
Interactive Painterly Stylization of Images, Videos and 3D Animations

Jingwan Lu 1,2 Pedro V. Sander 1 Adam Finkelstein 2

1 Hong Kong UST 2 Princeton University

(a) Image (b) Video (c) 3D Model (d) Hybrid

Figure 1: Different rendering styles showcasing our real-time system for stylizing (a) an image, (b) a frame of a video, (c) a frame from a
rendered 3D animation scene, and (d) a hybrid scene that combines 3D animation of a lizard with a still photograph in the background.

Abstract

We introduce a real-time system that converts images, video, or
3D animation sequences to artistic renderings in various painterly
styles. The algorithm, which is entirely executed on the GPU,
can efficiently process 5122 resolution frames containing 60,000
individual strokes at over 30 fps. In order to exploit the parallel
nature of GPUs, our algorithm determines the placement of strokes
entirely from local pixel neighborhood information. The strokes
are rendered as point sprites with textures. Temporal coherence is
achieved by treating the brush strokes as particles and moving them
based on optical flow. Our system renders high quality results while
allowing the user interactive control over many stylistic parameters
such as stroke size, texture and density.

Keywords: Non-photorealistic rendering, painterly rendering,
GPU processing, video processing, particle systems

1 Introduction

Artists over hundreds of years have refined a range of painting tech-
niques to convey a scene while injecting their own individual style
as a vehicle for abstraction, expressiveness and creativity. The most
visually distinctive feature in many painting styles is the clear out-
line of individual brush marks on the canvas. Researchers working
on non-photorealistic rendering (NPR) have introduced a variety
of computer graphics techniques for painterly rendering wherein
brush strokes emulate many of the effects seen in traditional paint-
ings. The bulk of such research has sought to optimize the brush
paths or overall arrangement of the strokes, often at the expense of
substantial computation.

This paper presents a system for stylization of images, video,
and 3D models. The method supports a broad range of painterly

styles based on brush stroke primitives, via a toolbox of parameters
that control, for example, stroke size or density. To facilitate the
cycle of experimentation and observation, it is crucial to offer the
user interactive control over such parameters. Moreover, a fully
interactive system supports applications where the input data is not
known in advance, for example games or streaming video.

In order to achieve interactive frame rates, the algorithms we
describe are implemented entirely on the GPU. The challenge is
to find algorithms that can exploit the parallel computing power
available in this environment. Our key observation is that it is
possible to create high-quality painterly renderings by making
purely local decisions about the arrangement of strokes. Rather
than asking the question “Where should I put the next stroke?”
our approach is to ask “Should I place a stroke here?” Our
strategy for answering this question is based on two components: a
rendered buffer that tracks stroke density throughout the image, and
stochastic processes for placing new strokes where the density is
too low or deleting strokes where density is too high. These purely
local processes are suitable for parallelization at the stroke level and
can thus be mapped onto the GPU.

This framework easily accommodates moving imagery – either
video or animated 3D models. In such cases the challenge is to
maintain temporal coherence for the strokes, avoiding flickering
without falling prey to the “shower door effect” (the illusion that the
image is seen through a semi-transparent shower door whose facets
are the set of strokes fixed in the image plane). Our approach is to
transport the strokes according to optical flow (for video) or exact
geometric flow (for 3D models). As a result of stroke advection,
their local density changes from frame to frame. Thus strokes
are added or deleted to maintain a target density. Except for the
choice of optical flow methods, the same simple pipeline works
for all three media, even in combination (for example 3D models
composited over streaming video).

This paper and the accompanying video demonstrate the algorithm,
revealing imagery in a variety of styles and allowing the user to
modify parameters and display moving imagery at interactive frame
rates (Figure 1). Applications for this work include artistic control
in image and video processing applications; painterly rendering for
games, virtual worlds or architectural/design tools; and stylistic
range in a whimsical variation on video conferencing.



