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Figure 1: Four icon customization workflows supported by our algorithms. (a) Sketch-based pictogram modeling: given an input photo (top
left) of a motorbike, the user sketches a polygon (top right) over the photo; this sketch, along with the keyword “motorbike,” are the only
user inputs (the photo is not used). Our method remixes partially similar pictograms (bottom left) to create a pictogram (bottom right) that
matches the user’s sketch. (b) Sketch-based pictogram editing: starting with an existing pictogram of a camera (top left), the user sketches a
flash (top right, green blob) on top of the camera, and our method remixes the partially similar pictogram (bottom left) to create a pictogram
of camera equipped with flash (bottom right). (c) Pictogram hybrids: Starting with several stock pictograms of boy faces (shown in Fig. 13a),
our method creates random yet visually appealing hybrids. (d) Pictogram montage: guided by the user’s scribbles (top, green), our method
helps the user merge two pictograms while retaining the user-selected parts (bottom).

Abstract
Pictograms (icons) are ubiquitous in visual communication, but creating the best icon is not easy: users may wish to see a
variety of possibilities before settling on a final form, and they might lack the ability to draw attractive and effective pictograms
by themselves. We describe a system that synthesizes novel pictograms by remixing portions of icons retrieved from a large
online repository. Depending on the user’s needs, the synthesis can be controlled by a number of interfaces ranging from
sketch-based modeling and editing to fully-automatic hybrid generation and scribble-guided montage. Our system combines
icon-specific algorithms for salient-region detection, shape matching, and multi-label graph-cut stitching to produce results in
styles ranging from line drawings to solid shapes with interior structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Pictograms, or icons, are abstracted pictorial representations of
objects or concepts. Good pictograms offer an efficient, unam-
biguous, instantly recognizable visual language of concepts, from
“global warming” to “cat,” that crosses language boundaries. They

† Most of this work was done when Yiming Liu was a PhD student at
Princeton University and an intern at Adobe Research, and Aseem Agar-
wala was with Adobe Research.

are commonly used in graphic designs, infographics, explainer
videos, logos, and other forms of visual communication. Their
ubiquity has given rise to collections such as The Noun Project
<http://thenounproject.com>, a database of nearly 100,000
curated pictograms contributed by a wide array of designers. The
popularity of The Noun Project demonstrates the growing market
for customized variations of icons. Novice users are willing to buy a
specific face icon resembling their own facial features to be used on
social networks. Professional Artists might find a variety of icons
of the same concept useful for their design ideation process.
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While these hand-made icons are both beautiful and useful, they
are a small subset of the much larger space of plausible icons.
A long-standing challenge in computer graphics is to synthesize
large varieties of plausible shapes from a few hand-created exam-
ples [KCKK12,RHDG10]. For example, the existing “horse” icons
in the dataset sample the larger space of all possible “horse” icons;
is it possible to generate even more samples through interpolation
of the existing ones? Can a user control this interpolation to create
customized icons with particular properties?

This paper describes a system for user-driven synthesis of cus-
tomized icons. Our approach includes a number of ways to gen-
erate variations for a particular class of icons (e.g., “horse”), which
all start by downloading a few exemplars fetched by keyword. Pic-
togram Hybrids (Section 4.3 and Figure 1c) generate icon varia-
tions completely automatically by randomly combining parts of the
exemplars. The rest of our methods allow for user control. Sketch-
Based Pictogram Modeling (Section 4.1 and Figure 1a) takes a
rough sketch of an icon from the user (which may be traced over
a photo), and assembles parts of exemplars to match the sketch.
Sketch-Based Pictogram Editing (Section 4.2 and Figure 1b) allows
a user to select a particular icon and then remove parts and/or add
sketched regions; the algorithm finds parts of other exemplars to
satisfy the user edits. Finally, Pictogram Montage (Section 4.4 and
Figure 1d) allows a user to select multiple exemplars and combine
parts of them into a new, plausible pictogram.

Our system allows multiple workflows because users have different
reasons for customizing icons. Some users may simply want to be
inspired by automatically generated variants; others might have a
rough shape from a photograph they wish to mimic; and still others
may like a particular icon but wish to change a local detail. All
of these workflows are supported by our framework. We describe
the rest of our algorithms in the context of our most challenging
workflow, Sketch-Based Pictogram Modeling, and then show how
the different workflows can be reduced to this variant.

We must solve two technical problems to accomplish the goal of
customizing icons: search and remixing. First, we find parts of ex-
emplar icons from a database (Section 3.1) that match salient parts
of the user sketch, allowing for some geometric transformation.
Though similar to the problem of partial shape matching [VH01],
we have the added complication that the user-drawn sketch will
generally be rougher and less detailed than the desired pictogram.
We therefore decompose the sketch into a number of salient regions
(Section 3.2), and then use approximate sliding-window matching
(Section 3.3) to find candidate exemplar parts.

We then combine the candidate parts (Section 3.4) into a plausible,
seamless whole that matches the user-drawn shape; for this step we
use a Markov Random Field (MRF) optimization. We describe how
to limit the space of matching pictograms to generate results in a
variety of coherent styles (Section 3.5). Our results (Section 4.1)
demonstrate many cases in which this algorithm is able to beautify
user-provided pictograms while introducing detail, including inte-
rior detail that was not present at all in the input.

2. Related Work

There are a number of techniques for helping users create 2D
sketches. One approach is to provide a content-sensitive visual ref-
erence [LZC11, JAWH14]; in this case, the user-drawn sketch is
the final artifact. Another approach is to automatically beautify the
sketch [Zit13, BTS05]. Our approach is instead to replace a user-
drawn shape with a combination of parts from professionally drawn
art.

