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Figure 1: Our system reconstructs a temporally coherent set of hair fibers for real-world dynamic hair. It accommodates a variety of hair
types and styles, as well as nontrivial motion (top: input video, middle: reconstructed envelope surface, bottom: synthesized hair strands).

Abstract
The realistic reconstruction of hair motion is challenging because of
hair’s complex occlusion, lack of a well-defined surface, and non-
Lambertian material. We present a system for passive capture of
dynamic hair performances using a set of high-speed video cam-
eras. Our key insight is that, while hair color is unlikely to match
across multiple views, the response to oriented filters will. We com-
bine a multi-scale version of this orientation-based matching metric
with bilateral aggregation, a MRF-based stereo reconstruction tech-
nique, and algorithms for temporal tracking and de-noising. Our
final output is a set of hair strands for each frame, grown according
to the per-frame reconstructed rough geometry and orientation field.
We demonstrate results for a number of hair styles ranging from
smooth and ordered to curly and messy.

1 Introduction
The hairstyle is one of a person’s most noticeable features and ac-
centuates one’s face and overall appearance. However, despite this
prominence, hair and in particular hair in motion remains difficult
to handle in the digital world. For this reason, special-effect movies
involving digital clones, such as The Matrix, frequently feature

short-haired actors [Mihashi et al. 2003], thereby sidestepping the
difficulties of modeling or capturing moving hair. While several
successful capture systems exist for body poses, facial expressions,
and clothes [Vlasic et al. 2009; Li et al. 2009; de Aguiar et al. 2008;
Vlasic et al. 2008], the capture of dynamic hair remains mostly un-
explored. And while motion capture is routinely used in production,
as far as we know, animated CG hair is always simulated, e.g. [Ward
et al. 2010].
Though hair simulation has increased in practicality and realism,
we envision that both of these desirable features can be extended
even further through a framework based on direct capture of real-
life moving hair. Densely captured hair geometry offers several
advantages over a pure simulation approach [Selle et al. 2008;
McAdams et al. 2009]:

• Generality: Hair’s complex dynamics can be recreated ac-
curately, independently of its geometric complexity and style.
Physically-based hair simulations, on the other hand, are often
restricted to specific hair styles (flat and straight) and do not
generalize to complex structures (curly and fluffy).

• Flexibility: While a physics simulation requires precise esti-
mation of material properties (weight, density. . . ) and knowl-
edge of effecting forces (constraints, wind. . . ), the dynamics
of directly captured hair data come for free and can be easily
integrated with other non-hair geometries.

• Efficiency: Because the animation of individual hair strands
is fully automated through capture, the artist no longer needs
to spend time on adjusting simulation parameters in attempt to
accurately match real-world observations (which, in most cases,
is not even possible).
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Figure 2: Several stages of our dynamic hair reconstruction pipeline. We compute orientation images of keyed monochrome images recorded
from four different viewpoints, perform multi-view stereo reconstruction to obtain hair envelope meshes, track these meshes to obtain tempo-
rally coherent seeds, and grow hair strands according to a volumetric orientation field.

Despite these considerable advantages, work on hair capture is
comparatively scarce, in contrast with the development of hair de-
sign tools and physical simulation techniques. To ease the creation
of highly accurate hair models, several static reconstruction tech-
niques, e.g. [Paris et al. 2008; Jakob et al. 2009], were proposed, but
are subject to a lengthy acquisition process, making them unsuitable
for dynamic hair capture. The first work that strives at capturing
both hair geometry and motion was only recently introduced by
Yamaguchi and coworkers [2008]. This method produces tempo-
rally coherent dynamic hair strands by growing hair segments from
the root of a scalp model and enforcing their orientations to follow
the observed hair strands in multiple images. Although temporally
coherent hair models can be obtained, the system is restricted to
very low input resolution, a prohibitively smooth motion prior, and
can only handle limited hair styles. In particular, it builds upon
a long-held belief that passive stereo correspondence methods are
inapplicable to the reconstruction of hair, and hence a rough global
shape estimate can only be obtained from the visual hull [Wei et al.
2005; Yamaguchi et al. 2008]. As a result, complex hair styles that
exhibit many concave regions and fine-scale details such as inter-
penetrating hair fibers cannot be accurately modeled.

