
Eurographics Symposium on Rendering 2012
Fredo Durand and Diego Gutierrez
(Guest Editors)

Volume 31 (2012), Number 4

Gamut Mapping Spatially Varying Reflectance with an
Improved BRDF Similarity Metric

Thiago Pereira and Szymon Rusinkiewicz

Princeton University

Abstract
Recent spatially varying reflectance (svBRDF) printing systems can reproduce an input document as a combi-
nation of matte, glossy and metallic inks. Due to the limited number of inks, this reproduction process incurs
some distortion. In this work, we present an svBRDF gamut mapping algorithm that minimizes distortions in the
angular and spatial domains. To preserve a material’s perceived variation with lighting and view, we introduce
an improved BRDF similarity metric that builds on both experimental results on reflectance perception and on
the statistics of natural lighting environments. Our experiments show better preservation of object color and high-
lights, as validated quantitatively as well as through a perceptual study. As for the spatial domain, we show how to
adapt traditional color gamut mapping methods to svBRDFs. Our solution takes into account the contrast between
regions, achieving better preservation of textures and edges.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Reflectance, gamut mapping

1. Introduction

While most real-world materials exhibit a variety of ap-
pearances ranging from diffuse to glossy to metallic, tra-
ditional printing methods can only reproduce grayscale or
color images. Motivated by advances in printing technolo-
gies, recent work has shown how to create physical re-
productions of materials with angular dependent effects.
These include opaque materials [MAG∗09], but also translu-
cent ones [DWP∗10, HFM∗10]. In these works, the authors
note that practical applications require goal-based printing
pipelines, i.e. the user should only specify the output appear-
ance instead of how much ink or material is to be used in
each place. For instance, Matusik et al. [MAG∗09] describe
a reflectance printing system in which the user inputs a spa-
tially varying bidirectional reflectance distribution function
(svBRDF) [NRH∗92], and the system finds the proper com-
bination of inks of different reflectances through halftoning.

However, one challenge in traditional printing is also
present in goal-based reflectance printing: gamut mapping
[Mor08]. Any printer has only a few different inks available,
and it is not possible to achieve exact reproduction of input
documents. These distortions may be in the angular dimen-
sion (e.g. highlights are not broad enough) or in the spatial
dimension (e.g. edges have reduced contrast). In this work,
we address the problem of svBRDF gamut mapping: finding

Figure 1: We address the problem of mapping a BRDF to a
constrained gamut, such that it is close according to some
similarity metric. Our metric (right) achieves better repro-
ductions of the target material (left) when seen inside natu-
ral lighting environments compared to Matusik et al. (middle
left) [MAG∗09] and Pellacini et al. (middle right) [PL07].

the best possible approximation to an input svBRDF in the
reproducible set of the printer, i.e. the printer’s BRDF gamut.

While a large literature exists for image gamut mapping
[Mor08, CIE04, LHM11, KSES05], these algorithms cannot
handle the angular effects of svBRDFs. To minimize angu-
lar domain distortion, it is possible to use a BRDF similarity
metric [PFG00, NDM06, PL07]. Matusik et al. [MAG∗09]
used a metric that optimizes reproduction for point light vi-
sualization, which does not necessarily lead to good repro-
ductions under natural environments. The distortion can be
significant, specially for metals and specular materials. In-
spired by the statistics of lighting environments [DLAW01],
we propose a metric based on a new synthetic environment
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that correlates well with natural environments. We show that
using this metric reduces perceptual distortion (Figure 1).

In addition, previous work has ignored the spatial arrange-
ment of BRDFs, which may lead to loss of contrast in edges
and texture. Finding a method that preserves the contrast
between BRDFs and scales to the size of svBRDF datasets
is a challenge. We have adapted recent gamut mapping ap-
proaches [KSES05,LHM11] and show how they perform on
svBRDF datasets.

Our method has applications beyond reproduction. For in-
stance, it could fit parametric models to captured svBRDFs.
In addition, our metric could be used to achieve more percep-
tually accurate svBRDF decompositions [LBAD∗06] and in-
teractive edits [PL07].

Our main contributions are:

• An improved perceptual BRDF similarity metric based on
a new synthetic lighting environment that correlates with
natural environments (Section 4). We validate it through
gamut mapping experiments and a perceptual user study.
• An adaptation of an image gamut mapping algorithm for

svBRDFs. Our solution builds on our metric for cluster-
ing and optimal projections, but also takes the spatial ar-
rangement of the BRDFs into account (Section 5). Our
experiments show this method better preserves textures
and edges (Section 6).