Combining parts of existing artwork has been explored in a
number of domains. For example, combining parts of pho-
tographs [ADA∗04, HE07, CCT∗09] and manipulating pho-
tos [GCZ∗12] are common operations, though the domain of pic-
tograms requires very different design choices than natural images.
First, the lack of color and texture requires us to focus on shape
alone. Imperfections in how contours match up cannot be masked
by texture, and even modest deformations to the shape can ruin
the beautiful forms designed by artists. Therefore, we must devote
significant effort at both the retrieval and graph-cut stages to ensur-
ing that the parts we remix match up seamlessly. Second, because
our source icons are designed by artists, and not by the public at
large, there will be a significantly smaller number of them avail-
able for any query: dozens or hundreds, as opposed to millions of
amateur photographs. Therefore, we often cannot find an almost-
perfect match for a query, and must focus on remixing exemplars
with large variation, rather than on warping already-good retrieval
results to match a query’s details.

Combining parts of retrieved results has also been explored in
data-driven 3D modeling systems [FKS∗04]; however, significant
user effort is required. More recent systems [CKGK11] reduce
user effort, but require a pre-segmented and labeled 3D model
database. Such model annotation would be difficult for pictograms,
which are more abstract than 3D shapes. Most similar to our
problem are photo-guided techniques that help users build a 3D
model similar to a reference photograph using parts from a model
database [XZZ∗11,SFCH12]; again, these require aligned and seg-
mented 3D models.

Another approach to remixing parts of objects into new ones is to
generate large numbers of combinations without any user guidance.
This idea has been explored for 3D models [OLGM11, KCKK12,
JTRS12], and 2D imageries [RHDG10, HL12]. These 2D methods
can produce pictograms, but do not allow user control.

Part of our technical solution involves partial 2D shape matching.
In computer vision literature [VH01], shape matching is used to
find objects in photographs via their silhouettes. Shapes are often
matched partially in order to handle occlusions or deformation, but
even partial shape matching is typically evaluated for whole-object
detection tasks [ML11]. In contrast, we are truly interested in find-
ing partial shapes. Shape matching in our case has two other sig-
nificant differences from that in object recognition. First, icons are
typically in canonical positions, so we do not need to allow for
arbitrary rotations (we do allow for reflections, scale and transla-
tion). Without rotation, easier matching methods can be used, such
as sliding windows. Second, the user-drawn sketches typically con-
tain less detail than the database icons; we therefore first find the
most salient regions of the sketch, and focus the matching on those.
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Figure 2: An overview of our sketch-based pictogram modeling algorithm for a dog query. The user first selects a photo (a) illustrating the
desired concept, and sketches a rough polygon (b) over it. Our algorithm detects salient regions (c) in the polygon, then uses sliding-window
matching to find the most similar exemplar pictograms (d) for each region (only one for each region shown here). These are remixed and
blended to create a final pictogram (e, first row) that matches the user’s intent. We color-code each pixel to indicate which icon the pixel
comes from (e, second row).

Once shape regions are matched, we use a graph-cut-based al-
gorithm to seamlessly combine the pictograms, similar to algo-
rithms used in image compositing [BVZ01, KSE∗03, ADA∗04].
However, our energy functions are customized to the pictogram
context. Given the user-drawn outer contour, we use signed dis-
tance functions to propagate shape information globally. We also
use larger windows (7× 7) for the pairwise smoothness cost in
graph cuts, since higher-order smoothness artifacts are more no-
ticeable for vector art.

3. Algorithm

We first describe our full pipeline for the most challenging work-
flow, Sketch-Based Pictogram Modeling. We then show in Sec-
tion 4 how the other workflows can be accomplished with the same
system with minor technical modifications.

Fig. 2 illustrates the modeling workflow. We begin by asking the
user to sketch a solid polygon P (Fig. 2b), which might be obtained
by drawing the object of interest over a photo (Fig. 2a), or by draw-
ing free-hand. For the user’s convenience, we expect P to describe
only the rough outline of the desired pictogram — our algorithm
will add details to the contour and fill in the interior structure. We
then ask the user for a keyword K (dog, in this case) to describe the
object class, and use K to retrieve a collection of at most 200 pic-
tograms from The Noun Project (Sec. 3.1) using their API without
manual curation.

Since the user’s sketch is coarse compared to the desired result, we
first detect the detailed, salient regions in P that should control the
matching process (Sec. 3.2). We then find the best matches {Ii} for
each region (Sec. 3.3). These matches are combined using multi-
label graph-cuts (Sec. 3.4) to produce a new pictogram (Fig. 2d)
that mimics P. We restrict matches to come from exemplars of sim-
ilar style (Sec. 3.5) in order to ensure consistency in our output.

Our remixing algorithm operates in the pixel domain, then re-
vectorizes the final result. This might seem wasteful, since the in-
put SVG pictograms are vector, not raster, drawings. However, we
chose pixel-domain processing for two reasons. First, it is difficult
to remix interior structures consistently with the contours in the

vector domain. Second, the deformations required to merge con-
tours in the vector domain often lead to unnatural appearance or
even break semantics. We note that recent work on stroke styliza-
tion [LBW∗14] also made the same choice of raster-domain pro-
cessing followed by vectorization, for the same reasons.

3.1. Fetching Data

Our system obtains source pictograms for remixing from The
Noun Project, a large user-contributed but curated online pictogram
repository. In order to restrict our remixing to models with detail
appropriate for the given class, we query the repository with the
user-provided keyword, and fetch pictograms in SVG format via its
API. We only focus on the pictograms consisting of black and white
solid shapes and lines, which covers the majority of the repository.