Our key insight is to retain the flexibility of a passive stereo
acquisition setup, but to build upon it a temporally-coherent re-
construction system that makes use of the unique appearance of
hair. In particular, we begin by performing stereo matching not on
windows of the raw color or intensity image, but rather on multires-
olution orientation images (Section 4.3), which represent at each
pixel the direction in which there is the strongest oriented image
feature [Paris et al. 2004]. The key benefit of performing stereo
matching using these features is their unique robustness against
specularity and other sources of view-dependent appearance in hair,
since they effectively act as high-pass filters that suppress overall
differences in reflected intensity. They exploit the fact that hair ge-
ometry is inherently 1D (continuous along each strand) rather than
2D (piecewise continuous along the surface).

We enhance the performance of our orientation-based matching
metric by introducing a bilateral aggregation step (Section 4.4),
inspired by Yoon and Kweon [2006], that enforces smoothness
along hair strands by exploiting the hair structures revealed in the
orientation fields. We further leverage this approach to cover hair
structures of all scales by using a multi-resolution pyramid of the
orientation fields. The resulting multi-view stereo reconstruction
gives us a plausible envelope of the hair geometry that captures
many features such as clumps of hairs (though not individual hair
strands). We apply temporal de-noising on the reconstructed mesh
sequence using dense correspondences computed between adjacent
frames. Following the directions of a volumetric orientation field,

we grow hair strands with seeds placed on the reconstructed hair
envelopes (Section 5). Our experiments show that the motion of the
per-frame generated hair strands are temporally coherent when they
lie on the surface and their orientation is sufficiently confident. To
synthesize the remaining in-between and interior hair strands, we
advect their seed points using a drift-reduced version of the non-
rigid registration framework of Li et al. [2009].

The final output of our pipeline is a dense set of 3D hair strands
for each frame of the initial video. Though we do not claim that
these strands correspond directly to the real-world hair fibers, they
provide a similar visual appearance and, most importantly, capture
the complex dynamics exhibited by real-world hair performances.
We demonstrate results (Section 6) on a variety of hair types and
hair styles, ranging from smooth to chaotic, and including nontriv-
ial motions which are difficult to model using a classical physical
simulation approach (see supplemental video).

2 Related work
Hair is a critical aspect of digital characters and it has been studied
from many angles [Ward et al. 2006]. Here we describe the work
most related to ours.

Static hair capture Several approaches have been proposed to
capture hair [Kong et al. 1997; Grabli et al. 2002; Paris et al. 2004;
Wei et al. 2005], including complex hairstyles [Paris et al. 2008]
and fiber-level geometry [Jakob et al. 2009]. These techniques re-
quire the hair to be static so that several photos under different light-
ing conditions or with varying focus settings can be taken. Because
of this, the capture process cannot be repeated fast enough to handle
hair in motion. Moreover, these methods lack robustness to motion,
e.g., half the capture sessions with the hair photobooth of Paris et al.
did not produce usable data because of the person’s motion [Paris et
al. 2011], while Jakob et al.’s setup is applicable only to a ponytail
attached to a rig. Nonetheless, we build upon and extend some
of the components proposed for the static case. We analyze the
input images using oriented filters similarly to Paris et al. [2004]
and compare the extracted orientations across viewpoints to locate
the strands akin to Wei et al. [2005]. But instead of a space-carving
scheme, we describe a robust Markov Random Field optimization
that can recover fine details from only a few views. This enables the
reconstruction at video rate of the visible hair surface, including the
intricate arrangement typical of strands in motion (Figure 1). We
also introduce a multiscale regularization scheme that enables the
reconstruction of a thick volumetric layer of hair akin to Paris et
al. [2008] and Jakob et al. [2009]. We then use a dedicated tracking
algorithm and a temporally consistent strand-growing scheme to
convert this surface into an animated hair model.



Dynamic hair capture While significant advances have been
made in static hair modeling, much less work has been done to
deal with dynamic hair. Ishikawa et al. [2007] use a motion capture
system on hair by placing reflective markers on a few guide strands.
The motion of the rest of the hair is interpolated from these captured
the guides. Although real-time capture is possible with such a sys-
tem, the reflective markers alter the dynamics of the hair and limit
the resolution of the captured geometry. Yamaguchi et al. [2008]
introduced an image-based system to generate temporally coherent
hair motion. Their method extends the static capture method of
Wei et al. [2005] with a temporally coherent hair growth algorithm.
The system is only demonstrated on a medium-length straight-hair
wig with limited motion. It is unclear how the method generalizes
to more complex scenarios. In particular, the strong smoothness
assumption is at odds with the curls and flying wisps observed on
long hair during a head shake (Figure 1).