2. Related Work

BRDF similarity metric: An important part of an svBRDF
gamut mapping system is its BRDF metric. Pellacini et
al. [PFG00] proposed a perceptually uniform reparametriza-
tion of the low-dimensional monochrome Ward BRDF space
based on a psychophysical study. Generalizing this work
to the high-dimensional space of real BRDFs, however,
would be impractical. This has led to the use of algorithms,
rather than explicit perceptual measurements, for determin-
ing BRDF similarity.

One approach are metrics that have an analytical expres-
sion, such as the L2-norm and the metric of Lawrence and
Pellacini [PL07], even though neither is perceptually in-
spired. Ngan et al. proposed a perceptual image-based met-
ric [NDM06] inspired by studies showing that humans are
best at judging reflectance when seen under natural environ-
ments [FDA01]. Therefore, they propose to compare BRDFs
by instead comparing environment-mapped rendered images
of spheres made of the materials (although [VLD07] argues
that more complex shapes are better for human perception).

However, Ngan et al. do not recommend a specific envi-
ronment to be used as metric. Our experiments show that this
choice can make a big difference. Matusik et al. [MAG∗09]
used a single point light as environment in their svBRDF re-
production system. While it leads to a simple metric, they
claim that the point light does not correlate well with natural

Figure 2: a) Reflectance inks from [MAG∗09] b) Rendered
sphere in our environment and its coordinate systems.

environments when testing on large datasets of BRDFs. Our
environment BRDF metric also follows this image-based ap-
proach, leveraging its corresponding perceptual results, but
in addition we introduce a synthetic environment for com-
paring BRDFs that is consistent with the statistics of natural
environments [DLAW01].

While a BRDF metric should be consistent with high-
level reflectance perception, it should also build on low-
level perception of color. For this, we use the CIELAB met-
ric [Fai05], even though other metrics could be used.

svBRDF gamut mapping: When mapping svBRDFs, it is
not enough to maximize similarity per pixel. Instead of a
reproduction that approximates the original in an absolute
sense, we should rather aim at relative reproduction of the
svBRDF, which aims at preserving edges and textures.

A good survey on color gamut mapping can be found in
[Mor08]. However, its unclear how to extend many color-
specific concepts that are central to these algorithms, such
as hue preservation, luminance remapping and black point
compensation. More recent developments, which we extend
to svBRDFs, are spatial gamut mapping algorithms. They
allow the same color to be mapped differently depending on
its spatial position by using signal processing [ZS07,FGR07]
or optimization methods [KSES05, LHM11].

In addition to spatial domain similarity, Guthe et al.
[GMSK09] also consider the angular domain and develop
a metric for Bidirectional Texture Functions. However, their
metric predicts just-noticeable differences, while we focus
on larger differences. The first work that focuses on large-
scale changes in the angular domain for svBRDF gamut
mapping was Matusik et al. [MAG∗09]. In this work, the
authors preserve spatial details by mapping material bases
in the svBRDF convex hull and preserving combination
weights. In their work, a BRDF is always mapped the same,
independently of its position. In contrast, we allow it to map
differently in order to preserve contrast.

Hersch et al. [HCE03] describe a reproduction system
with color and metallic inks and Stollnitz et al. [SOS98] with
multiple color inks. However, both works mainly focus on
predicting the appearance of a combination of inks while we
focus on minimizing perceptual BRDF distortion.

Other works gamut map materials with subsurface scatter-
ing appearance [DWP∗10, HFM∗10]. Due to the more lim-
ited availability of scattering inks, these works focus on re-
producing the achromatic characteristics of the materials.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



T. Pereira & S. Rusinkiewicz / Gamut Mapping Spatially Varying Reflectance with an Improved BRDF Similarity Metric

Figure 3: Scatterplots showing correlations between BRDF
similarity under different environments. Each plot considers
a pair of environments, with each point corresponding to a
pair of BRDFs. Its x and y coordinates are the distances be-
tween the materials as measured in both environments (so
that points closer to the diagonal indicate better agreement).
Our synthetic 1/ f environment is shown in the leftmost col-
umn: it has high correlation with the natural environments.

