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Figure 1: Color compositing: (a) a color chart crafted in marker in order to observe how different pigments appear when layered; (b) alpha
blending, though standard in computer graphics, fails to capture known effects like yellow over blue gives green; (c) radial basis functions
interpolate and extrapolate from the data in the chart to produce more realistic effects; (d) fitting parameters of a Kubelka-Munk model to
the data in the chart improves on radial basis functions for paint-like behaviors.

Abstract

The color of composited pigments in digital painting is generally
computed one of two ways: either alpha blending in RGB, or
the Kubelka-Munk equation (KM). The former fails to reproduce
paint like appearances, while the latter is difficult to use. We
present a data-driven pigment model that reproduces arbitrary
compositing behavior by interpolating sparse samples in a high
dimensional space. The input is an of a color chart, which
provides the composition samples. We propose two different
prediction algorithms, one doing simple interpolation using radial
basis functions (RBF), and another that trains a parametric model
based on the KM equation to compute novel values. We show that
RBF is able to reproduce arbitrary compositing behaviors, even
non-paint-like such as additive blending, while KM compositing
is more robust to acquisition noise and can generalize results over a
broader range of values.
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1 Introduction

Current digital drawing and painting tools mimic many aspects of
traditional media with increasing fidelity. Much of the research
has addressed the shape and texture of individual strokes, as
well as secondary effects like bleeding and smearing. However,

the interaction of multiple pigments has received relatively less
attention, yet remains crucial for plausibly simulating the effects
of many media including watercolor and oil paint. The major
strategies for layering digital pigment have been either to rely on
simple ad-hoc methods like alpha-blending using various blend
modes, or to resort to complex physical models such as that of
Kubelka and Munk (KM) [1931]. Simple alpha blending maps
trivially onto the traditional graphics pipeline, but spectacularly
fails to capture straightforward paint mixing principles such as
“yellow and blue makes green” (Figure 1b). On the other hand,
physically accurate models like KM (Figure 1d) require many
parameters to capture each individual pigment, and even more
parameters when they are mixed. Of course it is possible to
measure such KM parameters for a set of paints and use them
in a digital palette, but this requires sophisticated hardware and
restricts the artist to working within the fixed set of paints, and
when drawing still requires specifying more parameters such as
density and thickness – this extra complexity leads to cumbersome
interfaces in a digital painting tool.

Instead we propose a data-driven approach toward layering color in
digital painting tools. In our process, the way that colors blend is
specified by leveraging a physical color chart like the one shown in
Figure 1a. Artists use such instruments to understand how the range
of colors expressible in a particular palette of paints will combine,
before applying paint to canvas. The artist first applies a blob of a
particular color across each cell in a row, and moves onto the next
row with a different color, and so on. Next, the artist applies a blob
of color across each cell in a column, with a different upper color
for each column. The resulting grid depicts visually how all pairs
of color will appear when layered, and informs their application in
a subsequent painting.

In our proposed digital painting interface, the user simply selects
a color chart (the exemplar) in order to specify how colors will be
composited. The color chart may be selected from a set of pre-
existing charts, or may be created anew in order to specify a novel
mixing behavior. Next, the user simply selects (RGB) colors using
a standard color picker and paints strokes, and the system plausibly
composites colors in a way that mimics the exemplar chart.



This paper makes a series of contributions to enable this inter-
face. The first contribution is a novel formulation of the pigment
compositing problem as interpolation among a sparse set of high
dimensional samples. Our second contribution is, based on this
novel formulation, detailing how to acquire such a set of samples
via a color chart, and interpolate them using radial basis functions
(RBF) [Powell 1987] (Figure 1c). The third contribution is to im-
prove upon RBF by using a priori knowledge about the shape of the
function by using the KM equation, effectively interpolating in KM
space (Figure 1d). Finally, we explore the performance of these
methods compared against a baseline of optimized alpha blending.
We show that for pigment models that can be reproduced by the KM
equation, the optimized KM interpolation is able to produce better
results that smooth over acquisition errors and can be extrapolated
to a broader range of compositions. Conversely, RBF interpolation
better approximates the exact behaviors in the color chart, whether
or not those behaviors are realizable by pigments (e.g. additive
blending).

2 Related Work

There is extensive research on modeling physical pigments to accu-
rately predict the color when they are combined to improve printing
processes and make realistic natural media painting systems.

Kubelka-Munk and Other Physically-Accurate Models

The seminal work by Kubelka and Munk [1931] (KM) defines
a per-wavelength equation for the reflectance of a homogeneous,
isotropic pigment layer atop a substrate in a continuous setting (see
Section 3). Alternate formulations have been developed in the same
domain [Giovanelli 1995; Hecht 1983; Vargas and Niklasson 1997],
but KM remains the most commonly used.

Much work has been done to improve KM. Saunderson [1942] pro-
vided a correction based on surface reflection of the pigment layer,
and Berns and De la Rie [2003] extended this result by consider-
ing reflective varnishes for oil paint. Granberg and Edström [2003]
showed the KM model mis-estimates strongly absorbing pigments,
and Yang and Kruse [2004] proposed a revised KM model which
corrects for path-length errors in highly scattering media. However,
Edström [2007a] later showed this revision had other errors.