3 Overview
Our system (see Figure 2) begins by capturing video sequences
of hair in motion using a set of high-speed video cameras. After
keying, we compute a multi-resolution orientation field for each
image. We solve the multi-view stereo correspondence problem in
the Markov Random Field (MRF) framework [Szeliski et al. 2008]
with graph cuts [Boykov et al. 2001], using a novel energy formu-
lation that consistently integrates correspondence information at all
resolution levels.

A bilateral filtering step is employed to aggregate the per-pixel
data cost according to the local structures of the orientation field,
improving the confidence of matches in areas of strong directional
response (usually prominent clumps of hair). To refine the depth
map from MRF, we perform a sub-pixel refinement similar to
[Beeler et al. 2010], followed by an extra bilateral filtering step
based on the orientation field on the depth map. We then compute
a non-rigid alignment between consecutive frames of reconstructed
hair envelope meshes to recover frame-to-frame correspondences.
These correspondences are used to perform temporal filtering, as
well as to advect seed points throughout the sequence. Finally, we
compute a volumetric orientation field for each frame, and grow a
hair strand from each seed point, following the orientation field.

4 Hair geometry reconstruction

4.1 Acquisition

We use four AVT Pike high speed cameras to capture monochro-
matic video of moving hair at 100 FPS in VGA (640x480) reso-
lution. While more advanced equipment options with higher res-
olution exist, we find that high speed capture capability is partic-
ularly valuable in capturing interesting hair motions and the AVT
Pike provides a good trade-off between resolution and speed. The
cameras are arranged in a upside down T-pose placed at roughly
90 cm distance from the subject, close enough to minimize hair
occlusions while maintaining sufficient stereo accuracy to faith-
fully capture the intricate geometry of hair (see Figure 3). The left
and right cameras in the T-pose provide balanced coverage with
respect to the center reference camera. Since our system employs
orientation-based stereo, the horizontally positioned three cameras
will have stereo failure for the hair strands in horizontal orientation.
To address this problem, a top camera is added to extend the stereo
baselines and prevent the blind point of any singular orientation.

We use strong lighting (3 light sources evenly placed behind the
cameras) to ensure high contrast and a short exposure of 1 ms to
prevent motion blur. We use aperture F/8 for all the cameras to
have sufficient depth of field covering subject’s head movement.

We achieve subpixel accurate camera calibration with a standard
chessboard pattern [Zhang 2000] and bundle adjustment [Hartley
and Zisserman 2004]. We redo calibration before capturing each

capture setup

Figure 3: Acquisition setup of our dynamic hair capturing system.

subject and the checkerboard is positioned to cover the entire head
volume of the subject to optimize the accuracy for the hair capture.

4.2 Keying

Keying out the hair from the background is particularly challenging
in our case because the captured images are monochromatic and
hair may move quickly. We used the Roto Brush tool in Adobe
After Effects CS5 to efficiently separate the hair from the back-
ground. This tool combines motion estimation with local models
of the object’s color and shape to produce accurate selections. The
method runs at interactive rate and lets users specify corrections at
any point, which are later propagated to the rest of the sequence.
We refer to the original article by Bai et al. [2009] for details.

4.3 Multi-resolution 2D orientation field

Paris et al. [2004] first introduced the dense orientation field for
hair modeling. We use the orientation field as the primary source
of information in stereo matching because it is a distinctive and re-
liable feature of hair strands. Our orientation field definition differs
from the prior definition in that we only consider highlighted hair
strands (i.e., positive filter response), as we observed that the orien-
tation in dark and shadowed regions is unreliable. Formally, given
oriented filters Kθ , generated by rotating the original x-aligned fil-
ter K0 by angles θ ∈ [0, π), we define the orientation Θ(x, y) of
image I at pixel (x, y) as Θ(x, y) = arg maxθ |Kθ ∗ I(x, y)|. To elim-
inate the ±π ambiguity of the orientation, we map Θ to the com-
plex domain as in [Paris et al. 2004] by Φ(x, y) = exp(2iΘ(x, y)).
We also use the gamma corrected maximum response: F(x, y) =
maxθ |Kθ ∗ I(x, y)|γ in our stereo algorithm, because it encodes the
confidence of the orientation as well as the image intensity at the
filter’s characteristic scale. The gamma correction enhances weak
responses and improves reconstruction quality. We use γ = 0.5 for
all our datasets. Finally, our orientation field O(x, y) is defined by
taking the product of Φ(x, y) and F(x, y):

O(x, y) =

�
F(x, y)Φ(x, y) KΘ ∗ I(x, y) ≥ 0
0 KΘ ∗ I(x, y) < 0

(1)

Note that the orientation field at the region with negative max-
imum filter response is set to zero. We select a Difference-of-
Gaussians (DoG) filter for K0. Specifically, K0(x, y) = (Gσ (x) −
Gσ �(x))Gσ �(y), where Gσ is 1D zero-mean Gaussian with standard
deviation σ .