The SVG file of a pictogram fetched from The Noun Project rep-
resents a tree, with geometric primitives stored at its leaves and
interior structure representing grouping information. However, the
structure of the tree proves difficult to exploit for semantic group-
ing, for a few reasons. First, most artists do not segment the pic-
togram into semantically-independent parts. In other words, the
tree structure in the SVG file is neither consistent nor reliable. Sec-
ond, pictograms are often 2D projections of 3D objects; different
pictograms, even with the same keyword, may represent projections
from different views and with different occlusions. This makes it
difficult to extract a semantic tree model to represent the hierarchi-
cal structure of parts in a pictogram, and hence to infer the semantic
correspondence between pictograms. Therefore, we are only able to
consider a pictogram as an unstructured collection of shapes.

3.2. Salient Region Detection

Given a sketch polygon P drawn by the user, we first find a num-
ber of overlapping salient regions. Intuitively, we assume that each
noticeably convex or concave local structure on the polygon bound-
ary reflects the user’s intent — otherwise, the user would not have
included that detail. We detect these local structures by first com-
puting a salience map, and then selecting local regions from this
map. The salience map is a sum of two terms that measure turning
angles and black/white balance, respectively.
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The turning-angle term measures geometric salience by aggregat-
ing the turning angles of polygon edges in local regions. In practice,
we first rasterize P onto an m×m bitmap IP, where IP(x,y) = 0
(black) for all pixels inside of P, and IP(x,y) = 1 otherwise. In
our implementation, we set m = 256. We compute the (unsigned)
exterior angle θ(x,y) for each pixel at a polygon vertex, and let
θ(x,y) = 0 for other pixels. Then, the aggregated exterior angle is
the convolution of θ and a smoothing kernel M:

T =
θ∗M

max(θ∗M)
, (1)

normalized to ensure that max(T ) = 1. The mask M represents the
extent of a region (e.g., the nine patterns shown in Figure 2c); the
specific design of M is discussed below.

A good salient region should be neither mostly inside P nor mostly
outside P, to prevent trivial matching results (all black/white pix-
els). The second term in the salience map therefore measures
black/white balance — i.e., the balance between pixels inside and
outside of P:

B =
∣∣(IP−0.5)∗M

∣∣, (2)

where both the subtract and absolute operations are element-wise.
Thus, B will be near 0 when about half the pixels in the neighbor-
hood are black.

We compute the final salience for each pixel by combining the
turning-angle score and the black/white balance score:

S(x,y) = T (x,y)−λB B(x,y), (3)

where λB = 0.1. This weighs T (x,y) more than B(x,y), because our
ultimate goal is to detect geometric salience.

The design of our mask M has several motivations. First, to pre-
vent false-positive matches due to overfitting local structures, M
should be a rather large mask. In addition, we would like regions
to have significant overlap with adjacent ones, so that selected pic-
tograms will have similar geometry in overlapping regions. Finally,
since a portion of boundary area will be cut in the remixing step, M
should focus mostly on matching structures in its center. Therefore,
M should be constant in the middle and fall off smoothly. In partic-
ular, we take M to be a 100× 100 square smoothed by a Gaussian
with σ = 40.

For the number of salient regions, we choose 9; we find that this
strikes a balance between matching details in P while still main-
taining much of the global structure of the exemplars. In addition,
this covers the whole image with considerable overlap between re-
gions. These 9 regions should have the highest scores, but be lo-
cated at least ∆S = 75 pixels apart. We find these regions in a greedy
fashion: in each round, we pick a region centered at a valid pixel
with the highest score, then label pixels within ∆S as invalid. With
this strategy, the first regions we obtain often contain one or more
of the most-salient local structures, and also have the best balance
between pixels inside and outside the polygon. These regions help
us to capture the important large-scale structure of the user’s intent.
The last regions we obtain usually contain just a single small salient
local structure, and are often less balanced between inside/outside
pixels. This is helpful to capture local details.

For each salient region, we create a mask Mi (1 ≤ i ≤ 9) with
m×m pixels to be used for sliding-window matching. Specifically,
for each pixel (x,y) inside the region, we let Mi(x,y) equal the cor-
responding value of M; for other pixels, we let Mi(x,y) = 0. Fig. 2c
shows the masks we generate for the 9 salient regions.

3.3. Sliding-Window Matching

For each salient region, we now wish to find the exemplar pic-
tograms that match the query most closely in that region (i.e., as
weighted by the mask Mi). To formulate the matching problem, we
must define both the matching function (i.e., when two pictograms
are considered similar) and the space of transformations over which
to search.

The most natural choice for a matching function is the difference
between (black/white) rasterized images, weighted by Mi. How-
ever, it introduces large penalties for even slight misalignment, re-
ducing our ability to match roughly-drawn user sketches to detailed
icons from the database. Instead, we would like to allow small mis-
matches between the sketch and a database icon, while still penaliz-
ing large misalignment. We therefore choose to match pictograms
by comparing truncated signed distance fields (TSDF), which have
been used in previous texture synthesis approaches [LH06]. For
each pixel of both the sketch P and each retrieved pictogram E j,
we find its signed distance (positive outside, negative inside) to
the nearest point on the exterior contour. To avoid over-penalizing
mismatches, we clamp the signed distance value to some range
[−dmax,dmax]; we experimentally found that dmax = 6 worked well.
Finally, we normalize the TSDF by dividing by m. We formulate
the matching function as the weighted squared distance between a
normalized TSDF image DP for the query and D j for a pictogram
E j:

δ(T ) = ∑
x,y

Mi(x,y)
[
T
(
D j(x,y)

)
−DP(x,y)

]2
, (4)

where T is an appropriate transformation.