Extensions have been proposed to relax the assumptions made by
KM. Shakespeare and Shakespeare [2003] proposed a method to in-
corporate fluorescence, while Yang et al. [2004] added inhomoge-
neous materials. Edström extended these to also include anisotropic
reflections [2007b; 2008]. Finally, Sandoval and Kim [2014]
re-derived the KM equation from the radiant transport equation,
thereby generalizing it to handle inhomogeneous materials with
boundaries, and with greater accuracy.

Approximations to Kubelka-Munk

Many natural media painting systems have used the KM model in
various forms to improve the quality of paint rendering. The Stokes
Paint program [Baxter et al. 2004a] uses linear combinations of four
or eight acquired real pigments with KM coefficients to generate
a wide gamut of paints. Impasto [Baxter et al. 2004b] improves
on this with a numerical approximation of the same pigments for
reduced memory and computation.

Curtis et al. [1997] uses a reduced KM model with coefficients for
only three wavelengths, which are computed from user-specified
RGB colors. A further approximation is presented by Wang and
Wang [2007], which uses a single coefficient variant of KM, for
each of three wavelengths. Perhaps the simplest approximation is

(a) thin acrylic c©Chris Gentes (b) watercolor c©Denise Chan

Figure 2: Example physical color charts available online.

found in the wax crayon simulation of Rudolf et al. [2005], which
uses one absorption and scattering coefficient pair plus an RGB
color, thereby entirely obviating multispectral rendering.

Gossett and Chen [2004] create a paint-inspired color model they
label RYB (for Red Yellow Blue), which defines three paint pig-
ment primaries and linearly interpolates among them to define a
paint-like gamut. This is most similar to our approach, but we gen-
eralize the concept to support arbitrary, non-orthogonal, sparse sets
of paint samples with data-defined compositing behavior.

Finally, instead of explicitly defining an equation to model the pig-
ment composition effect, Xu et al. [2007] and Westland et al. [2002]
both propose using a neural network to learn how pigments com-
bine to produce the final reflectance spectra. These algorithms must
be trained on acquired pigment composition samples with KM co-
efficients, and do not provide clear mechanisms for exerting artistic
control over the resulting model.

Pigment Acquisition

Acquiring the parameters of individual pigments to use in these var-
ious models is an arduous task, involving multispectral measure-
ments of controlled samples in controlled environments [Okumura
2005]. Mohammadi and Berns [2006] show that it is crucial to cap-
ture the full KM coefficients for a pigment in order to accurately
reproduce the range of generated colors. Kokla et al. [2006] pro-
pose a way to use a set of captured pigments to determine from a
simple image of a painting or manuscript the mixture of pigments
used for each local color, via an optimization.

3 Pigment Model

The commonly accepted method for predicting the reflectance
of a layer of pigment is to use the Kubelka-Munk (KM) equa-
tion [Kubelka and Munk 1931; Glassner 1994]:

R =
1− ξ(a− b coth bSh)
a− ξ + b coth bSh

a = 1 +
A

S
, b =

√
a2 − 1

(1)

where h is the thickness of the pigment layer, S and A are the
pigment’s scattering and absorption coefficients, ξ is the substrate
reflectance, and R is the resulting reflectance of the pigment layer.
All of these quantities are per-wavelength, so a pigment p is
modeled as a set of scattering and absorption coefficients over a
set of wavelengths L as p = {Sl, Al|l ∈ L}.

Realizing the RGB to display in an image corresponding to a
stroke of pigment on a canvas is a standard multispectral rendering
problem. Let us denote this transform as c = {r, g, b} = f(p), for



(a) physical chart (b) processed chart

Figure 3: We capture a physical gouache chart using uniform
glazes on transparent plastic.

a pigment p. f(p) is the perceptual response of the pigment, which
could be regarded as the space that artists think in when selecting
pigments for painting. That is, rather than understanding pigments
in terms of a set of coefficients or a reflectance spectrum, an artist
may associate pigment pwith a particular color c, for some nominal
conditions (illuminant, thickness, substrate).

Now consider two pigments, p1 and p2, painted on a white canvas
such that p2 is on top of p1. The perceived color of this composition
is f(p2 ◦ p1), which can be computed by the recursive application
of the KM equation. However, from the artist’s perspective,
the behavior is better modeled as g(f(p2), f(p1)), where g is a
composition function that operates on RGB values. Indeed, a digital
artist selects an RGB to paint with, and needs a predictable and
plausible outcome when painting over the RGBs on the canvas.

The function g : R3 ×R3 → R
3 is an approximate model of the

pigment composition process in which foreground and background
RGB colors combine to form a new RGB color. Our data driven
color model sparsely represents g by a set of a-priori known
composition results that are interpolated to generate the result for
arbitrary foreground and background colors. These sparse samples
come from the color chart provided by the user; a different color
chart will result in a different function g and therefore a different
color model. For example, an oil paint chart would produce a
different g than a watercolor chart.

The nature of g’s approximation is that it is not possible in general
to find an analytical form of g such that g(f(p2), f(p1)) = f(p2 ◦
p1) for all p1 and p2. One reason is that g cannot express the
behavior of metamers – different pigments pa 6= pb that share the
same perceived color: f(pa) = f(pb). In general, these metamers
will yield different results when painted over some other color pc:
f(pa ◦ pc) 6= f(pb ◦ pc). This phenomenon cannot be expressed
by g, which treats pigments only in terms of perceived color, i.e.
f(pa) = f(pb)⇔ pa = pb.