To generate the multi-resolution orientation field, we use a pyra-
mid data structure to accelerate the computation: we recursively
downsample the image for coarse levels in the pyramid and apply
the oriented filter Kθ . We use a fixed sized Kθ with σ = 1 and
σ � = 2 for all levels of orientation field. The multiresolution ori-
ented pyramid is visualized in Figure 4.
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Figure 4: Multi-resolution orientation fields for a stereo pair of
images. Color indicates the orientation angle while intensity repre-
sents the magnitude of the maximum filter response. Note the ease
with which corresponding structures may be identified.

4.4 Multi-view stereo

We reconstruct a depth map D(p) for each pixel p of the center
reference camera using the orientation fields computed from all
four cameras. The reconstruction volume is bounded by the nearest
depth dnear and the farthest depth d f ar set to contain all possible hair
depths in the reconstructed sequence.

Energy formulation We use the MRF framework to optimize
for D. The total MRF energy E(D) with respect to D consists of
a data term Ed(D) and a smoothness term Es(D):

E(D) = Ed(D) + λEs(D), (2)

where λ is the smoothness weight. The data energy is the sum of
the per-pixel data cost ed(p,D) for each pixel p of the reference
view, while the smoothness energy is the weighted sum of the depth
deviation between p and its 4-connected neighbors N (p):

Ed(D) =∑
p

ed(p,D)

Es(D) =∑
p

∑
p�∈N (p)

ws(p, p�)|D(p)− D(p�)|2.
(3)

The MRF cues ws(p, p�) encode different depth continuity con-
straints between adjacent pixels p and p�. To enforce a strong depth
continuity along the hair strands where orientations are similar, we
define ws(p, p�) as a Gaussian of the orientation distance:

ws(p, p�) = exp
�
− |Oref(p)− Oref(p�)|2

2σ2
o

�
. (4)

The parameter σo controls the constraint sensitivity and is set to
σo = 0.5 for all our datasets.

Inspired by [Sasaki et al. 2006], we formulate the data term ed
based on the multi-resolution orientation field computed in Section
4.3. We define ed as the sum of the matching costs e(l)d of each level
l from the orientation field for all views:

ed(p,D) =∑
l

e(l)d (p,D)

e(l)d (p,D) =∑
i

c
�
O(l)

ref(p),O(l)
i (Pi(p,D))

�
,

(5)

where O(l)
ref and O(l)

i are the orientation fields at level l of the refer-
ence view and of view i, respectively. Pi(p,D) is the projection of
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Figure 5: The energy volume defined by the data term ed(p,D)
integrates the orientation fields of the four camera views.

the 3D point defined by the depth map D at pixel p onto view i. The
cost function c is defined as:

c(O,O�) = −ℜ{O∗O�}, (6)
where ℜ(z) denotes the real part of a complex number z. Intuitively,
c(O,O�) measures the deviation of the orientation fields for cor-
responding pixels as the inverse correlation of the two orientation
vectors O and O�.

The data term ed(p,D) is a function on the volume defined by
the pixel image of the reference view and each possible depth value
d in the interval [dnear, d f ar] (see illustration in Figure 5).
Bilateral aggregation To make the data energy more robust and
adaptive to the local structure of the orientation field, we perform
bilateral filtering on the data term energy on each level l based on
the orientation field of the reference view on that level. The bilateral
filter weights w(l) are computed as

w(l)(p, p�) = exp
�
− |O(l)

ref(p)− O(l)
ref(p�)|2

2σ2
d

− �p − p��2

2σ2
p

�
, (7)

where the parameters σd and σp control the aggregation by orienta-
tion similarity and proximity, respectively. The data energy e(l)d in
Equation 5 are aggregated as:

e(l)d (p,D) ← 1
Z ∑

p�∈K (p)
w(l)(p, p�)e(l)d (p�,D), (8)

where K is a window centered at p with a size adaptive to σp and
Z = ∑p�∈K (p) w(p, p�) is the normalization factor. Figure 12 illus-
trates the effect of our bilateral aggregation approach. The resulting
energy in Equation (2) can be efficiently minimized by graph cuts
[Boykov et al. 2001].
Depth map refinement We employ a similar sub-pixel refine-
ment technique as [Beeler et al. 2010] to refine the integer depth
map optimized by graph cuts. To be specific, for each pixel p on
the reference view and its associated depth D(p), we look up its
data cost e0 = ed(p,D(p)) and the data cost e−1 = ed(p,D(p)− 1)
and e+1 = ed(p,D(p) + 1) for the adjacent depth values D(p)− 1
and D(p) + 1. The new depth D�(p) is updated from D(p) by:

D(p) ←






D(p)− 0.5 e−1 < e0, e+1

D(p) + 0.5 e−1−e+1
e−1+e+1−2e0

e0 < e−1, e+1

D(p) + 0.5 e+1 < e0, e−1

(9)
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Figure 6: The stages of depth map refinement improve recon-
structed quality. The surface reconstructed from the initial MRF-
optimized depth map (a) shows quantization artifacts that are re-
moved by sub-pixel refinement (b). A post-reconstruction bilateral
filtering step further improves quality (c).

We then apply bilateral filtering once again on the depth map to fur-
ther reduce the stereo noise with the same weights as in Equation 7:

D(p) ← 1
Z ∑

p�∈K (p)
w(p, p�)D(p�) (10)

Figure 6 shows how the reconstructed surface evolves after apply-
ing each of the refinement steps discussed above. Note the im-
portance of subpixel refinement, without which the features are
overwhelmed by quantization artifacts. The post-reconstruction bi-
lateral filtering step increases surface quality modestly, but is not a
replacement for pre-reconstruction bilateral aggregation.

Temporal De-noising Acquisition noise and inaccuracies in the
per-frame stereo reconstruction can lead to high-frequency tempo-
ral artifacts in the captured hair envelope sequence. A common
filtering strategy for static acquisition is to average a set of over-
lapping scans in order the reduce noise while preserving salient
geometric features. Applying such a filtering method in our dy-
namic setting, i.e., averaging over multiple frames of the tempo-
ral sequence, requires unwarping the scans to compensate for the
deformation between frames. For this purpose, we use the graph-
based non-rigid registration algorithm described in Li et al. [2009]
to perform coarse level deformations between partial scans of ad-
jacent frames. Our goal here is to exploit the spatial and temporal
coherence of motion at the level of salient geometric features such
as curls and wisps of hair to reduce acquisition artifacts. We do
not attempt to track individual hair strands over time, but rather
estimate a smooth volumetric deformation field that captures the
medium scale motion. Each envelope mesh is embedded in a defor-
mation graph (see [Sumner et al. 2007] for details) with nodes that
are uniformly sampled (15 mm spacing) on the captured hair ge-
ometry. The algorithm iteratively computes the optimal warp of the
deformation graph by minimizing point-to-point and point-to-plane
distances between closest points of the two scans and maximizing
the local smoothness and rigidity in the node transformations. The
spatial warps defined by the nodes are then transferred to the en-
velope mesh vertices through simple linear blend skinning using
weights that are inversely proportional to Euclidean distance [Li
et al. 2008]. Figure 7 illustrates the alignment of the hair envelope
meshes.

We use the same parameters as in [Li et al. 2009]. As demon-
strated in their work, the combination of deformation regulariza-
tion and a low number of degrees of freedom enables accurate
alignments between geometries affected by high-frequency noise.
Hence, temporal de-noising can effectively separate noise from
salient features by simply averaging the depth maps of unwarped

current frame previous frame with 
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Figure 7: Non rigid registration of consecutive frames based on
embedded deformation for temporal de-noising.

raw reconstruction temporal denoising

Figure 8: Temporal filtering reduces acquisition noise while pre-
serving the salient features of the acquired hair.

scans. This separation recovers the medium-scale motion in a tem-
porally coherent fashion, which is crucial for an accurate recon-
struction of visually important features of the hair geometry. Fig-
ure 8 illustrates the effect of our temporal de-noising approach.

5 Hair synthesis

We grow hair strands following a volumetric 3D orientation field,
similar to the approach of Paris et al. [2008]. However, since we
allow the captured subjects to move their heads freely for natural
hair movements, it is difficult to reliably fit a scalp for the perform-
ing subject and use it as a prior for hair generation, as was done by
previous methods. Therefore, we adopt a seed-and-grow scheme
that employs two different sampling strategies for hair synthesis.

To properly recover the hair strands reconstructed from our sys-
tem, we densely sample seeds on the high confidence regions of the
envelope surface where the prominent hair strands are located. This
seeding is followed by hair growth step that generates hair strands
from the seeds according to the orientation field. In addition, we
also sample seeds on an inward offset surface of the reconstructed
hair envelope to fill the interior of the hair volume with strands.
We show that this seed-and-grow scheme captures more fine-scale
structures on the hair surface and avoids hair sparsity problems
throughout the hair volume (see Figures 9 and 11).