2 Related Work

Stroke-based rendering techniques. Brush strokes are com-
monly used for simulating various artistic styles. Stroke based
approaches, such as [Strassmann 1986; Hertzmann 1998; Kalnins
et al. 2002; Park and Yoon 2008] model the brush strokes as spline
curves. One advantage is that they can model long, continuous
brush strokes with varying size and shape. Model-based approaches
such as [Meier 1996; Kaplan et al. 2000; Haller and Sperl 2004;
Luft and Deussen 2006] use particles in 3D to model the brush
strokes. Usually, they associate 3D particles with the geometry
of the model, derive the stroke properties from surface attributes,
and render the particles as brush strokes in screen space. These ap-
proaches are not appropriate for the image and video domain. First,
modeling spline curves on the GPU introduces added complexity
with a substantial performance impact. Second, model-based ap-
proaches make use of 3D geometry properties that are not available
in 2D image domain. In our work, we represent brush strokes as
particles in the image and time domain and determine the particle
properties based solely on image processing. Thus, our approach
has the flexibility to handle image, video, and 3D geometry.

Previous researchers have introduced several stroke-based render-
ing algorithms for image processing. For example, Shiraishi and
Yamaguchi [2000] aimed to create an automatic painterly render-
ing system with minimal user intervention. They estimate the stroke
properties based by approximating the local regions of the source
image with rectangular brushes. Gooch et al. [2002] presented a
method to use the approximate medial axes of the segmented fea-
tures of the image to guide the creation of brush strokes. Kovács
and Szirányi [2004] proposed a fully automatic rendering method
that targets at removing randomness and providing a more natural
look by using the image features to guide all of the parameters. All
these methods rely on the heavy use of local image features and re-
quire expensive computation. Our algorithm makes the decision to
place strokes independently at each location, which simplifies the
rendering process and still produces high quality rendering results.

Closest to our work in stroke-based rendering are the methods
of Hertzmann and Perlin [2000], and Vanderhaeghe et al. [2007].
Hertzmann and Perlin introduce a painterly video rendering system
that successively paints over earlier time frames at interactive rates.
Their system can also optionally use optical flow to better track
scene changes, but it significantly impacts rendering time. Our
approach provides a fast real-time fully parallel algorithm pipeline
that runs entirely on the GPU and also efficiently handles geometry
animation as input through the use of reprojection. The method of
Vanderhaeghe et al. can also handle geometry input. Moreover, it
achieves high quality results via a temporally coherent blue noise
sampling distribution for stroke placement, but at the expense of
real-time frame rates. Overall, our system provides a simpler and
faster parallel solution when compared to these methods, while still
being very generic in handling input composed of video, animated
geometry, or both. Furthermore, the user interface provided by our
system allows for very intuitive control of different rendering styles.

Temporal coherence in video rendering. Video processing
is different from image processing and is usually composed of
two sub-problems: (1) rendering individual frames in a specific
style, and (2) maintaining temporal coherence across successive
frames. Single-image algorithms often cannot be applied directly to
individual video frames without inducing poor temporal coherence
(usually flickering) into the resulting animation. To address this
problem, one solution is to translate strokes from frame to frame
using an estimated optical flow vector field [Litwinowicz 1997].
The source video sequence can also be processed as a spatio-
temporal voxel volume [Collomosse et al. 2005]. Wang et al. [2004]

developed an anisotropic kernel mean shift technique to segment
the video data into contiguous volumes. Bousseau et al. [2007]
presented a method that employs texture advection along lines of
optical flow. Horn and Rhunck [1981] introduced “The Smoothness
Constraint” to solve the optical flow vector field. For its simplicity,
we adopt the GPU implementation of Warden [2005].

Artistic styles in video rendering. Various styles have been
realized in video processing results such as painterly [Litwinow-
icz 1997; Hays and Essa 2004; Park and Yoon 2008], watercolor
[Bousseau et al. 2007], cartoon [Wang et al. 2004; Winnemöller
et al. 2006] and abstract [Klein et al. 2002] styles. Litwinow-
icz [1997] described a technique that transforms ordinary video
segments into animations having an impressionist effect. Extend-
ing from this work, Hays and Essa [2004] presented a stroke-based
painterly video rendering algorithm that constrains the change
of stroke properties to guarantee temporal coherence. Park and
Yoon [2008] also addressed the painterly rendering of video se-
quences with focus in using motion maps to maintain temporal co-
herence. These algorithms produce high quality video rendering
results. However, as CPU-based offline algorithms, they are not
suitable for real-time applications. Inspired by previous work, we
design a GPU-based real-time algorithm that produces rendering
results in various styles. We borrow Hays’ idea for rendering brush
strokes using stroke textures as height maps for per-pixel lighting.