3. Reproduction Framework

Matusik et al. [MAG∗09] present a reflectance printing sys-
tem that receives an input svBRDF and maps it to the printer
gamut. We follow many of their assumptions about the print-
ing process. First, they capture the BRDFs of a variety of
ink stacks (e.g. a stack of cyan, yellow and silver foil ink
would yield a metallic yellow ink). In this work, whenever
we talk about inks, we refer to these stacked composites.
They also discuss how through halftoning a printer can gen-
erate any convex combination of its basis inks. In short, in
this work, we assume the printer gamut to be any convex
combination of their composite basis inks (Figure 2). As a
source gamut we use the MERL database [MPBM03], con-
taining a representative set of 100 BRDFs, and we consider
several svBRDFs captured in previous work [LBAD∗06].

We represent all these BRDFs as ρ(θh) curves: sam-
pled one-dimensional functions of the half-angle θh, de-
fined to be the angle between the surface normal and the
bisector of view and light direction [Rus98]. This bisec-
tor gives the direction a microfacet would need to be ori-
ented for perfect mirror reflection between light and ob-
server. Since our input svBRDF maps and the output inks
all have isotropic reflectance, this representation captures the
main visual features of these BRDFs, namely the color and
shape of the highlights. Its major disadvantage is that it does
not model phenomena such as retro-reflection and grazing-
angle effects. We find that previously proposed BRDF met-
rics performed well for some θh curves, but also disagreed
widely with human perception for others. For this reason, we
present an improved BRDF metric in the next section.

4. BRDF Similarity Metric

In this section, we present an improved environment-based
BRDF metric. Our metric builds on the idea of comparing
two BRDFs by comparing rendered images of objects hav-
ing the two BRDFs under natural environments [NDM06].
While it has been shown that humans can better perceive
reflectance when seeing complex shapes [VLD07], we fol-
low Ngan et al. [NDM06] and use simply the sphere shape,
which leads to a simpler metric. After rendering, we convert
each pixel’s color to the CIELAB color space and compare
the resulting images, taking an Lp difference pixel-wise. By
doing so, we model human color perception more accurately.

However, we find the result of this metric to depend on
the environment chosen. We designed a synthetic environ-
ment (subsection 4.1) that predicts well many natural envi-
ronments because it is inspired by experimental analysis of
natural environments. We propose its use as a reference for
comparing BRDFs. We also show (subsection 4.2) how to
find an analytical expression for our metric. In addition, we
discuss two important features of our metric: use of CIELAB
and choice of Lp-norm (subsection 4.3). Finally, we validate
our metric by applying it to the gamut mapping problem and
through perceptual user studies (subsections 4.4 and 4.5).

4.1. Synthetic Environment

In this subsection, we describe our proposed synthetic envi-
ronment, but first we present a comparison of multiple envi-
ronment metrics for the gamut mapping problem. We com-
pare the metrics induced by several reference environment
maps (beach, Grace, Uffizi, kitchen, St Peters) on three sets
of BRDFs: the APLS printer inks, the MERL database and a
set of synthetic Ward BRDFs [War92] with ks and kd rang-
ing from 0 to 1 (ks + kd ≤ 1) and roughness ranging up to
0.25. For each set, we compute pairwise similarities between
all pairs of BRDFs under one environment, then compare
the distances to those obtained using a different environment
map. Ideally, we would like the BRDF similarity values to
be consistent across different environments, in other words
to have perfect correlation. Indeed, on the inks dataset, the
correlation is quite high. However, for the MERL and Ward
datasets there are substantial differences: though there is still
a clear correlation between the results (Figure 3) using dif-
ferent environment maps, relative distances could vary by
well over a factor of 2. It is interesting to notice that the Uf-
fizi environment was most "typical" in the sense of agreeing
best on average with other environments. Grace was most
atypical. In conclusion, the environment-based metric is de-
pendent on the environment that is used.

Let us consider next the metrics induced by two synthetic
environments: a point light source at the camera and our new
proposed environment. The latter also has a singularity at the
pole, but has a heavy tail (Figure 3), with energy distributed
as 1/ tan(θ/2). It is motivated by the observation that real-
world environments tend to have total energy per frequency
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varying roughly as 1/ f [DLAW01] (sum of 2l +1 spherical
harmonics coefficients of energy 1/l2). This is achieved with
an environment having energy distributed roughly as 1/θ. We
actually choose 1/ tan(θ/2), so that the function goes to zero
as theta goes to π. We refer to this as the 1/ f environment
and its corresponding metric as the 1/f metric.