We next need to choose a class of transformations over which to
search. Previous shape-matching systems are complicated by the
need to consider the full set of rigid-body transformations; rota-
tions in particular lead to more complex shape matching. In our ap-
plication, however, we observe that most pictograms have a clearly
defined upright orientation, which causes rotation to break seman-
tics. Therefore, we restrict our transformations T to be transla-
tions, which greatly simplifies the matching problem. In fact, the
sliding-window computation can be effectively accelerated via the
Fast Fourier Transform (see Appendix A).

In practice, we allow two additional classes of transformations to
improve matching. First, we allow horizontal (but not vertical) flip-
ping. Second, we allow modest uniform (but not anisotropic) scal-
ing, restricted to factors of 0.9 and 1.1. Artists tend to draw fewer
details on smaller parts of objects. Very aggressive scaling poten-
tially leads to results that combine parts with different levels of de-
tails, which is what we want to avoid. The search over these trans-
formations is implemented by creating additional flipped and/or
scaled versions of each retrieved pictogram. Notice that, we do not
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warp or deform the retrieved icon to better match the query poly-
gon, since spatially varying deformation often makes the results
worse. In contrast to photos, monochrome icons have only shapes
and no texture or color, making even a small, incorrect shape de-
formation visually stand out.

Thus, for each salient region we obtain a ranked list of exemplars,
together with translation/flip/scale, that best match that region. We
keep the 3 best matches for each region. Fig. 2d shows one of them
per region. The resulting 9× 3 = 27 transformed exemplars serve
as sources for our remixing stage.

3.4. Pictogram Remixing

The remixing stage needs to produce a plausible output pictogram
respecting the user sketch. Specifically, the remixing should (1)
yield a contour similar to the user’s query P; (2) synthesize inte-
rior structure present in the exemplars (but not the query); and (3)
produce a seamless result, both on the outside contour and on inside
structure.

We formulate remixing as a multi-label graph-cut problem. Specif-
ically, the result is modeled as a 4-connected 2D lattice containing
m×m sites, one per pixel. Each site has an indicator label L(i) that
takes one of 27 values, corresponding to the exemplars. The energy
function is modeled as the sum of a unary data cost and pairwise
smoothness cost:

F(L) = ∑
i∈V

FD
(
i,L(i)

)
+λS ∑

(i, j)∈E

FS
(
i, j,L(i),L( j)

)
, (5)

where V is the set of sites on the lattice and E is the set of edges
connecting adjacent sites on the lattice. In this formulation, the data
cost FD measures the similarity to P, and the smoothness cost FS
measures the smoothness of remixing.

Data Cost. We expect the contour of our remixing result to be simi-
lar to P. Since P only describes the rough shape of the user’s desired
result, we tolerate small offsets between the result contour and P.
For this reason, we use the truncated signed distance field of the
contour to measure data cost. Specifically, we compute the TSDF
for P and only the external contour (i.e., ignoring internal structure)
of {Ik} to obtain DP and {Dk}. At each site i, the data cost is then
defined as the difference between P and the exemplar:

FD
(
i,L(i)

)
=
∣∣DP(i)−DL(i)(i)

∣∣. (6)

Smoothness Cost. Since we expect the remixing result to be seam-
less, we would like to avoid visible offsets when remixing pic-
tograms. For this reason, we use the image pixel color instead of
the signed distance field in the smoothness cost. Specifically, we
collect a 7×7 neighborhood Nk(i) for each pixel in each exemplar
Ik. The smoothness cost is defined as

FS
(
i, j,L(i),L( j)

)
=

{
0 if L(i) = L( j)

max(ε, fn + fint) otherwise,
(7)

where fn is the distance between neighborhoods:

fn =
∥∥NL(i)(i)−NL( j)(i)

∥∥
2 +
∥∥NL(i)( j)−NL( j)( j)

∥∥
2, (8)

(a) (b) (c)

Figure 3: Patch-based vs. pixel-based smoothness cost. The user
sketches a cup (a, top). We compare graphcut results with pixel-
based (b) and patch-based (c) smoothness cost. Patch-based
smoothness results in a more natural connection of the curves on
the two exemplars. Note that the weight placed on smoothness, λS,
is adjusted to 10 in (b) and 1 in (c) so that both results use exactly
two exemplars.

and fint is a penalty for cutting through interior structure. Specifi-
cally, we set fint = 0.5 if either IL(i)(i) or IL( j)( j) is interior struc-
ture (a white pixel inside the contour), and set fint = 0 otherwise.
Finally, if two different labels are remixed, even if the remixing
is perfectly seamless and avoids cutting through the interior struc-
ture, we still consider it worse than not remixing. Therefore, we
clip the lower bound of FS to ε = 0.01 when L(i) 6= L( j). Notice
that, though not explicitly handled, plausible interior structure are
synthesized. The use of 7× 7 neighborhood prevents the merging
of inconsistent interior structures during graph-cut. For example,
pixels on the boundaries of square windows and circular windows
(Fig 15) have different neighborhoods. Attempting to merge them
yield high smoothness cost and is therefore avoided.