Real-time video stylization. Real-time algorithms have been
proposed to stylize video sequences. Klein et al. [2002] introduced
an approach that treats the video as a space-time volume of image
data (a “video cube”), and extended rendering techniques for video
far beyond impressionism to more abstract styles (with interactive
controls). Winnemöller et al. [2006] proposed an automatic ab-
straction framework for images or video. They first reduce contrast
in low-contrast regions while enhancing contrast in higher contrast
regions and then stylize the imagery using soft color quantization.
Hong et al. [2008] later proposed an extension to further improve
the processing efficiency. These approaches are GPU-based, but
they do not model individual brush strokes, limiting the range of
possible styles. Our system operates in real time without precom-
putation, and supports a broad range of painterly styles.

3 Overview

In this section we provide a detailed overview of our algorithm.
We introduce a set of data structures and algorithms that allow
all the steps of the stylization process to take advantage of the
parallelism provided by the GPU. The entire stroke generation,
manipulation and deletion process uses local operations within
GPU programmable shaders. In particular, we make heavy use of
geometry shaders and their streaming functionality to generate and
update the strokes.

3.1 Stroke representation

Stroke texture. Initial stroke properties are stored in a multi-
channel 2D texture M . Figure 2(a) demonstrates the relationship
between M and the strokes. Each stroke initially corresponds to
one texel in the texture. The location of the texel within the texture
corresponds to the initial physical location of the center of the
stroke within the image. Each texel stores the properties of at most
one stroke. This restriction does not impose a practical limitation on
the number of strokes since in typical NPR applications the number
of pixels far exceeds the number of strokes. Thus, in practice, most
of the texels are not associated with any strokes. Figure 2(b) shows
the stroke properties that we calculate and maintain in texture M .



(a) stroke texture (b) stroke properties

Figure 2: Stroke representation: (a) a 3x3 region of a stroke texture
in which three texels (shown with red dots) correspond to strokes,
and (b) the stroke properties stored at each texel.

Layers. For traditional paintings, artists typically begin by paint-
ing a coarse representation of the scene using broad brush strokes.
Next they paint successive layers of smaller strokes that refine the
painting by adding detail, especially in high contrast areas like ob-
ject silhouettes. Adding fine detail to a region generally draws the
viewer’s gaze, so it can also be leveraged as a compositional tool.

In order to model this layering process, we use the magnitude of
the image gradient to classify each stroke into one of L different
layers. In our experiments we have found L = 3 to generally
provide sufficient expressiveness, and further layers simply add
unnecessary computational cost. Figure 3 shows an input source
image and the rendering of its three layers. Strokes in different
layers have different properties. In the areas where the gradient
magnitudes are large, the strokes are smaller, denser and more
opaque.

Stochastic stroke placement. In order to allow for completely
localized stroke processing, we introduce a stroke placement algo-
rithm that determines whether to place a stroke at a given texel po-
sition solely based on the result of a stochastic process performed
at that texel. For example, if a region ideally should have one large
stroke for every ten texels, the probability that the pixel shader gen-
erates a stroke at each of those texels is set to 0.1. For pseudo-
random number generation, we simply used a texture with random
entries and computed the per-pixel texture coordinates as a function
of both the screen space coordinates and time.

The framework offers considerable control for deter-
mining the coarseness of the strokes in the painting.
For L = 3 layers of strokes, three different desired
probabilities pc, pm, pf for the coarse, medium, and
fine layers can be specified in order to indicate the
likelihood for a particular type of stroke to be present in that loca-
tion. The inset figure shows a small example identifying strokes ap-
pearing in the medium layer (medium gradient magnitudes shown
in cyan, where pixels from the other two layers are denoted orange
and yellow). Here the red dots indicate center locations of brush
strokes corresponding to half of the pixels in the medium layer, cor-
responding to pm = 0.5. Section 5 describes in detail the stochastic
processes for stroke generation and deletion to achieve this target
stroke density.