In our experiments with the nine Debevec environments,
we found significant greater variance in energy distribution
than is acknowledged in previous work [FDA01,DLAW01].
While we also find the mean energy per spherical harmonic
coefficient to be 1/l2, the exponents range betwen 1.5, 2 (St.
Peters, Galileo), 2.1 (1/ f environment) up to 3 and 4 (Uffizi,
Beach). Any environment that we pick is a compromise and
we must evaluate how it agrees with others as a metric.

Comparing the BRDF metrics induced by point and 1/ f
to those of real environments, we find that they all have high
correlation on inks. On Ward and MERL, the point light
source is worse than any real environment, while the 1/ f
environment is comparable (Figure 3). In particular, it has
high agreement with beach. This is easy to understand, since
beach has essentially a major source of light, i.e. the sun,
but also a radial falloff as light scatters off the sky. The con-
clusion is that the analytic 1/ f environment does about as
well as any real environment, plus it is radially symmetric
(leading to faster evaluation).

For gamut mapping applications, we can replace any met-
ric by its composition with an increasing function. There-
fore, one could argue that correlation between metrics is
not an appropriate measure of similarity between metrics.
For this reason, we additionally ran all our correlations ex-
periments using Spearman’s correlation. This is a correla-
tion function that is invariant to composition with increasing
functions. While some details do change, our conclusions
are essentially the same.

One important advantage of the 1/ f environment is its
symmetry. In the next section, we show how it can be used
to find an analytical expression for our metric.

4.2. Expression in Half-Angle Coordinates

In this section, we exploit the symmetry of our proposed en-
vironment and the symmetry of our chosen BRDF represen-
tation of θh curves to find an analytical expression for our
metric, which can be used as an alternative to actually ren-
dering the images. This expression is easier to plug in opti-
mization methods. The process of computing the 1/ f met-
ric on θh curves is complex, since it requires a full spherical
convolution. Let us now derive our metric equation and show
how to precompute these convolution weights.

We start from the illumination equation to calculate the
image we would obtain by rendering a sphere of constant
BRDF described by a θh curve under any radially symmetric
environment. Given two different BRDFs, we can integrate

the Lp difference of their images. We assume that both the
viewer and the environment’s symmetry center are in the up
direction (Figure 2). Parameterizing the sphere with θo,φo,
we can see that radiance arriving at the eye from the sphere
only depends on θo. Using the area element of the projected
sphere in this parametrization and simplifying:

d(ρ1,ρ2)

2π
=

∫ π/2

0
dc(I1(θo), I2(θo))

p sinθo cosθodθo, (1)

where dc is any color space metric. At this point, we look
into the spherical convolution that results in the rendered im-
age I(θo). This means we now integrate over incident light
directions ωi for a fixed θo value. We denote the viewer di-
rection in the incident hemisphere’s coordinate system ωo.
The outgoing light in this direction can be calculated by the
following integral I(θo) =

∫
f (ωi,ωo)E(ωi)cosθidωi. Inte-

grating instead in the θh,φh coordinates [Rus98] where the
BRDF is a function of a single variable ρ(θh):

I(θo) =
∫

ρ(θh)E(ωi)cosθi

∣∣∣∣∂ωi

∂θh
× ∂ωi

∂φh

∣∣∣∣dφhdθh. (2)

We can precalculate all that does not depend on the BRDF:
I(θo) =

∫
A(θo,θh)ρ(θh)dθh. We now make the expression

of the function A more explicit. For our setup, we know
that ωo is in the z-direction (Figure 2) and we rewrite
the environment E(ωi) = E(6 (ωi,ωo)) = E(2θd). We also
know that cosθi = ω

z
i and from the definition of h: cosθi =

2cosθd cosθh − cosθo. We also need the θh,φh area ele-
ment [Ren50]. In addition, by solving cosθi > 0, we find the
range of integration of φh to be [−cos−1K,cos−1K], where
K =−cotθo cot2θh. Substituting, we obtain A(θo,θh) =

4sinθh

∫
E(2θd)(2cosθd cosθh− cosθo)cosθddφh.