While g has these inherent ambiguities regarding metamers, we re-
gard this limitation as a benefit of our approach. While metamerism
is important for simulation of physical reality, it is a highly non-
intuitive effect. Understanding the expected behavior of each com-
bination of real pigments is a difficult part of learning to paint,
which is why even expert painters often create color charts to help
them predict these behaviors. Thus, our pigment model can im-
prove the predictability of paint compositing by eliminating this
difficult phenomenon.

While this discussion has focused on paint composition, in which
one layer of pigment is applied atop another, it can be trivially
extended to paint mixing, in which two pigments are blended into a
single layer. In the KM model, pigment mixing is accomplished by

(a) thin acrylic (b) watercolor

Figure 4: Processed charts used in our experiments in two different
media. The acrylic data (left) comes from Figure 2a, whereas the
original watercolor chart not shown is similar to Figure 2b.

interpolating between the two pigments’ scattering and absorption
coefficients, with resulting color f(p2 ⊗ p1). This can be modeled
in the same manner, by a function m(f(p2), f(p1)) : R

3 ×R3 →
R

3, which is defined by a sparse set of color mixing samples.
The primary difference between m and g is that m is symmetric,
m(b, a) = m(a, b), while g is not, g(b, a) 6= g(a, b).

4 Data Acquisition

Artists create color charts to familiarize themselves with properties
of different pigments. They experiment with glazing a layer of
pigment on top of a dried layer to study the effect of compositing.
In order to choose the right pigments to paint with, they observe
the color chart and speculate on behaviors of pigments outside
the chart. This process can be automated by prediction models,
which learn from the known compositing examples in the chart and
predict the result given an arbitrary pair of new colors. To train our
prediction models (see Section 5), we collect a set of physical and
synthetic color charts.

Physical charts. As a common practice, a compositing chart
is created as follows: Given n base pigments, divide the empty
canvas into a grid of n2 cells. As the background layer, paint
each row i with base pigment i, keeping uniform distribution of
the pigment for all cells of the row. After the background layer
is completely dried, as the foreground layer, paint each column
j with base pigment j. Artists frequently paint charts using this
procedure and post images of their results online. We collect
these images from artists’ web pages for several different natural
media, including marker pen (Figure 1a), acrylic (Figure 4a), and
watercolor (Figure 4b). In addition to the online charts, we also
captured a gouache chart ourselves in a controlled setting. To
control paint thickness, we made uniform glazings of gouache on
transparent plastic, cut the plastic pieces to obtain background and
foreground squares, and then captured every layered combination
of these squares (Figure 3a).

To process these physical charts, we undo the gamma correction
and extract a single color from each grid cell by averaging pixels
around the cell center. The cell borders are avoided to prevent the
boundary effects, such as watercolor edge-darkening, to adversely
influence the measured color. After processing, each grid cell
contains a composite color – the result of glazing a particular
foreground pigment over a background pigment or a base color –
the result of applying a base pigment on the empty canvas (the
leftmost column and the bottommost row in Figures 2a and 3).
Figures 3b and 4 show the processed charts. Though subtle, the
compositing charts are not symmetric. The result of applying



(a) thin pigment layer (b) thick pigment layer

Figure 5: Synthetic color compositing charts using different thick-
ness of pigment layer, created using acquired Kubelka-Munk pig-
ment coefficients and multispectral rendering.

pigment A on top of B is slightly different from the result of
applying B over A. For example, in Figure 3b, column 4 within
the composite matrix shows clear asymmetry from row 4, because
the dark blue paint is very absorbent of light whereas other colors
are more reflective.

To simplify our inference problem and reduce the training param-
eters, we make some assumptions about the physical color charts.
We assume that the thickness of the pigment layer is more or less
constant for all rows and columns and that the charts are captured
under roughly uniform lighting. The assumptions are reasonable,
since they are the guiding principles for creating the charts. But
they are hard to enforce precisely and therefore small variations in
brightness and layer thickness can be observed. For example, Fig-
ure 2(b) shows luminance variation within many cells due to the
difficulty of depositing watercolor pigment uniformly.

Synthetic charts. Uniform lighting and constant layer thickness is
desirable, but not guaranteed, in the hand-painted charts. To un-
derstand how violations of these assumptions influence the predic-
tion and to provide a baseline evaluation of our models, we algo-
rithmically construct some synthetic charts. Specifically, we apply
the KM model (see Section 3) with the physically measured co-
efficients [Okumura 2005] of five acrylic pigments, including Ph-
thalo Blue, Pyrrole Red, Hansa Yellow, Carbon Black and Titanium
White. Each of the n base pigments is generated as a random mix-
ture of the five primaries. The grid cells of the chart are calculated
by two evaluations of the KM model. One evaluation of KM applies
the background pigment onto the substrate and another applies the
foreground pigment onto the rendered background. For KM, we use
constant layer thickness for all pigment layers, standard illuminant
D65 [Ohta and Robertson 2006] and ideal white substrate (com-
pletely reflective at all wavelengths). For some natural media, the
compositing behaviors might vary with different layer thickness.
For example, for oil or acrylic, a thin layer of foreground pigment
allows the background pigment to show through (Figure 5a), while
a thick layer heavily obscures the background (fifth column from
the right in Figure 5b) with the exception of using light-colored pig-
ments as the foreground (first column from the right). Additionally,
high light absorbance can cause certain colors to result in dark com-
posites if used in either background or foreground (seventh column
and row from the top and the right).