Symmetry Constraint. For pictograms exhibiting reflectional
symmetry, e.g. a lamp, face, or airplane, we would like to ensure
that each pixel is taken from the same exemplar as its symmetric
counterpart. To this end, we connect each site i to ri, where i and
ri are symmetric with respect to a symmetry axis. The smoothness
cost on this edge is defined as:

FS
(
i,ri,L(i),L(ri)) =

{
0 if L(i) = L(ri)

+∞ otherwise,
(9)

In our experiments, we find it sufficient to restrict the symmetry
axis to horizontal, vertical, or diagonal lines through the center.
Since each pictogram is rescaled to its tight bounding box and cen-
tered with respect to the canvas, as long as its outer boundary is
symmetric (which is true for most cases), its true symmetry axis
will pass through the center. (The same assumption is also made by
previous work such as Structured Image Hybrids [RHDG10].)

It is not difficult to prove that our smoothness cost is a metric in
the space of labels. That enables us to use the α-expansion algo-
rithm [BVZ01] to approximately minimize F(L).

Impact of λS. The parameter λS controls the balance between data
and smoothness cost. Intuitively, a large value of λS encourages
smoothness of remixing, at the expense of similarity to the user’s
sketch polygon. A small value of λS makes the remixing result
more similar to the user’s sketch polygon, but artifacts tend to
emerge. In practice, we observe that when λS ≥ 3, the remixing
result is most likely a single pictogram that is most similar to the
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Figure 4: Five fish pictograms enclosed by their convex hulls (red
dashed polylines), and the resulting blackness values.

user’s sketch polygon. When λS ≤ 0.01, the remixing result has
contributions from almost all exemplars, but has many artifacts. We
observe that there are often multiple values of λS that yield plausi-
ble but different results, and the ideal value depends on how closely
the user wishes to match the input sketch. In practice, we sample
8 values in the range [0.03,0.75], and run the graph-cut algorithm
with each sampled value. All of these are presented to the user.

The Benefit of Patch-Based Smoothness Cost. A key difference
between our remixing algorithm and Photomontage [ADA∗04] is
that we use 7×7 patches instead of pixels in our smoothness cost.
Given the fact that the user’s sketch is usually rough, this change
is critical to avoid high-order artifacts, e.g. in the slope and cur-
vature of strokes and contours. Fig. 3 demonstrates an example in
which the user sketches a cup. Although we expect the remixing re-
sults to differ from the user’s sketch, they should still have a natural
appearance. However, we observe that the pixel-based smoothness
cost results in an unnatural connection of a straight line and a curve
on the edge of the cup. In contrast, our patch-based smoothness
cost yields a natural remixing.

The neighborhood size in the smoothness term is a compromise
among quality, speed, and memory consumption. Generally, a
larger neighborhood is able to keep higher-order structures, but it
makes graph-cuts slower and less memory efficient. In our experi-
ments, we find that 7×7 neighborhoods work well enough in most
cases, while also having acceptable speed.

Post-processing. As noted earlier, all of our matching and
remixing operations are performed on rasterized versions of
the pictograms. We use the open-source potrace package
<http://potrace.sourceforge.net> to vectorize the result.

3.5. Style Consistency

Pictograms from The Noun Project come in various styles. Some
are solid shapes, some have rich interior structure, and some are
line drawings. We design our algorithm to only remix pictograms of
similar styles, for two reasons. First, mixing multiple styles usually
produces implausible results. Second, restricting the algorithm to
one style at a time allows us to produce multiple results in various
styles, offering the user a greater selection of results to match his
or her intent.

There is an existing method to measure similarity of illustration
style [GAGH14]; however, it is overkill for the limited range of
“pictogram” styles. We instead use a simple blackness feature to
measure the style of a pictogram. We define blackness as the pro-
portion of black pixels in the convex hull of the pictogram. In-
tuitively, this helps us distinguish among solid pictograms, those
with rich interior structure, and line drawings. In addition, we ob-
serve that among line-drawing pictograms with the same keyword,

blackness has a strong correlation with stroke width. In general, if
we sort pictograms with the same keyword by their blackness val-
ues, the first ones are line drawings with very thin strokes. Strokes
become thicker as blackness increases. Then pictograms with rich
interior structure appear. Purely solid pictograms come last. Some
examples are shown in Fig. 4.

style blackness

lightest [0.0 .. 0.4]
light [0.2 .. 0.6]

medium [0.4 .. 0.8]
dark [0.6 .. 1.0]

Blackness values lie between 0 and 1, and
we create four overlapping intervals to
cover this range, as shown at right. We
associate a “style” with each interval and
generate separate results for each one by
restricting matching to pictograms with
blackness falling in that interval. In general, each style for which
there are sufficient pictograms in the database yields a plausible
result.

4. Workflows

We first show results of the algorithm we just described for Sketch-
Based Pictogram Modeling. Then, we describe minor modifications
to this algorithm to support three other workflows, and provide re-
sults for them, as well.

4.1. Sketch-Based Pictogram Modeling

We examine a set of test cases to show how our algorithm works.
For each test case, we run our graph-cuts algorithm with each of the
four blackness intervals and eight values of λS from 0.03 to 0.75.
Ideally we would produce four results, with four different styles, for
each test case. However, there are often not enough pictograms for
every style for each keyword, and our algorithm fails to produce
good results for those styles. So, we only demonstrate styles that
yield plausible results. Our results figures contain a mix of different
λS and style parameter settings; we use a legend bar at the top of
each figure to identify the parameters used. We refer readers to our
supplementary materials to find remixing results with all four styles
and all eight values of λS.