We believe that it is not possible to obtain a closed-form ex-
pression for this integral for our environment. For this rea-
son, we discretize and precalculate A(θo,θh) numerically. In
conclusion, these weights let us compute I(θo) as a matrix-
vector multiplication, which is easier to discretize and opti-
mize. This formulation, lets us evaluate our metric in 3 ms in
MATLAB. Our equivalent implementation rendering using a
modern graphics card and BRDF importance sampling, but
no symmetry, takes 120 ms. This speed up becomes crucial
when processing svBRDFs.

4.3. Color and Image Comparison

We use the CIELAB color metric (D50 illuminant) since it
builds on perceptual experiments on human color percep-
tion. While the RGB Euclidean metric could be used, our
experiments find this solution to be inappropriate. In many
cases, the RGB metric leads to incorrect hue, which can hap-
pen for both diffuse and glossy materials (Figure 4-d).

The integral in Equation 1 of our metric is essentially a
simple image comparison metric. While we could have used
more complex image metrics [WBSS04], the simpler choice
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(a) L2
θh

with CIELAB vs Ours (b) Ours L2 vs Ours L4 (c) Ours L2 vs Ours L4

(d) Ours RGB vs Ours CIELAB (e) Point CIELAB vs Ours (f) Point CIELAB vs Ours

Figure 4: These comparisons display the target material (left) and the result with our metric (right). Our BRDF metric is built
on four main ideas. First, that BRDFs should be compared through their rendered images in lighting environments. Image a)
shows a reproduction using L2-norm in θh-space with CIELAB color comparison. Our result preserves the hue. Second, that
color comparisons should be performed using a perceptual color metric. Image d) middle shows the results of our metric using
RGB space. Third, that to preserve highlights, the integration over angle should be performed as an L4 norm. Middle of images
b) and c) show our metric using L2 instead, which results in blurred highlights. Finally, that BRDFs should be compared in the
1/ f environment. For comparison, images e) and f) middle present the result using the point light metric [MAG∗09].

of an Lp norm was favored. We experimentally chose p = 4.
Compared to L2, the L4 norm gives less weight to small pixel
errors and more weight to large errors. This is consistent
with image perception by humans, since we are very tolerant
of small changes in the mean intensity of an image.

Experimenting with gamut mapping, we find the high-
lights to be particularly sensitive to changes in p. Figure
4-b,c shows a comparison of reproductions using p = 2,4.
The highlights are sharper with L4, while the overall colors
barely changed. While highlights continue to improve for
higher values of p, this leads to deviations in diffuse color.

4.4. BRDF Mapping Results

Having fully described the proposed BRDF metric, we now
present comparison to previously proposed metrics using
gamut mapping experiments. The images shown next are
the result of solving a gamut mapping optimization prob-
lem. The mapping of a BRDF y onto the gamut of a set of
inks W using the metric d can be written as:

min
x

d(Wx,y)

s.t. x≥ 0,∑xi = 1.

where Wx is a convex combination of the columns of W , i.e,
Wx is any ink in the gamut defined by the convex hull of our
basis inks. This is a non-linear optimization problem when
using the CIELAB metric, but is a simpler quadratic prob-
lem in the RGB case. While most previous methods have not
used the CIELAB metric for color comparison, we chose to
implement them with CIELAB for a more fair comparison.
We next show a comparison between ours and the L2

θh
, point

and cosine metrics. We discuss how they compare under dif-
ferent environments and gamuts.

We begin by showing gamut mapping results using the L2
θh

norm:
∫ π/2

0 dc(ρ1(θh),ρ2(θh))
2dθh where dc is the CIELAB

metric. As can be seen in Figure 4-a, even when using the
CIELAB metric, this simple L2

θh
metric fails to reproduce

hue in many cases. The main drawback of this metric is that
it does not compare BRDFs under any kind of lighting en-
vironment. The extreme mistakes above can be avoided by
using an environment metric such as the point light. How-
ever, as we show below, our proposed metric can still achieve
better results compared to the point light metric (Figure 5).
The reason behind these results, as we saw earlier, is the low
correlation between natural environments and the point light.
In Figure 5, we show the exact same materials illuminated
under a point light. The point metric indeed results in more
similar materials when seen under point lighting.

We show many different cases where our metric achieves
improved results. In Figure 4, our main advantage is the cor-
rect overall color. In other cases, as in Figure 5, the improve-
ment is in the highlight color and sharpness: notice how our
reproduction shows the reflection of the buildings.

