMA, M. 2010. No-reference
image sharpness assessment based on local phase coherence
measurement. In Proc. ICASSP 2010.

HILBE, J. M. 2009. Logistic Regression Models. Chapman &
Hall/CRC Press.



JI, H., AND WANG, K. 2012. A two-stage approach to blind
spatially-varying motion deblurring. In Proc. CVPR 2012.

JOSHI, N., SZELISKI, R., AND KRIEGMAN, D. 2008. PSF esti-
mation using sharp edge prediction. In Proc. CVPR 2008.

JOSHI, N., ZITNICK, C., SZELISKI, R., AND KRIEGMAN, D.
2009. Image deblurring and denoising using color priors. In
Proc. CVPR 2009.

KENDALL, M. G. 1938. A new measure of rank correlation.
Biometrika 30, 1/2.
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HARMELING, S. 2012. Recording and playback of camera
shake: Benchmarking blind deconvolution with a real-world
database. In Proc. ECCV 2012.

KRISHNAN, D., AND FERGUS, R. 2009. Fast image deconvolution
using hyper-Laplacian priors. In Proc. NIPS 2009.

KRISHNAN, D., TAY, T., AND FERGUS, R. 2011. Blind decon-
volution using a normalized sparsity measure. In Proc. CVPR
2011.

LEVIN, A., FERGUS, R., DURAND, F., AND FREEMAN, W. T.
2007. Image and depth from a conventional camera with a coded
aperture. ACM Trans. Graphics 26, 3.

LEVIN, A., WEISS, Y., DURAND, F., AND FREEMAN, W. 2011.
Efficient marginal likelihood optimization in blind deconvolu-
tion. In Proc. CVPR 2011.

MANTIUK, R., KIM, K. J., REMPEL, A. G., AND HEIDRICH,
W. 2011. HDR-VDP-2: A calibrated visual metric for visibility
and quality predictions in all luminance conditions. ACM Trans.
Graphics 30, 4.

MARZILIANO, P., DUFAUX, F., WINKLER, S., AND EBRAHIMI,
T. 2004. Perceptual blur and ringing metrics: Application to
JPEG2000. Signal Processing: Image Communication 19, 2.

MASIA, B., PRESA, L., CORRALES, A., AND GUTIERREZ, D.
2012. Perceptually optimized coded apertures for defocus de-
blurring. Computer Graphics Forum 31, 6.

MITTAL, A., MOORTHY, A. K., AND BOVIK, A. C. 2012. Auto-
matic parameter prediction for image denoising algorithms using
perceptual quality features. In Proc. SPIE, vol. 8291.

MITTAL, A., MOORTHY, A., AND BOVIK, A. 2012. No-reference
image quality assessment in the spatial domain. IEEE Trans.
Image Processing 21, 12.

MITTAL, A., SOUNDARARAJAN, R., AND BOVIK, A. 2012. Mak-
ing a “completely blind” image quality analyzer. IEEE Signal
Processing Letters PP, 99.

MOORTHY, A., AND BOVIK, A. 2010. A two-step framework for
constructing blind image quality indices. IEEE Signal Process-
ing Letters 17, 5.

NARVEKAR, N., AND KARAM, L. 2011. A no-reference image
blur metric based on the cumulative probability of blur detection
(CPBD). IEEE Trans. Image Processing 20, 9.
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