The figures show how each result is assembled by assigning a dis-
tinct hue to each source pictogram. Often, several exemplars come
from the same retrieved pictogram, but with different offset, flip,
or scale. In this case, we use the same hue with different lightness
(in HSL color space). Note that unless λS is large, our results may
contain many tiny parts from different exemplars on the interior,
which reduces data cost for pixels inside the contour. While this
has no impact on the appearance of the remixing result, it makes
the visualization more difficult to interpret. So, for clarity, we only
include exemplars that contribute significantly to the result.

Motorbike. Fig. 1a demonstrates a test case of motorbikes. Note
how our algorithm uses additional pictograms to make the motor-
cycle “chopped”.

Bicycle. In Fig. 5a, the user sketches a polygon for a bicycle
with a very low seat and without top tubes, and would like to
remix pictograms from the Noun Project to mimic this appearance.
Fig. 5(b-d) demonstrates three pictograms in different styles gener-
ated by our algorithm. In Fig. 5b, the first exemplar already has a
low seat, but it has a top tube; the second exemplar is the opposite
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keyword: bicycle λS: (b-c) 0.1; (d) 0.75 style: (b) lightest; (c) light; (d) medium

(a) (b) (c) (d)

Figure 5: Bicycle. (a) The user sketches a polygon to roughly represent the shape of a bicycle in a photo. (b-d) Three remixing results in
different styles (i.e., blackness values). The first row contains the result, and a color visualization of how the result is assembled. The second
row contains the exemplars that contribute a significant portion of the result.

keyword: house λS: (b) 0.05;(c) 0.75 style: (b) lightest;(c) medium

(a) (b) (c)

Figure 6: A House in three different styles.

keyword: house λS: (b) 0.075; (c) 0.1 style: (b) light; (c) medium

(a) (b) (c)

Figure 7: Another House in two different styles.

case. Our algorithm remixes them seamlessly, to produce a result
that perfectly matches the user’s intent. Fig. 5c collects parts from
three pictograms, yet produces a seamless result with a low seat
and no top tube. In Fig. 5d, our algorithm cuts a low seat from the
second exemplar, and pastes it onto the first exemplar, to obtain a
visually plausible result.

House. Fig. 6 demonstrates remixed house pictograms in three
styles: line drawings, solid shapes with rich interior structure, and
solid shapes. Note how our algorithm uses two identical line draw-
ings of the house with offsets to mimic a wider house in Fig. 6(b).
Fig. 7 demonstrates a different house in two styles: line drawings
and solid shapes with rich interior structure.

Fish. In Fig. 8a, the user sketches a fish with a large dorsal fin on
top, two smaller fins on the bottom, and a fat tail. With λS = 3,
our algorithm would just return the red pictogram in Fig. 8b as the
result, matching the positions but not the sizes of the fins. With
a smaller value of λS = 0.3, our algorithm uses several additional
pictograms to produce a result with correctly-sized fins and tail (see

keyword: fish λS: 0.3 style: medium

(a) (b)

Figure 8: Fish. Parts of many exemplars are combined to match the
sizes of the fins and tail.

keyword: horse λS: 0.75 style: medium

(a) (b)

Figure 9: A Horse pictogram.

Fig. 8b). Also, note how plausible internal details are included that
the user does not need to sketch on her own.

Horse. Fig. 9 demonstrates a test case of horses. Note how our
algorithm uses additional pictograms to remove the rider from the
back of the horse in Fig. 9.

4.2. Pictogram Editing

Our system also enables editing existing pictograms rather than
sketching from scratch. Fig. 10 shows an example.

We enable editing by encouraging our remixing algorithm to
choose the initial pictogram E0 outside the changed area, i.e., the
union of red and green parts, and penalizing E0 inside that area.
To this end, we create a mask DE by computing a truncated dis-
tance field outside the union of the red and green parts (Fig. 10c).
DE is normalized by the truncation threshold t = 25 to ensure its
maximum value equals 1. To focus our salient region search on the
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(a) (b) (c)

(d) (e)

Figure 10: Pictogram editing. Starting from an existing pictogram
(a), the user removes the red region using a red, dashed line and
sketches the new, desired shape with a green polygon (partially oc-
cluding the red region). Our system generates a mask (c) for the
changed region, and exemplars are retrieved and remixed (d) based
on this mask to generate an edited pictogram (e).

Figure 11: Pictogram editing results. Row 1: initial pictograms;
Row 2: the user’s edits; Row 3: edited results.

changed area, we add a term to S with a high weight λD = 100:

S′(x,y) = S(x,y)+λD
[
(1−DE)∗M

]
. (10)

We rule out pictogram E0 when selecting exemplars during sliding-
window matching, but add E0 back in as label 0 during graph cuts.
We then add a penalty PE to the data cost:

PE(i,L(i)) =

{
wE
[
1−DE(i)

]
if L(i) = 0

wE DE(i) otherwise.
(11)

For pixels inside the changed area, PE = wE if L(i) = 0, so E0 is
penalized. The penalty is reduced as pixels get more distant from
the changed area until the t threshold is crossed and the penalty
becomes zero. Similarly, the other source pictograms are penal-
ized outside the changed area, but are encouraged inside. Weight
wE = 0.1 controls the balance between this penalty and the origi-
nal data term. The parameters wE , t, and λD are set experimentally.

We show a number of results of editing existing pictograms to
change one or more parts in Fig. 11. Notice how the algorithm uses
parts of other icons to add detail to the user’s rough sketches.

(a) (b)

(c) (d)

Figure 12: Pictogram hybrids. Starting from four existing pic-
tograms (a), our system generates random data costs (b) as a guid-
ance for graphcuts, to produce a hybrid pictogram (c). More hy-
brids are shown in (d). In this example, a horizontal symmetry con-
straint is enabled.