5.1 3D orientation field

3D orientation computation We first compute the 3D orientation
field on the envelope surface by combining the projected 2D orien-
tation on the reference view and the surface normal. For every point
p on the hair surface, we project back to the 2D orientation field of
the reference view, in which we sample the 2D line l representing
the 2D orientation of the projected point. Back-projecting l in space
forms a plane π with plane normal nl . The 3D orientation � of p
is computed as � = nl × np, where np is the normal of p on the
hair surface. The magnitude of the 3D orientation |�| is inherited
from the 2D orientation, i.e., |�| = Fref(q) with Fref the response
amplitude of the orientation detector on the reference view. Note
that because we use a relatively small stereo baseline, the surface
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Figure 9: Our seed-and-grow algorithm incrementally synthesizes
hair strands from a temporally coherent set of seed points.

normals provide more reliable information about the 3D orientation
than the projected 2D orientation in other views.

Temporal filtering To ensure temporal coherence of the 3D ori-
entation field, we perform temporal filtering on the 3D orientation
field, using bilateral temporal filtering with the inter-frame corre-
spondences computed in the temporal de-noising step (Section 4.4).
For a point pt at frame t, the bilateral filtering weights for the corre-
sponding points pt−1 and pt+1 at frame t − 1 and t + 1 are computed
as:

wi = 0.25 exp
�
− �pt − pi�2

2σ2
t

�
, i = t − 1, t + 1

wt = 1 − wt−1 − wt+1,

(11)

where σt controls the weight according to spatial proximity. We
perform multiple passes of temporal filtering with these weights.
For 3D orientation filtering, we use the structure tensor T = ��T

defined in [Paris et al. 2008]. At each filtering step, the orientation
Tt at frame t are updated as: Tt ← Tt + wt−1Tt−1 + wt+1Tt+1. To
ensure the orientation remains tangent to the hair surface, the new
orientation �t extracted from Tt is projected to the tangent plane at
pt : �t ← �t − (�t · np)np, where np is the normal at pt . We find that
five iterations of orientation filtering yield satisfactory results for all
the datasets.

Volumetric diffusion We propagate the 3D orientation field from
the surface into a volumetric sampling of the hair volume by per-
forming diffusion on the structure tensor. Note that because the
magnitude of the 3D orientation � encodes orientation confidence
information, the structure tensor T = ��T is diffused with confi-
dence.

5.2 Seeding

Hair strands are grown according to the 3D orientation field, begin-
ning at 50-100k seed points on and beneath the hair surface. We
distinguish between two types of seeds:
• Surface seeds are sampled randomly in high-confidence regions

of the surface mesh (i.e., those having a strong oriented filter
response — the highly-saturated regions in Figure 4). Strands
grown according to these seeds faithfully reproduce the detail of
actual groups of strands that we were able to capture. Because
these are high-confidence regions, we have observed that they
are relatively consistent from frame to frame, and we make no
special effort to ensure temporal coherence for these seeds.

• Interior seeds are sampled within a volumetric hair layer be-
tween the hair surface and an inward offset surface. Hair strands
grown from these seeds complement those grown from surface
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Figure 10: We ensure smooth motion of interior seeds by advecting
them using motion obtained from template-based tracking.

strands and fill in the hair volume, but they were not captured
directly: they are inferred. For this reason, we have found it nec-
essary to explicitly ensure temporal cnoherence for these seeds.

5.3 Interior seed advection

Non-rigid surface tracking The interior seeds are not re-
generated at every frame; they are generated once and then
advected using the approximate motion of the hair surface, found
using a template-based approach. Because the full hair surface is
not observed on any individual frame, and indeed new parts of the
surface are exposed throughout the performance, we use a tracking
proxy (“template”) that covers a larger area than the frames.

We initialize the template on the first frame by first building a
planar surface with a somewhat larger extent than the visible portion
of the hair, then warping this plane to conform to the surface mesh.
The template mesh thus smoothly extends the partial hair surface
visible on the first frame.