Note that while the choices for pc, pm, and pf are entirely style-
specific, usually, one would want the small number of pixels
on edges (higher gradient magnitudes) to be more likely to own
strokes in order to more accurately delineate the object boundaries.
Therefore, in practice we have found that we usually achieve best
results with 0.05 < pc < 0.3, 0.4 < pm < 0.8, and 0.7 < pf <
1.0. However, one should not strictly follow this guideline for all
rendering styles. Figure 10 shows examples of different renderings
along with the parameters used to create them.

(a) Input photo (b) Painterly result

(c) Coarse layer (d) Medium layer (e) Fine layer

Figure 3: Layering: given the input photo (a) the output (b) is
composited starting from a base layer of coarse strokes (c) up to a
top layer (e) containing fine strokes.

Stroke buffer. In order to efficiently manage the generation and
modification of brush strokes, we use a particle system to model
the evolution of brush strokes over time. Because of their ability
to compact and expand data streams, geometry shaders are suitable
for handling the stroke generation and modification operations. The
process takes L streams of vertices (strokes), one for each layer.
At each frame, the geometry shaders update, generate, and delete
strokes from the three buffers independently, based on desired
stroke densities pc, pm and pf . Finally, the strokes are rendered
as point sprites to the screen, layered from coarse to fine. Refer to
Section 7 for rendering results using different painting styles (color
and alpha masks).

3.2 Stroke placement algorithm

The proposed algorithm is flexible enough to handle three types of
input media: images, videos, and geometry. Next we describe the
basic processing pipeline for each type of data. In all cases, the
processing is decomposed into three major conceptual steps: image
processing, stroke processing, and rendering (Figure 4).

Images. The process of stylizing an input image is as follows
(Figure 4-top):

1. Image processing: We compute the image gradient at all
texels of the low-pass filtered input image (Section 4.1).

2. Stroke processing: The stochastic stroke generation process is
performed at each texel of the image to generate new strokes
and output stroke properties to M . A second rendering pass
streams out a vertex buffer of strokes using a geometry shader
(Section 5.2).

3. Rendering: The geometry shader reads the stroke information
from the stroke buffer, generates point sprites, and rasterizes
to the frame buffer.



Figure 4: Main conceptual steps of the algorithm. Note that in the case of geometry, the input image (*) consists of the rendered frame, and
the optical flow (**) is computed through forward reprojection.

Videos. In order to stylize videos, the main challenge is to
maintain coherence between consecutive frames. Therefore, in
addition to creating strokes, our algorithm also advects existing
strokes and deletes strokes that represent regions that are no longer
visible or in regions that present excessive stroke overlap. The
modifications are as follows (Figure 4-bottom):

1. Image processing: The gradient computation is performed for
three frames (the current and the two previous frames) and
the result is averaged in order to reduce the effect of noise and
achieve a gradual transition between strokes in consecutive
frames. Additionally, optical flow is computed in order to
properly advect the strokes (Section 4.2).

2. Stroke processing: Strokes are advected based on the optical
flow (Section 5.1), added in empty regions (Section 5.2), and
deleted if they no longer represent its underlying position in
the input video (Section 5.3).

3. Rendering: No changes.

Geometry. In addition to image and video data, the system can
also stylize synthetic animated scenes. This is accomplished with
only two modifications in the image processing stage of the video
pipeline. First, the scene is rendered in order to generate the
input image. Second, since we have the underlying geometry,
we compute the exact motion vectors through forward reprojection
(Section 4.3) instead of relying on image-based optical flow.

Note that since the remainder of the pipeline is unchanged, and the
rendered image and motion vectors computed from the geometry
have the same format as the input image and optical flow computed
from videos, the system allows us to use hybrid combinations of
images, videos, and geometry (see results in Section 7).

4 Image Processing

Here we describe in detail the image processing steps outlined
above; these steps produce the data needed to manage the strokes.

4.1 Gradient Extraction

Artists commonly apply brush strokes on the canvas according to
specific rules. Generally, the strokes follow the boundaries between
different shading levels in the image in order to effectively convey
the shape of the object. Therefore, the most natural orientation for

a single stroke at a particular position should be perpendicular to
the intensity gradient direction. Specifically, we smooth the image
using a 3x3 box filter and then apply the Sobel filter to calculate
the gradient magnitude and gradient direction for each pixel. Each
step is performed by rendering a full screen quadrilateral with the
appropriate shader, and the results are stored in texture G.