4.3. Pictogram Hybrids

Another way of using our system is to automatically synthesize hy-
brids of a collection of pictograms, inspired by Structured Image
Hybrids [RHDG10]. Fig. 12 demonstrates an example. To synthe-
size hybrids, we randomly select a seed position from each exem-
plar in the collection to retain in the remixing result. In the case of
symmetric shapes, we augment this to a pair of symmetric seed po-
sitions. We then compute truncated distance fields DH from these
seed positions (Fig. 12b), normalized by the truncation threshold
t = 40 to ensure a maximum value equal to 1. We use the DH as the
data costs for graph-cuts. Intuitively, the pixels around seed posi-
tions have low data cost, and thus tend to be retained in the hybrid.
The graph-cuts algorithm finds optimal cuts between these seed po-
sitions to remix exemplars.

Since the data cost is randomly generated, we need a strong
smoothness constraint to ensure the quality of the remixing result.
We find λS = 3.0 to be sufficient for all test cases. Needless to say,
randomly generated data cost is not guaranteed to produce perfect
results all the time. Also, different random seeds can also yield the
same hybrids. Therefore, our results figures demonstrate 8 to 14
results from a larger set produced with 40 random seeds.

Fig. 13 shows a set of face hybrids (see also Fig. 1c). In or-
der to maintain semantics, we enabled the horizontal symme-
try constraint. However, in contrast to Structured Image Hy-
brids [RHDG10], we only require the source positions of pixels
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(a) (b)

Figure 13: Pictogram hybrids: boy. (a) existing pictograms; (b)
hybrids. A horizontal symmetry cost is enabled, but because the
original exemplars have asymmetric hairstyles, the resulting hy-
brids are allowed to be asymmetric as well. In contrast, the eyes
(which are symmetric in the input) are symmetric in the output.

(a) (b)

Figure 14: Pictogram hybrids: chess figures from [RHDG10]. (a)
exemplar images; (b) hybrids. A horizontal symmetry constraint is
enabled.

(as opposed to the pixels themselves) to be symmetric. Therefore,
our system also retains the asymmetry of hair that is present in the
original pictograms. Fig. 14 demonstrates hybrids of the same chess
exemplars used in the Structured Image Hybrids [RHDG10] paper.
Our system achieves subjectively comparable quality.

4.4. Pictogram Montage

In some cases, users would like more direct control over how exem-
plars are aligned and remixed. In this scenario, our system resem-
bles a pictogram-optimized instance of Photomontage [ADA∗04],
which we call pictogram montage. Fig. 15 demonstrates an exam-
ple. We ask the user to select source pictograms, align them, then
use strokes to select which parts to retain in the remixing results.
We compute truncated distance fields DM from the pixels covered
by the strokes, truncated with threshold t = 20 and normalized to a
maximum value of 1. We then use DM as the data cost for graph-
cuts. We find that λS = 3.0 works well for all test cases. Fig. 16
demonstrates two more examples.

5. Evaluation

Our primary evaluation is qualitative: we ask the reader to refer to
the figures in this paper as well as supplemental materials for exam-
ples of all four workflows. In addition, we conducted two studies to
evaluate several aspects of our system. First, we evaluate how of-
ten our algorithm is able to create a high-quality pictogram from a

Figure 15: Pictogram montage. The user aligns pictograms of
buildings and selects parts with strokes (top row). Our system gen-
erates data costs based on the strokes (bottom left), and generates
a pictogram montage (bottom right).

(a) (b)

Figure 16: Two more examples of pictogram montage.

user-drawn sketch. Second, we compare the visual quality of algo-
rithmically remixed pictograms against original, hand-drawn icons,
to see if humans prefer one over the other.

5.1. A Semi-Blind Test

We first conducted a “semi-blind” test on our sketch-based mod-
eling workflow, in which the authors produced the inputs to the
pipeline. There are two reasons why we did this, instead of asking
external users. First, we wished to avoid the difficult question of
intent, i.e., whether the results match what the users had in mind.
Instead, we only evaluate the quality of results. Second, as shown
in Sec. 5.3, our system currently is not able to match and remix in
real time, which makes it difficult to have users use our system.

For this test, we produced 16 input sketches, covering a diversity
of subjects seen in reasonably canonical views. Fig. 17 shows the
results of our algorithm on those sketches. Our algorithm produced
plausible and recognizable pictograms 75% of the time, and in
more than 50% of cases (in the blue box) no existing pictograms
matched the sketch polygons (though this determination is neces-
sarily subjective). We include the best match and other details in
supplemental materials. Even when there was an existing matching
pictogram, it can be valuable to see alternatives; in several cases

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Yiming Liu et al. / Data-Driven Iconification

Figure 17: Semi-blind test results. Row 1: photo. Row 2: the user’s sketch polygon. Row 3: the best pictogram generated by our algorithm.
Blue box: test cases in which no existing pictograms match the user’s intent, but our algorithm generates a matching pictogram by remixing.
Yellow box: test cases in which our algorithm obtains a reasonable pictogram, but there are existing single pictograms that match the user’s
intent. Red box: test cases in which our algorithm fails.

(e.g., boot and lamp) our remixed pictograms have a different ap-
pearance or style that the user may prefer.