Next, we repeatedly warp the template to the hair surface on
each frame. The warping uses two deformation models similar to
the geometry and motion reconstruction scheme used in [Li et al.
2009]. A graph-based deformation model is used to capture the
coarse level deformations (similar to the temporal de-noising stage)
and a linear per-vertex deformation model is used to adapt the fine-
scale details of the template to the current frame by displacing the
vertices in normal direction. As opposed to the original formula-
tion, the coarse level deformation is not reinitialized for each frame,
but only once. The regularization weights (smoothness and local
rigidity maximization) are kept constant during the entire recon-
struction. In this way, we reduce the amount of drift for extended
frame lengths. While the method becomes less robustness to large
deformation since we disable the use of a regularization relaxation
scheme as in [Li et al. 2009], we found that the deformations be-
tween consecutive frames of high-speed acquisitions were suffi-
ciently small to be handled by multiple Gauss-Newton iterations.
Another difference with the original method of [Li et al. 2009]
is that detail synthesis using Laplacian deformations is no longer
performed as a second step, but directly after the graph-based reg-
istration for each frame.

Interior seed generation We sample interior seeds on the first
frame within a volume bounded by the (extended) first-frame tem-
plate and an inner offset surface. We find the latter by computing a
voxelized representation of the template’s signed distance field and
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Figure 11: The combination of interior and exterior strands is crucial for capturing the complex geometry of the most prominent hair strands
while ensuring sufficient hair density in the entire volume as shown for different views on the right.

extracting an isosurface. We have observed good results with a hair
volume thickness of 2 to 3 cm, depending on the performance.

Advection We advect interior seeds via linear-blend skinning.
We first uniformly resample the tracked template mesh to form
nodes of a deformation cage. The displacement of each interior
seed is then obtained as a linear combination of the k = 8 clos-
est nodes, weighted proportionally to the inverse of the distance
to the node [Li et al. 2008]. We adjust the resolution of the cage
to minimize noise while maintaining motion detail: a coarser-
resolution cage yields smoother motion, while a higher-resolution
one matches the surface motion more closely. Figure 10 illustrates
template tracking and interior seed advection.

Trimming The final step is to eliminate seeds that lie outside the
visual hull at each frame. This is necessary because of our use of an
extended template, which is noisy in parts of the surface that were
not observed. We believe that with a camera setup having greater
angular coverage, we would be able to have a full-head template
observed completely at each frame, eliminating the need for this
step.

5.4 Hair growing

Beginning with each seed, we grow hairs following the 3D orienta-
tion field using a simple marching method, i.e., forward Euler. This
is essentially the hair strand growing algorithm of Paris et al. [2004;
2008], except that we grow the strand from the seeds inside the hair
layer, in both directions of the 3D orientation, instead of growing
outward from the scalp. The growth is terminated if any of the
following conditions applies:

1. The strand exceeds a pre-defined length.

2. The strand grows out of the hair layer.

3. The strand grows to a new direction d�, and the angle ψ between
d� and the original direction d is larger than a threshold Tψ .

Condition 3 prevents the creation of unrealistic sharp turns due to
errors in our orientation measures.

6 Evaluation and discussion

To demonstrate our method we processed three hair performances
captured from different subjects. The acquired hair styles vary from
straight and orderly to curly and wavy and all involve significant
motion. The statistics of the input and output data are shown in the
table below (see also Figure 16). Note that the complexity of the
reconstructed hair geometry determines the number of strands.

input

image NCC metric orientation metric,
no aggregation

orientation metric
with bilateral aggregation

Figure 12: The quality of our mesh reconstructions (right) is
due to many design choices in our pipeline, including the use of
orientation-based matching (as opposed to color-based matching,
left) and bilateral aggregation (without which noise is significantly
more evident, center).

Dataset #Frames Style Color #Strands
Hair1 300 Straight Blonde 80k
Hair2 130 Messy Red 60k
Hair3 200 Curly Blonde 120k

Our whole pipeline takes roughly 11 minutes of computation time
per frame on a modern machine. Per-frame processing times are
subdivided as follows: multi-resolution orientation field generation
takes 30 seconds, multi-view stereo takes 5 minutes, temporal de-
noising adds 3 minutes, non-rigid surface tracking and seed ad-
vection takes 1 minute, hair growing for typical 80k strands in a
200x100x100 grid takes 2 minutes, hair rendering based on the hair
shading model by Marschner et al. [2003] takes 10 seconds.
Orientation-based metric To evaluate the orientation-based
metric for the reconstruction of the hair envelope surfaces, we also
implemented our reconstruction pipeline with a conventional color-
based metric, i.e., normalized cross correlation (NCC). Figure 12
shows the reconstruction results of the two approaches. While
both reconstruct the rough geometry correctly, the orientation-
based implementation resolves much finer and more detailed hair
geometry.
Reconstruction evaluation In Figure 13 we evaluate the accu-
racy of our reconstructed hair envelope surface by applying our
approach to a set of synthetic hair geometries rendered using the
shading model of [Marschner et al. 2003]. Most of the envelope lies
within 1cm of the nearest strands in the reference camera view. As
the cut-out on the right illustrates, our reconstructed hair envelope
optimally fits the intersecting points of the hair strands.