In the coarse-layer pixels, the gradient magnitudes are not well-
defined or the gradient directions vary significantly and therefore
are not a good indication of stroke orientation. In such smooth
areas, we simply use the color hue of the image to determine the
direction. As a result, coarse strokes that have similar colors all
point in similar directions.

4.2 Video: Optical Flow

In order to determine the motion of pixels over time and achieve
better temporal coherence, we rely on image-based optical flow. We
used the efficient, simplified GPU implementation of a generic op-
tical flow method [Horn and Schunck 1981] due to Warden [2005].
Generally, the algorithm works well for maintaining temporal co-
herence for video NPR, which does not require absolutely accurate
optical flow analysis. Still, temporal coherence is not assured and
some flickering remains, particularly in the presence of fast mo-
tion. Improving optical flow quality while still maintaining the high
framerate remains an area of future work.

4.3 3D Models: Geometry Reprojection

For synthetic 3D models, we have the luxury of knowing the
precise 3D coordinates of each surface point on the screen. Thus,
instead of relying on an image-based optical flow algorithm, we
can accurately compute the motion at each pixel of the screen by
tracking the motion of its corresponding surface point. As a result,
we can correctly advect each stroke given the motion at its center.

Reprojection. Let the position of a pixel p in frame f − 1 be
denoted by Pf−1. We seek a motion flow texture that contains, for
each pixel p in f − 1, the screen-space position of p in frame f ,
which is given by Pf .

We adapt the reverse reprojection algorithm of Nehab et al. [2007],
which operates entirely on the GPU. At a given frame f , Nehab
et al. determine the position Pf−1 of each current pixel p in
frame f − 1. The key idea is to compute, for each vertex v, the



homogeneous projection space coordinates Vf−1 and Vf for both
frame f − 1 and frame f . Vf is computed typically by applying the
traditional model-view-projection transformation matrix Mt. Vf−1

is calculated by using the transformation from previous time frame
Mt−1. The output vertex position is set to Vf , while Vf−1 becomes
a vertex output attribute that is relayed to the pixel shader through
hardware interpolation. The pixel shader then dehomogenizes the
interpolated position to retrieve the 3D projection space coordinates
Pf−1 in the earlier frame f−1. See Nehab et al. for further details.

In order to compute forward motion, we make minor modifications
to the above. We first set the output vertex position to Vf−1, since
we want the forward motion vectors in the screen-space of the
previous frame f − 1, rather than the reverse ones in frame f . We
then pass Vf as the attribute to the pixel shader. The following
frame’s position of this pixel is then given by dehomogenizing the
interpolated attribute at each pixel, yielding in Pf . We can now
advect each stroke from f − 1 to f based on the destination screen-
space position stored at its center pixel in f − 1.

The approach above is general enough to allow any form of vertex
shader processing, including camera motions and skinned or pro-
cedural animations. The only drawbacks are that it requires more
constant-store memory for the previous frame’s transformation and
skinning matrices, and doubles the amount of vertex processing.
However, for our application, this overhead is negligible as the bulk
of our work lies in the stroke generation and update.

Handling occlusion. So far, our approach does not account for
occluded regions. It is possible that a stroke in frame f − 1 may
become occluded in frame f and therefore should be deleted. To
account for this, we need to store the post-projection z coordinate
for each stroke. When we advect the stroke x and y coordinates
through reprojection, we also advect their z coordinates following
the exact same procedure. We can then compare this properly
advected z value with the z value stored in the current Z-buffer of
frame f at the target pixel. Since the post-projection z coordinate
was advected based on the transformation matrices, its value should
match regardless of the motion undergone at that surface point. The
exception is when the surface point is no longer visible because it
is occluded by another surface point. In such a case, there is a z
mismatch and the stroke is deleted.

We can naturally blend foreground objects with background images
and videos in this setting by simply setting the z value of image and
video strokes to be equal to the far-plane z. Thus, proper occlusion
between the animated model and background is ensured.

5 Stroke Processing

The image processing step generates 2D textures G containing the
gradient and V containing optical flow. These textures serve as
input to the stroke processing pipeline.