5 Prediction Models

Suppose a color chart is painted with N base pigments, then we
have N base color samples, represented as Bi. And we have N2

composite color samples, represented as Cij , produced by layering

base pigment j (foreground) on top of base pigment i (background).
In the empty region of the chart, we can sample the substrate color
S. We convert all color values into the CIELAB color space for
its perceptual linearity. Each color chart can be seen as a 6D point
cloud of N2 points, {(Bi, Bj) | i, j ∈ {1 . . . N}}. We use the
standard quick hull algorithm [Barber et al. 1996] to calculate the
convex hull,H, of the point cloud, which is utilized in the following
prediction models.

When a user selects a color chart to specify compositing behav-
ior and then paints a given foreground color Qf over a different
background color Qb, our goal is to predict the composite color
Qc. To address this goal, we propose three prediction models, opti-
mized alpha compositing, radial basis interpolation and optimized
KM compositing, with different pros and cons. Optimized alpha
compositing (Section 5.1) is included as a baseline, which demon-
strates the best possible performance of alpha blending to approx-
imate the real paint compositing in the chart. Radial basis inter-
polation (Section 5.2) is a straightforward implementation of our
model from Section 3 that interpolates and extrapolates the matrix
g. Alternately Section 5.3 presents an optimized KM compositing
scheme that refines the model for color charts that contain paint-
like pigments. Each model contains a training phase conducted
per color chart, and a prediction phase performed per query color.
We solve all proposed optimizations using ALGLIB [Shearer and
Wolfe 1985].

5.1 Optimized Alpha Compositing

Alpha compositing is often used in digital painting for its simplicity
and efficiency. During painting, an alpha value is often specified
by the user together with a target color. Choosing the right alpha to
closely reproduce the appearance of a target medium is challenging.
For example, there is no alpha value that can perfectly simulate the
darkening effect of watercolor. However, given a color chart, we
can solve a constrained least squares problem to optimize the alpha
value that best explains the chart. Then the optimized alpha can be
used to predict the compositing result given new query colors. We
include this method to provide a reference point for evaluating the
performance of our other methods.

Training. Given an intrinsic color βi = (Li, ai, bi) and a chosen
alpha value α, alpha compositing on empty canvas gives bi =
αβi+(1−α)S. Using the same alpha, given another intrinsic color
βj , applying alpha compositing recursively on top of the previous
result gives cij = αβj+(1−α)bi = αβj+(1−α)αβi+(1−α)2S.
Given a color chart, we want to minimize the difference between bi
and the measured base color Bi as well as the difference between
cij and the measured Cij , solving for the α and the β = {βi, i ∈
{1 . . . N}} parameters:

α∗, β∗ = argmin
α,β

Ea (2)

such that α ∈ [0, 1], and Li ∈ [0, 100], ∀i ∈ {1 . . . N}

Ea =

N∑
i

‖Bi − bi‖2 + wc
1

N

N∑
i

N∑
j

‖Cij − cij‖2 (3)

We usewc = 1 to give equal importance to fitting both the base and
the composite colors. We initialize α to be 0.5 and β to be random.
The optimized alphas α∗, in the order of Table 1, are 0.58, 0.42,
0.49, 0.63, 0.31, 0.45, plausibly reflecting the thinner or thicker
paint behaviors in the charts.

Prediction. After training, we obtain the optimized alpha value α∗

that best describes the chosen color chart. Suppose the unknown
intrinsic color of the foreground is qf = (Lf , af , bf ), then the



Average prediction error (CIELAB) for queries, outside gamut, near gamut, and combined
methods marker acrylic watercolor gouache thin synthetic thick synthetic
alpha 30.75 29.20 29.99 10.92 9.02 9.88 21.23 18.37 19.80 10.89 8.19 9.54 3.02 2.40 2.71 11.90 8.74 10.32
rbf 16.78 9.01 12.90 9.90 4.85 7.14 9.19 7.05 8.12 8.45 4.80 6.63 1.30 0.87 1.09 5.53 4.49 5.01
rbf-nopoly 19.02 9.58 14.30 14.39 5.19 9.38 9.69 7.14 8.41 9.60 5.08 7.34 6.55 2.89 4.72 7.54 5.33 6.43
km 12.32 10.72 11.52 8.04 8.26 8.16 8.83 8.98 8.90 9.17 6.68 7.93 0.41 0.34 0.38 2.51 2.04 2.28

Table 1: Hold-one-out evaluation results, broken up to show error for outside gamut samples, near gamut samples, and both sets combined.

following holds, Qf = α∗qf + (1 − α∗)S. The composite color
Qc = (Lc, ac, bc) can be estimated as:

Qc = Qb(1−α∗)+α∗qf = Qb(1−α∗)+Qf − (1−α∗)S (4)

with a caveat that the resulting luminance might be outside the valid
range, Lc /∈ [0, 100], when the 6D query point is outside the convex
hull of the color chart, (Qb, Qf ) /∈ H.

To avoid this situation, we perform a fast runtime optimization to
make small adjustment to the alpha estimation. In particular, we
use α∗ and β∗ obtained from the training to initialize the following
optimization, solving for α̂, β̂ and q̂f :

α̂, β̂, q̂f = argmin
α,β,qf

Ea + wa‖Qf − αqf − (1− α)S)‖2 (5)

such that α ∈ [0, 1], and Lf ∈ [0, 100]

We set wa = 3 to encourage the query color Qf to be well fitted.
The composite color can then be predicted by substituting α̂ and q̂f
into the equation (4).