We also compare the quality of our reconstruction with the state-
of-the-art multi-view stereo algorithms [Beeler et al. 2010] and
[Furukawa and Ponce 2010] in Figure 14. Our method reveals



0 2.5 cm

Figure 13: Reconstruction evaluation with two synthetic hair ge-
ometries. (a) our reconstructed hair envelope, (b) ground truth
datasets, (c) overlay of both geometries, (d) depth difference, (e)
cut-out depth map on a intersecting horizontal plane (indicated by
black lines).

more hair geometry detail than the other two methods, thanks to
the orientation-based metric and bilateral aggregation that imposes
strong smoothness prior along the hair strands. In contrast, [Beeler
et al. 2010] is designed for face geometry and assumes intensity
invariance across views and has difficulties to adapt to intricate hair
geometry and specular appearance. Both [Beeler et al. 2010] and
[Furukawa and Ponce 2010] employ a patch-based matching met-
ric, e.g., NCC for stereo reconstruction, and thus tend to blur the
hair strand geometry detail within the matching window.

Number of cameras Our multi-view stereo system employs four
cameras for reconstruction. The redundant information provided by
the 4-camera system improves the overall accuracy and robustness
of the reconstruction. We compare the results of 2-camera system
and 4-camera system in Figure 15. As the results show using 4
cameras provides significant improvements in reconstruction qual-
ity and accuracy over the 2-camera system.

Limitations As can be seen in the accompanying video, our ap-
proach successfully captures hair in motion and we believe that it
provides a useful complement to traditional modeling of hair ani-
mation by artists. However, as any technique dealing with complex
real-world data, there are limits to what our method can cope with.
Our system is not intended to recover individual real-world hair
fibers, but rather to provide a set of strands that follow the orienta-
tion and motion of the real-world performance. With this (already
limited) goal in mind, we have observed the following limitations
on our results:

• Reconstruction error. In the results we do notice that a recon-
struction error emerges consistently during the sequence due to
the ambiguity of matching strands and less accuracy in the areas
near grazing angles.

• Temporal incoherence at the fiber level. Although coherent seed
point propagation and temporal filtering to the orientation field
and hair envelope geometry improves the overall temporal co-
herence, we cannot ensure temporal coherence on the hair fiber
level and we can still observe jittering in the sequence with
highly dynamic wavy and curly hair patterns.

• Hair fiber topology. We currently use a hair synthesis method to
generate hair fibers from sampled seeds within the hair volume,
and it is not guaranteed to reflect the true orientation and con-
nectivity of the captured hair strands. In particular, we do not
generate full hair strands from the scalp.

PMVS + Poisson Beeler et al. '10 our method

Figure 14: Comparison between our method and other state-of-
the-art multi-view stereo methods: PMVS [Furukawa and Ponce
2010] + poisson surface reconstruction [Kazhdan et al. 2006] and
[Beeler et al. 2010]

2-view reconstruction 4-view reconstruction

Figure 15: Comparison between 2-camera and 4-camera system.

Conclusion We have introduced a comprehensive system for ac-
quisition and reconstruction of dynamic human hair performances,
demonstrating that multi-resolution orientation filters enable multi-
view stereo reconstruction of hair, which in turn allows for the syn-
thesis of complex hair in motion. We see our approach as a first
important step towards the goal of obtaining hole-free and error-
free reconstructions of a complete moving hairstyle, a goal that will
require substantial future investigations due to the immense com-
plexity of the geometry, appearance, and motion of human hair.

Beyond improving the accuracy and efficiency of our system,
and addressing the limitations discussed above, we envisage other
interesting future work at the interface between acquisition and sim-
ulation. For example, our data could be used to drive a detailed hair
simulation with realistic constraints and initial conditions, while the
simulation would provide smoothness priors, allow the user to make
edits, and most importantly fill in portions of the hair animation
that cannot be observed in a given capture session. Integrating our
framework with other performance capture systems for face or body
acquisition is another interesting avenue for future work.
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Articulated mesh animation from multi-view silhouettes. ACM
Trans. Graph. 27, 3 (August), 97:1–97:9.

VLASIC, D., PEERS, P., BARAN, I., DEBEVEC, P., POPOVIĆ, J.,
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