5.1 Stroke Update

The existing strokes used to depict the shape of the objects in one
frame often need to change their position, orientation and size in
order to match the position and shape of the objects in the next
frame. This update is performed entirely by the geometry shader,
which streams in the strokes and streams out a buffer with the
updated strokes. For a particular stroke, the geometry shader first
uses the optical flow vector from V to advect its position then
updates the stroke based on color and local density. To reduce
temporal artifacts we change the stroke properties only gradually
using the following rules:

• Size and orientation. A stroke is generated in a specific layer
and with a fixed size, and these remain unchanged throughout
their lifetime. The orientation is only allowed to change
gradually (no more than 1 degree per iteration), except at
the fine layer. We allow the fine layer to change quickly,
even though this may introduce flickering, because this layer
should conform to fast moving boundaries.

• Color. Advected strokes take the color of the target location.

• Opacity. When a stroke drifts away from their initial layer, it
is faded out. Additionally, newly created strokes are faded in
gradually in this step.

5.2 Stroke Generation

When rendering video and animated geometry, the stroke advection
may expose the canvas. Furthermore, fine-layer brush strokes may
drift away from fine areas and get deleted during the stroke update
step. For these reasons, we generate new strokes to fill in the blanks
and add additional strokes to refine the image features. This step is
used to generate all the strokes when rendering a single image, the
first frame of a video or a scene where initially there are no strokes.

We consider adding a stroke at each texel and do so using the
stochastic process described in Section 3. First we compute
properties of potential strokes and output to M using a full screen
quadrilateral. On a second pass, we render any existing strokes into
an offscreen buffer D using additive blending, in order to measure
stroke density everywhere in the image. A third pass determines
where to add new strokes, as follows. A buffer that contains
one vertex for each canvas pixel is processed by the geometry
shader. The shader writes a subset of these vertices as strokes
into the output buffer, depending on whether the stochastic process
generates a stroke at that position. It uses the position of each input
vertex as texture coordinates in D and M . If the value in D is below
a threshold, and depending on the result of the stochastic stroke
placement algorithm described in Section 3, a geometry shader
appends a stroke to the appropriate layer at the current location.
Otherwise, the geometry shader does not produce any output. Our
system uses a different threshold function for D at the fine layer that
tends to generate more strokes, because we find it is more important
to track high-gradient edges in moving imagery. Figure 5 shows the
generation of strokes from the initial vertex buffer and the updated
texture M . It appends additional strokes into the respective buffer
according to the texture M and the result of a random process.

The color of the generated stroke is determined by the color of
the corresponding pixel in the processed source frame. In order
to prevent video noise from rapidly changing a brush stroke color,
the color of each stroke is also averaged over three frames. The
size, orientation and opacity of the stroke are simply retrieved from
the previously prepared textures, M and G. The stroke also has a
“status” property, which can be one of the three values “normal”,
“new” or “old”. When a stroke is generated for the first frame of a
video or for a single image, the status assumes “normal”. When a

Figure 5: Stroke generation



stroke is appended to the existing list of strokes for filling blank
or refining features, the status assumes “new” and the stroke is
gradually faded in during the update step.

5.3 Stroke Deletion

Due to the stochastic nature of the algorithm, multiple strokes
overlap in many locations of the rendered image. The optical flow
computation updates the stroke positions, which may aggravate
the overlap in some areas. Furthermore, adding new strokes at
every frame to fill blank regions and refine details may cause the
number of brush strokes to increase significantly. To address this
problem, we add a subsequent step to delete heavily overlapped
brush strokes. We simply render D as in Section 5.2, and then
stochastically delete strokes from the geometry stream wherever D
exceeds a threshold.

6 Stroke Rendering

Generation. Strokes are rendered using rectangular point sprites.
Given the stream of stroke particles (vertices) that represent the
brush strokes and their properties, we use the geometry shader to
generate two-triangle textured sprites for each stroke.