5.2 Radial Basis Function Interpolation

The Radial Basis Functions (RBF) is one of the primary tools for
interpolating multidimensional scattered data. RBF is suitable for
our problem for the following reasons: it does not require the data
points to lie on a regular grid, and gives good interpolation accuracy
even when the data is sparse. RBF is defined as:

g(x̂) =

n∑
t

λtφ(‖x̂− x̂t‖), x̂ ∈ RD (6)

Training. A color chart can be interpreted as a 6D point cloud,
with each data point corresponding to a 3D value. In our case,
{x̂t} in equation (6) corresponds to {(Bi, Bj) | i, j ∈ {1 . . . N}}.
We have n = N2 and D = 6. Given a sparse point cloud of
several hundreds points, an arbitrary query is often near or outside
its convex hull, H. In these situations, the basic RBF interpolation
is inaccurate. We use augmented RBF, which adds a polynomial
term to the equation (6):

f(x̂) = g(x̂) +

M∑
m

γmpm(x̂) (7)

We use the parameter-free linear kernel, φ(r) = r and the following
polynomial basis, {pm(x̂) | m ∈ {1 . . .M}} = {1, x̂, x̂2, ...},
M = 2 (that is, {1, x̂}). The linear polynomial term can improve
the interpolation accuracy, especially at and outside the boundary
(second and third rows in Table 1), but little benefits can be obtained
going beyond linear [Wright 2003]. The polynomial term also
allows simple extrapolation beyond the convex hull of the chart.
Note that, our data values {Cij} = {Ct | t ∈ {1 . . . N2}} are 3
dimensional, therefore we train three separate RBFs for each color
dimension f̂(x̂) = (fl(x̂), fa(x̂), fb(x̂)).

We write the following constraints in a matrix form and solve for
the expansion parameters, λ and γ.

f̂(x̂t) = Ct, ∀t ∈ {1 . . . N2} (8)

N2∑
t

λtpm(x̂t) = 0, ∀m ∈ {1 . . .M} (9)

Prediction. With the trained λ and γ, we predict the composite
color by substituting the query point (Qb, Qf ) into equation (7).

5.3 Optimized KM Compositing

Similar to Section 5.1, we attempt to train a parametric model
to explain the color samples from the compositing chart. The
difference is that this section assumes the underlying model to be
Kubelka-Munk (KM), which is a powerful multi-spectrum model
that more accurately simulates the appearance of physical pigments.

Training. We use L = 8 uniformly spaced wavelength samples
to approximate the full visible light spectrum. We find that
using more wavelengths does not further improve the prediction
accuracy. On the other hand, it introduces more unknowns to
the optimization, which requires a larger color chart to avoid
overfitting. We assume each base pigment of the chart is created by
mixing different proportions of K = 3 distinct primary pigments,
which corresponds to the common art practice that a color on the
palette is usually created by mixing several different paints. This
prediction model has the following parameters:

• σ = {skl , akl | l ∈ {1 . . . L}, k ∈ {1 . . .K}}: the scattering
and absorption coefficients of each primary pigment at each
sample wavelength, in total 2LK parameters.

• m = {mi | i ∈ {1 . . . N}, where mi = {mk
i | k ∈

{1 . . .K}}: the proportions for combining the K primaries,
for each of the N base pigments, in total NK parameters.

• ξ = {ξl | l ∈ {1 . . . L}}: the reflectance coefficients of the
substrate at each sample wavelength, in total L parameters.

Given a mixing proportion mk
i , the absorption and scattering

coefficients of the mixed pigment i at each wavelength l is given
by A =

∑K
k m

k
i a
k
l and S =

∑K
k m

k
i s
k
l . We concisely represent

the pigment mixing and the KM equation (Section 3), using the
following notation km(σ,mi, ξ), where the input are σ and ξ,
the output is the reflectance spectrum, and we use constant layer
thickness, h = 1. We represent the standard transform function
that converts a reflectance spectrum to tristimulus CIELAB values
as lab(ξ), where we use the standard illuminant D65. Then, each
base color bi and composite color cij can be evaluated by KM:

ri = km(σ,mi, ξ) (10)
bi = lab(ri) (11)
cij = lab(km(σ,mj , ri)) (12)
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(a) Thin paint in Figure 5a
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(b) Thick paint in Figure 5b

Figure 6: Gamut influence on prediction accuracy.

We train the model parameters as follows:

σ∗,m∗, ξ∗ = argmin
σ,m,ξ

Ek + wcEc + wpEp + wsEs (13)

such that skl ∈ [0,∞), akl ∈ [0,∞),mk
i ∈ [0, 1],

Ek = Ea + wξ‖S − lab(ξ)‖2 (14)

Ec =
1

K

N∑
i

(
1−

K∑
k

mk
i

)2

(15)

Ep =
N

(L− 1)K

K∑
k

(
L−1∑
l

(skl − skl+1)
2 + (akl − akl+1)

2

)
(16)

Es =
N

L− 1

L−1∑
l

(ξl − ξl+1)
2 (17)

where Ek replaces the bi and cij in equation (3) with the new
definitions in equation (11) and (12), and adds another term to
fit the measured substrate color S. Ec, Ep and Es serve as
the regularization. Ec constrains that for each base pigment,
the mixing proportions of the primaries sum up to 1. Ep en-
courages the scattering and absorption coefficient curves to be
smooth for each primary. Es encourages the reflectance curve
of the substrate to be smooth. We initialize σ, m and ξ ran-
domly within their respective valid range. We set wc = 1.5,
wp = ws = 60, wξ = 1. Rendering the optimized primaries on
white substrate with KM equations results in three distinct colors
that well represent the base colors in the marker
chart, for example (inset figure).