5.2. User Study on Visual Quality of Results

We also conducted a large-scale human study on Amazon Mechan-
ical Turk to evaluate remixing quality. We choose to evaluate the
pictogram hybrids workflow, as it is the only workflow without
user control, and hence avoids the difficult-to-evaluate questions
of user intent mentioned above. We asked each Turker to compare
30 pairs of pictograms for each of three test cases: boy (Fig. 1c and
Fig. 13), lamp (Fig. 12), and chess (Fig. 14). We used a forced-
choice methodology, in which Turkers had to select their preferred
icon within each pair. Among these pairs, 24 of them compare the
4 exemplars against all the results shown in our paper, while the re-
maining 6 pairs are sanity checks that compare poorly-synthesized
pictograms against our results. We obtained the poorly-synthesized
icons by using a very low weight (0.001) smoothness cost. Any
submission that fails to give a correct answer for any sanity-check
pair is discarded. This way, a randomly-guessing user has only a
1.6% chance of passing our sanity check.

Our study received 139 submissions from Turkers in the United
States, of which 122 passed the sanity check. Each pair was com-
pared by 20 to 24 users who passed our sanity check. Table 1 shows
the results. We observe that about 45% of the time our synthesized
icons were preferred, which is close to the 50% that we would ex-
pect to observe if the synthesized icons were of completely equiv-

alent quality to the original hand-drawn ones. We thus conclude
that, while there is a small difference, it is difficult for users to dis-
tinguish between our results and stock pictograms.

Table 1: Results of user study evaluating visual quality. We show
the number of user selections, as well as the percentage, preferring
our results vs. stock pictograms.

Test Case Ours Stock Ours%

boy 512 659 43.7%
lamp 414 514 44.6%
chess 385 444 46.4%

5.3. Running Time

Our algorithm is implemented in Python, with the Fast Fourier
Transform implemented via a Python binding for FFTW [FJ05].
Graph-cuts are solved via the α-expansion algorithm in the GCO

package [BVZ01]. For sketch-based workflows, the bottleneck of
our algorithm is sliding-window matching. On a 3.6GHz CPU, with
a single CPU thread, it takes about 13 msec to match a retrieved
pictogram at one scale and reflection for each salient region. There-
fore, for 200 retrieved pictograms, 3 different scales, and counting
reflections, it takes about 140 seconds to perform sliding-window
matching for all 9 salient regions. The multi-label graph-cuts algo-
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Figure 18: Remixing result for the tandem bicycle, if we allow a
larger set of scaling factors for matching.

rithm takes 3 to 11 seconds with a single CPU thread, which means
that even if we try 8 values for λS, the total running time for graph-
cuts is less than sliding-window matching. Therefore, in our imple-
mentation, after we perform sliding-window matching, we run the
graph-cuts algorithm with 8 different values for λS, ranging from
0.03 to 0.75, and ask the user to choose the desired result. Both the
matching and remixing stages of our algorithm are trivially paral-
lelizable, and we would expect significant speedups with parallel
or GPU implementations.

6. Discussion, Limitations, and Future Work

Our algorithm has several failure modes, mainly in sketch-based
workflows. First, as a data-driven algorithm, it can fail due to in-
sufficient data. In particular, most artists draw pictograms only in
canonical views. If a novice user sketches an object with an arbi-
trary view, our algorithm might fail. Even given a canonical view,
if no existing pictograms partially match the user’s sketch polygon,
our algorithm will also fail. The “chopper” bicycle in Fig. 17 is an
example — it was designed and built by the person who took the
photo, different from all normal bicycles. The algorithm will also
fail for particular styles (i.e., blackness intervals) if the repository
does not provide sufficient coverage for them. We expect that these
problems will be gradually alleviated as more and more artists con-
tribute to online repositories of icons.

Second, we expect users to describe the shape of their desired pic-
togram with a polygon. Because the polygon is rough, we detect
salient regions by using large windows, and use TSDF to measure
the similarity between the polygon and the exemplars. These tech-
nical decisions make our algorithm robust to small changes and
noise on the polygon, but on the other hand insensitive to small de-
tails. The girl in Fig. 17 is a typical case: the polygon has details to
represent the girl’s nose and mouth, but our algorithm fails to retain
these parts in the result. Giving even higher weight to fine details
in the sketch, or allowing users to sketch interior detail, might help
alleviate some of these problems.

Third, though modest scaling factors 0.9 and 1.1 are sufficient for
sliding-window matching in most cases, there are exceptions. The
tandem bicycle case in Fig. 17 is a typical case — it requires an ag-
gressive scaling of wheels to fit two seats in between. We re-ran this
example with a more aggressive set of scaling factors (0.8, 0.9, 1.1,
and 1.25), giving the correctly remixed result in in Fig. 18. We do
not see this as a general solution, though, since adding these addi-
tional scaling factors sometimes yields visually implausible results.
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Appendix A: Accelerating Matching with the FFT

We specialize the matching error (4) discussed in Section 3.3 to the case of
pure translation, and split it into three terms:

δ(u,v) = ∑
x,y

Mi(x,y)
(
D j(u+ x,v+ y)−DP(x,y)

)2 (12)

= δ1(u,v)−2δ2(u,v)+δ3(u,v) (13)

δ1(u,v) = ∑
x,y

Mi(x,y)D j(u+ x,v+ y)2 (14)

δ2(u,v) = ∑
x,y

Mi(x,y)DP(x,y)D j(u+ x,v+ y) (15)

δ3(u,v) = ∑
x,y

Mi(x,y)DP(x,y)
2 (16)

We may think of δ1 as filtering D2
j with Mi, and δ2 as filtering D j with

MiDP. These operations can be accelerated with the Fast Fourier Transform.
δ3 is a constant that has no effect on the relative ordering of matching scores,
and may be omitted.
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