Rendering. To give richer detail to the surface of the brush strokes,
a brush texture and alpha mask are applied to the sprites in the pixel
shader. For each pixel of the sprite, we construct a simple lighting
model from the stroke texture based on [Hays and Essa 2004]. A
height map (x, y, z) is constructed from the stroke texture by taking
the texture coordinates as (x, y) and the intensity as the height z.
A per-pixel normal N is then computed from the height map, and
finally the lighting calculation can be performed using a fixed light
direction L and the normal N . The final color is the product of the
lighting factor (N · L) with the stroke color. The final alpha value
is given by the product of the stroke opacity and the mask. Finally,
all the transparent brush strokes are alpha composited on the canvas
with high frequency strokes rendered over low frequency ones.

Clipping. Since the distribution of the strokes is determined by
a stochastic process and the shape of the strokes solely relies on
the alpha mask texture, it is possible that large strokes near the
object boundaries may “leak” out of the boundaries. We include
an additional optional step to reduce this stroke leaking problem
efficiently. In the pixel shader of the rendering pass, we linearly
scan the pixels from the current location towards the center of the
stroke. If we encounter any object boundaries in this process, the
current pixel is disabled for rendering. The effect of this step is
illustrated in Figure 6(a). While this optional step cannot guarantee
preservation of the shape of the stroke, in practice is does not
produce objectionable artifacts and avoids the leaking artifacts that
can be produced by our efficient greedy algorithm.

(a) stroke leaking (b) before (c) after (d) after: full image

Figure 6: Sprite clipping reduces leaking. The gray region of the
stroke in (a) is clipped to alleviate stroke leaking (b). After clipping
the strokes better respect high frequency edges shown in (c) as a
closeup of the full image (d).

(a) small (b) long (c) large

Figure 7: How stroke size impacts style.

7 Results

We offer several examples of stylized images generated with our
system. Figure 1b-d shows results based on video and animation.
The accompanying video demonstrates these examples in motion,
as well as showing some of the effects of interactive user control.
Figure 7 shows the impact of stroke size on the rendering style of
a given image, while Figure 9 shows the effect of texture choice.
Figure 10 provides examples of how other stroke parameters affect
the rendering style. Next we review the user controls that are
available and were employed to produce such results. We then
discuss the overall performance.

7.1 Interaction

Here we summarize the stylistic controls available to the user.
Of course, the most fundamental decision is the scene content –
still image, video, 3D model, or a combination. Having chosen
a scene, the user can interactively adjust a variety of parameters.
We briefly review previously described parameters here and also
present several variations.

Layering. Figure 3 shows how strokes are divided into coarse,
medium and fine layers. The separation occurs at two user-
controlled gradient thresholds (“Gradient Threshold” in Figure 10).
Three other parameters adjust the target stroke density in each layer
(“Probability” in Figure 10).

Strokes. Stroke placement and orientation emerges from an auto-
matic process. However, the user may adjust parameters like stroke
length, width, alpha and brush textures (Figures 7, 9 and 10). The
smooth brush used in Figure 9d results in an “impressionist” style
image. In contrast, the brush texture in Figure 9f contains a dot-
ted pattern, resulting in a more “pointillist” style. In general, larger
and coarser strokes produce more abstract styles, while smaller and
denser strokes give more realistic styles. In Figure 10, the “Rela-
tive Size” parameters describe the ratios of length and width in the
medium and fine layers, relative to those of the coarse layer.

Stroke lifetime. For moving imagery like
video and 3D models, strokes die due to
crowding from optical flow or a change in the
parameters above. As strokes die they are
faded out to avoid flickering, and the duration
of the fade can be used to artistic effect. An
extreme example is shown to the right where
strokes from previous frames of a 3D animated
walking man are faded slowly and provide a
kind of receding “halo.” This effect is rem-
iniscent of various artistic representations of
motion, such as Marcel Duchamp’s Nude Descending a Staircase
(No. 2, 1913), or the “speedlines” of Masuch et al. [1999].



(a) Emphasis on left (b) Emphasis on right

Figure 8: Placing emphasis via controlled stroke density.

Emphasis. Artists know that by placing more fine detail in
an area of an illustration it can draw the viewer’s gaze to that
area [Guptill 1976] and this effect has been leveraged in various
NPR systems, such as that of DeCarlo and Santella [2002]. Our
system provides two controls for placing emphasis this way. In
the case of hybrid 2D-3D imagery, the user can specify that the
gradients in the background be attenuated by a constant factor
0 < f < 1, which effectively reduces the role of the background
in the fine layer and thereby draws attention to the foreground.
Alternately, the user can use the mouse to interactively specify the
location c and radius r of a central point of interest. Gradients
throughout the image are then attenuated by a smooth-step falloff
towards f as the distance from c approaches r (Figure 8).