Prediction. Given the query foreground color Qf and the opti-
mized parameters σ∗, ξ∗, we solve a least squares problem to pre-
dict the proportion, mq = {mk

q | k ∈ {1 . . .K}}, by which
the primary pigments are mixed to generate the query foreground
color. We could use the same least squares problem to solve for the
mixture of primary pigments for the background color Qb, but this
would take twice as long and throw away previously computed data
needlessly. Instead we cache and re-use the reflectance spectrum of
the canvas due to previous strokes,R = {rl | l ∈ {1 . . . L}}. Then
the composite color Qc can be predicted as follows:

m∗
q = argmin

mq

‖lab(km(σ∗,mq, ξ
∗))−Qf‖2 (18)

such that mk
q ∈ [0, 1], ∀k ∈ {1 . . .K},

Qc = lab(km(σ∗,m∗
q ,R)) (19)

Prediction in this way is efficient, but can be problematic at times.
The trained primary pigments σ∗ define a color gamut (the range
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(b) Thick paint in Figure 5b

Figure 7: Noise influence on prediction accuracy.

of colors that can be represented by mixing the primaries). When
the query color Qf is outside the gamut, the least squares solution
might be far from the true answer. We use the convex hull of the
color chart,H, to approximate the color gamut.

In this case, we propose the following remedy. Similar to the idea in
Section 5.1, we perform a runtime optimization taking into account
the query color Qf using the trained parameters, σ∗ and m∗, as
initialization and having the substrate spectrum fixed at ξ∗. We
solve the following least squares problem, slightly modified from
equations (13) and (14):

σ̂, m̂, m̂q = argmin
σ,m,mq

Eq + wcEc + wpEp + wsEs (20)

such that skl ∈ [0,∞), akl ∈ [0,∞),mk
i ∈ [0, 1],mk

q ∈ [0, 1],

Eq = Ek + wk‖lab(km(σ,mq, ξ
∗))−Qf‖2 (21)

The term Eq adjusts the primary coefficients and the query mixing
proportion to constrain the query color to lie inside the gamut. After
the optimization, we predict the composite color by substituting σ̂
and m̂q into equation (19). We set wk = 3 and initialize mq using
the mixing proportion of the base pigment that has the most similar
color to the query.

6 Results and Discussion

We use a number of quantitative and qualitative means to evaluate
the quality of our pigment model, and discuss the impact of various
design considerations on our results.

6.1 Quantitative Results

We report errors in terms of L2 difference in CIELAB colorspace,
which represents the perceptual error in the predicted color. The
just noticeable difference (JND) in LAB is between 1.0 and
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Figure 8: Experiments with synthetic charts.



(a) Alpha (b) RBF (c) KM

Figure 9: Prediction methods comparison. All strokes are synthe-
sized using the marker chart (Figure 1a). Foreground: horizontal.

(a) Marker (b) Acrylic (c) Watercolor

Figure 10: KM prediction results using different color charts from
Figures 1a, 4a and 4b, respectively. Foreground: horizontal.

2.3 [Robertson 1990] – differences less than this value are not gen-
erally perceivable to casual viewers.

Hold-one-out Evaluation. To evaluate the quality of our predic-
tion, we would ideally compare the predicted color of a composition
with the ground truth color for a given medium. However, ground
truth data is difficult to come by, particularly for color charts from
the Internet. To work around this we use a hold-one-out method-
ology. If we have N base colors in a mixing chart, for color i we
create a new pigment model on theN−1 other pigments (removing
column and row i from the chart), and then use this reduced model
to predict the composition results of color i with the other N − 1
colors, which we have ground truth for (from the original chart ofN
base colors). Data from this evaluation is presented in Table 1. We
find that for media of lower scattering properties (i.e. less opacity),
namely marker and watercolor, RBF and KM both perform dramat-
ically better than alpha blending. More highly scattering pigments
such as acrylic and gouache are closer in performance, though RBF
and KM still show an improvement over alpha blending. Table 1
also shows that RBF with the polynomial term outperforms the ba-
sic RBF in all test cases, especially for the outside gamut samples.

Influence of Gamut. Because the pigment model is a 6D function
and there are relatively few samples, in general all the samples are
on the convex hull which defines the gamut of the model, or the
volume within which samples can be interpolated. This means that
when performing the hold-one-out evaluation, the held out sample
i is usually outside the gamut of the remaining N − 1 samples.
However, depending on the shape of the gamut, the sample imay be
near the gamut (e.g. if i is an orange color and both red and yellow
remain) or far outside the gamut (e.g. if i is blue and the remaining
N − 1 samples are all reds, oranges, and yellows). The prediction
of near gamut samples is generally better than outside gamut as
the prediction is closer to interpolation than extrapolation. For that
reason, Table 1 splits the aggregate errors into near and outside
gamut values, to see the difference. The important detail is that
RBF tends to have a bigger discrepancy between near and outside
gamut samples than KM, because RBF relies on extrapolation while
KM fits a more restricted model that generalizes better.

To evaluate the error on inside gamut samples requires many more
samples than we can reasonably acquire so we rely on synthetic
charts made from measured KM coefficients of real paint pig-
ments [Okumura 2005] and multispectral rendering. Figure 6
shows the relationship between distance from the gamut boundary
for the thin and thick synthetic charts from Figure 5. We approxi-
mate the query distance from the gamut boundary (x axis value in
Figure 6, negative means inside) by the Euclidean distance to the

Figure 11: KM Optimization results. Top matrix: synthesized with
the gouache chart in Figure 3a. Bottom matrix: synthesized with
the thick synthetic chart in Figure 5b. Foreground: horizontal.

training convex hull normalized by the average distance of pairs
of training samples. The performance of KM remains roughly the
same, while RBF and alpha blending are both correlated with the
signed distance from the gamut boundary.

Influence of Noise. The acquisition process for a physical chart
involves a fair amount of noise. Most significantly, the swatches
may not all be painted with the same pigment thickness and lighting
may not be constant across the chart. We again rely on synthetic
color charts to gain some understanding of the influence of noise
on our results. Figure 7 shows prediction error for our thin and
thick synthetic paint charts with increasing amounts of Gaussian
noise (maximum [-0.1, 0.1]) added to each RGB channel. The
graphs show error in two ways: the solid lines represent the
same hold-one-out error calculation as explained before. However,
in this experiment, the ground truth values have noise added to
them, which may increase the error over the “real” ground truth
values that are the actual composition colors without noise. This
“real” error is shown with dashed lines, and demonstrates that our
hold-one-out methodology may overestimate the error between our
models and actual pigments.

KM and RBF handle noise differently. RBF will simply try to
reproduce whatever noise may be present in the color chart –
systematic errors such as luminance changes across the chart can
be reproduced well. KM on the other hand fits a single pigment
model to all the data, effectively finding a best fit that minimizes
the errors due to noise. While this may result in a higher apparent
error for physical pigments due to our hold-one-out methodology,
Figure 7 suggests that the actual error between the predictions and
the real paints may be overall less.

Influence of Chart Size. It is interesting to examine the impact
of chart size on performance, to determine how many pigments
should be acquired (color charts online tend to have between 6
and 10 base colors). Figure 8 shows these results, where for each
N = {5 . . . 13}, we created 5 random synthetic charts with base
colors sufficiently different from each other and evaluate the error
for a persistent set of 10 random samples. What we find is that
KM is quickly able to generalize a model and does not change
significantly as the chart size increases, whereas RBF is initially
worse than KM and slowly approaches its performance as the chart
size improves. On the other hand, performance for alpha blending is
roughly constant and very fast regardless of chart size, while KM’s
time to compute a prediction increases linearly with the number of
pigments, as the size of the optimization problem becomes harder.
We measure the running time using a desktop computer with Intel



Figure 12: A non-paint-like color chart that exhibits additive
blending, created in Adobe Photoshop. RBF is used to create the
strokes on the right that reproduce the additive effect.

Core i7-3770, 3.40GHz. Finally, the average sample distance from
the model gamut decreases also roughly linearly as the chart size
increases. With a practical chart size, random queries are more
likely to be outside the gamut, which underscores the importance
of handling extrapolation.

For KM it is also important to note that as the chart size grows,
the amount of data increases faster than the number of unknowns.
For N base colors, L = 8 wavelengths and K = 3 primary
pigments (disregarding substrate optimization), we have 2LK +
NK unknowns andN2+2N+4K equations. Therefore, we want
48 + 3N < N2 + 2N + 12⇒ N2 −N − 36 > 0, which means
that when N ≥ 7, we have more equations than unknowns. For
N < 7, the system is underconstrained.

Influence of Parameters. The alpha and KM prediction methods
both have a number of parameters to tailor their optimizations.
However, we found that the results were not particularly sensitive
to the specific values of the parameters. Similarly, optimizing the
illuminant spectrum and the substrate reflectance spectrum, versus
using standard values, does not make a large difference on the
results, with the exception of the acrylic chart where the substrate
is far from white. The impact of the regularization error terms
is to reduce the number of optimization steps, which for KM is
between 200 and 1000 iterations, and for alpha is between 20 to
60. A more significant factor in the quality of the prediction and
speed of convergence is the amount of acquisition noise in the
color charts – noisier charts require more optimization steps. Note
that KM uses non-linear optimizations. To avoid getting trapped
in a local minimum, off-line we perform the training several times
with random initialization and pick the parameters giving the lowest
training error. Then, initializing the runtime per-query optimization
with the trained parameters improves the prediction performance
and reduces the influence of local minima. Though the global
minimum is hard to reach, we find that the prediction results of
the synthetic charts are very close to the groundtruth suggesting
that adequate local minimums are usually obtained. We solve the
non-linear least squares problem using the standard Levenberg-
Marquardt algorithm provided by ALGLIB [Shearer and Wolfe
1985]. To reduce the complexity of the runtime optimization, we
can fix the mixing proportions m∗ for the N base colors and only
optimize the pigment coefficients, σ, for the K primaries and the
mixing proportion, mq , for the query .

Finally, we have noticed that charts with more bold or vivid colors
(e.g. marker, thick synthetic) have higher prediction errors than
lighter, more pastel charts (e.g. watercolor, thin synthetic). We
believe this is due to our hold-one-out methodology and the larger
gamuts of these charts. When holding out pigment i, the absolute
distance to the gamut of the N − 1 pigments is going to be
larger for charts that have a wider gamut. Reporting relative

Figure 13: A color chart (left) with both opaque and translucent
compositions, and some strokes (right) painted with the resulting
pigment model (foreground: vertical). Note that lighter colored
strokes are more transparent, while darker colored strokes are more
opaque. Also all colors do not appear in the chart.

error, or normalizing the errors with respect to the gamut size,
would therefore be necessary to compare the absolute estimation
accuracy among different charts / media, but we have not found
a reason to perform such comparisons. Many of the numerical
values corresponding to the visual results shown in this paper will
be available on our project page [Lu 2014].