7.2 Performance

Our system is suitable for real-time applications such as streaming
video (e.g., Figure 1(b)) and games (e.g., Figure 1(c)). Please refer
to the accompanying video for full examples of stylized videos and
animated geometry.

We implemented our system using Microsoft DirectX 10 and
benchmarked on an Intel Core2 CPU at 2.39 GHz and 4GB RAM
with an NVIDIA Geforce 8800 GTS. All results herein were
fully processed and rendered in real-time, allowing immediate user
feedback. Frame times ranged from 30 to 50, number of strokes
from 10,000 to 60,000, and resolution at 512x512 pixels. The
number of strokes, the size of each stroke and the number of pixels
in the canvas, all affect the running time of the algorithm linearly,
with any of them possibly dominating the cost depending on the
parameters set by the user.

8 Conclusion and Future Work

Our GPU-based stroke rendering system provides high quality
stylized image, video and 3D animation results in various artistic
styles at interactive rates. We design a parallel multi-layer stroke-
based stochastic approach to guide the generation and deletion of
brush strokes. The movement of brush strokes and the change of
stroke properties are modeled based on optical flow and geometry
reprojection entirely on the GPU. We apply stroke texture and
alpha masks to determine the stroke surface detail and stroke shape
which, in turn, determine the feeling and style of the final rendering.

Limitations. The temporal quality of our video processing depends
on the effectiveness of the optical flow implementation; we find that
failures in optical flow computation lead to distracting artifacts. For
example if the optical flow result is very noisy it leads to flickering,
or if the result is falsely reported as zero it induces the “shower
door effect.” Moreover, even when flow can be computed exactly,

(a) Original image (b) Color pencil style

(c) Original image (d) Impressionist style

(e) Original image (f) Pointillist style

Figure 9: Variety of styles based on the brush textures (right).

as with geometric input, there remains a tradeoff between faithful
reproduction of input image features, and maintaining temporal
smoothness. Nevertheless, our system offers the user some control
with regard to this tradeoff. Finally, the stochastic process we
describe offers no guarantees about stroke density, and thus strokes
can cluster unnecessarily or leave holes in the canvas.

Future work. We would like to further investigate the optical flow
step in order to further improve the quality of the video sequences,
especially under fast motion. This kind of technology could be
applied to video conferencing, where advantages might include
high compression (just send the stroke information), a layer of
privacy (fewer concerns about makeup, hair, clothing, etc), and a
fun channel for expressiveness. Moreover, a variation in this space
would include virtual meetings in which parties interact with 3D
objects in 3D scenes, all of which can be rendered with consistent
style. For such applications it would be ideal to use face tracking
methods and specialize the painterly algorithms for rendering faces.
Finally, we would like to offer explicit user control over the
“gradient” field or the “optical flow” field as ways of orchestrating
the stroke directions or movement. This would allow for composing
a picture like van Gogh’s Starry Night (1889) or even a version in
which the strokes swirl over time.
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(a) (b)

(c) (d)

Parameter: (a) (b) (c) (d)

Stroke Length [pixels] 6.69 5.55 10.67 7.82

Stroke Width [pixels] 1.00 5.47 3.24 3.05

Relative Size (Medium) 0.44 0.47 0.46 0.53

Relative Size (Fine) 0.38 0.23 0.29 0.20

Gradient Threshold 1 0.05 0.09 0.09 0.10

Gradient Threshold 2 0.37 0.36 0.27 0.30

Probability (Coarse) 0.00 0.05 0.06 0.08

Probability (Medium) 0.18 0.18 0.47 0.41

Probability (Fine) 0.78 0.78 0.61 0.79

Alpha (Coarse) 0.01 0.58 0.35 0.36

Alpha (Medium) 0.87 0.81 0.75 0.61

Alpha (Fine) 0.91 0.92 0.87 0.86

Figure 10: Example stylized images produced using our method,
together with many of the parameters used to create them. (See
Section 7.1 for an overview.)
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