6.2 Qualitative Results

We present a qualitative comparison of our model’s prediction qual-
ity in Figures 1 and 9. We choose saturated colors, the behaviors
of which are familiar to casual viewers, to demonstrate our results
using different prediction models. Figure 1 shows that for queries
that are outside the training gamut (similar to, but different from
the training base colors), the “best effort” alpha blending fails to re-
produce the paint-like appearance. RBF improves the prediction of
blue and yellow over red, but fails to produce green when applying
yellow over blue, due to the fact that bright yellow is not repre-
sented in the chart, Figure 1a. KM, on the other hand, provides
more robust extrapolation producing dark green as the result. Fig-
ure 9 shows more results of using the marker chart. Note that when
layering bright yellow over cyan and pink, KM produces light green
and orange respectively, which are closer to the behaviors in the
chart. When using a darker brownish red as the background color,
layering bright yellow results in dark brown making the yellow ap-
pear more transparent. We also compare our KM optimization re-
sults on the same set of queries, based on different charts. Figure 10
shows that different color charts produce perceptually distinct re-
sults. For example, cyan over red produces the light brownish color
when using the watercolor chart (similar to C2,8 from the top and
right in Figure 4b) and darker brownish red when using the marker
chart (similar to C6,16 in Figure 1a). Note that though the saturated
magenta is outside the gamut of the acrylic chart, paint-like compo-
sition is still obtained. Figure 11 demonstrates more results of KM
based on two different training charts. We experiment with less
saturated colors that are different from the training base colors and
show that the prediction results faithfully simulate the high opacity
and darkening effects in Figures 3a and 5b respectively.

We also show a non-paint-like model in Figure 12. We use
Adobe Photoshop to create a color chart with RGB colors and the
additive blend mode, which simulates the behavior of light (e.g.
red and green makes yellow). This chart is not well modeled
by alpha blending or KM, as neither has the ability to represent
this type of behavior, but RBF handles it well, as can be seen in
the simple painting in Figure 12, where colors not in the chart
are repeatedly laid atop one another until the color is completely
saturated. The hold-one-out evaluation on this chart produces



combined error values of 50.97, 19.92, and 51.74 for Alpha, RBF,
and KM respectively.

6.3 Controlling Opacity

Our pigment model does not include an explicit parameter for
“alpha” in the regular digital painting sense, in which a user can
select an RGB and set the alpha value to determine how much of the
background shows through. This information is however implicitly
encoded in the color chart, as any set of paint composition behaviors
can be represented. For example, one color chart could use
thinned paint while another could use thick paint, and the different
models would then include the corresponding transparent or opaque
composition behavior. Furthermore, a single color chart could
include samples from a dark red pigment applied thickly, appearing
dark red, and thinly, appearing light pink – the model would then
produce opaque results for dark red colors, and translucent results
for light pink colors. See Figure 13 for an example.

The main limitation of this approach is that, because the pigment
model cannot represent metamers, some flexibility is lost. For
example, it is not possible to have both a thin, translucent stroke of
dark red pigment that appears light pink, as well as a thick opaque
stroke of light pink pigment, as these strokes would have the same
RGB value in the color chart and so would conflict with one another.

In the implementation of our pigment model in a painting applica-
tion, it may still be desirable to support some type of alpha con-
trol that operates in a way that users are accustomed. It would be
straightforward to provide such a control which would interpolate
between the background color and the composited result. That is,
at α = 1, the resulting color is the pigment model’s prediction, at
α = 0, the result is the background color, and at α = 0.5, it is
the average of the two, etc. Another approach would be to use α
to interpolate between two charts, one with a thin application of the
foreground pigment and the other with thicker paint applied.

7 Conclusions

This paper presents a data-driven color model that can be adopted
by existing painting systems for more realistic color compositing
effects. We propose and compare a class of compositing methods
and show their respective advantages. Using our framework, novice
users can take a picture of a color chart and then paint strokes
with it. The query strokes allow arbitrary color and emulate
the compositing behaviors of the chart. We conduct quantitative
analysis to evaluate our color model and develop a simple painting
program that demonstrates the applications.

This project raises a number of possible areas for future work.

Modeling noise. We do not directly model noise in the acquisition
process due to variation in the paints, thickness, opacity, lighting
etc. A more sophisticated fitting scheme might be able to model
these components and therefore respond to them more robustly.

Support for paint mixing charts. Section 3 discusses briefly how
the chart-based approach we use for compositing could easily be
extended to paint mixing. Nevertheless, any digital painting appli-
cation that allows mixing needs controls for both operations. The
cross product of all mixed and composited colors is obviously a
substantially larger space; it may necessitate acquisition of consid-
erably more data and/or require more care from the UI perspective.

Simpler model outside convex hull. We have found that the
compositing behavior is high-quality when pigment combinations
are selected that are within the convex hull of the data in the
chart. As colors move further away the ability for our methods

to extrapolate well breaks down. Of course it is always possible to
add more exemplars in the region one wishes to paint, but we also
speculate that it might be possible to smoothly transition to some
simpler, plausible model far away from the exemplar data.
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