We also compare our metric to the weighted cosine met-
ric [PL07]. We implemented it in RGB space because it led
to a simpler quadratic optimization problem. Therefore, it is
only fair to compare to our metric for gray materials. Our ex-
periments show that this metric behaves similar to the point
CIELAB metric. They both give too much weight to the
highlights and tend to miss the overall color (Figure 1).

Overall, for our mapping experiments on the MERL
database, our metric leads to less perceptual distortion when
the materials are seen under natural environments like beach,
kitchen and Uffizi. As for Grace and St Peters, the point light

c© 2012 The Author(s)
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Figure 5: We achieve better reproductions under natural en-
vironments like Uffizi and beach, while the point metric is
better under point and Grace. However, a detailed analysis
(dashed lines) of Grace shows that in regions dominated by
an area light, our proposed metric is better. Within each set:
target (left), point (middle) and our metric (right). From top
to bottom: visualization under Uffizi, point and Grace. We
clip high intensity pixels.

Figure 6: Restricted to a diffuse gamut, our metric (right)
preserved the color, as opposed to the point metric (middle).

metric results in less perceptual distortion on average (Fig-
ure 5). This can be understood because these environments
are composed of a large collection of distinct point lights.
However, in regions where the environment is an area light,
our metric more closely matches the original (Figure 5).

These results show that our metric can achieve good re-
productions of the MERL materials on the inks gamut. It
appears that most noticeable artifacts still left are a result of
gamut limitations, e.g. the inks gamut does not include very
diffuse materials, very glossy materials or very dark materi-
als. We push these limitations further by removing the basis
BRDFs that used silver or gold foil inks in their composition
(columns 4,6,10 and 12 in Figure 2), which are necessary to
approximate some metallic materials. We show results when
mapping aluminium, but we observe similar behavior with
many metallic materials. In Figure 7, we can see how our
metric prefers a reconstruction with a broad highlight, which
is certainly far from the target due to gamut limitations. The
other metrics prefer a very dark reconstruction in order to
have a sharper highlight. In these extreme trade-offs it is not
so clear what is desirable, but, in our opinion, our repro-
duction was more faithful. Even only using diffuse inks, our
metric can still create a reasonable reproduction (Figure 6).

Figure 7: If we do not employ foil inks, we cannot reproduce
aluminium (left). The L2

θh
and point light metrics (middle)

preferred dark results in order to have a sharper highlight.
Our metric (right) preferred a broader highlight.

Figure 8: User interface used in our perceptual user studies.

Our comparisons to previous metrics under different en-
vironments and gamuts have shown the improved perceptual
quality of our metric. To further validate it, we ran two per-
ceptual user studies.

4.5. Perceptual Studies

We designed two perceptual studies to compare the perfor-
mance of our solution to two other metrics in the gamut map-
ping problem. For each study, we used a different selection
of materials from the MERL database. Our selected gamut
was the same set of BRDF inks discussed in previous sec-
tions. We chose three representative environments based on
our previous correlations analysis: beach, Uffizi and Grace.

Both studies use an interface (Figure 8) where the tar-
get material is presented in the middle and mappings with
two different metrics are presented at the sides. The subjects
are asked to select which of the mappings is more similar
to the middle one. In addition, we also give them the op-
tion “Equally similar”. By clicking and holding the mouse
button, the user can temporarily observe the left and right
images swapped. This overlaying makes it faster to observe
some of the appearance differences. We also randomize left
and right. This kind of perceptual study retains the disadvan-
tage of the study of Pellacini et al. [PFG00], i.e. only images
are compared instead of the actual physical material.

We recruited 16 subjects between 21 and 37 years old.
There were 11 males and 5 females. Some of the subjects
participated in both studies. The average session took 25
minutes with 9 seconds per question. All the sessions were
performed on the same calibrated display. Each sphere dis-
played occupied roughly 3.5 degrees of visual angle.

In our first experiment, we compare our metric to the point
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Ours preferred over Uffizi and Beach Grace
point CIELAB 73% 41%
cosine RGB 74% 67%

Table 1: Frequency with which the 1/ f metric is preferred.
Statistical significance p < 0.05 for ±5% confidence.

light CIELAB metric. A share of the MERL database lies
inside the inks gamut. Since, for these cases, both metrics
yield essentially the same results, we decided to focus on
out of gamut materials. For this purpose, for each environ-
ment, we calculate CIELAB pixel differences between the
two mappings. For beach/Uffizi/Grace, we discard material
environment pairs where the average pixel color difference
is less that 1/1/1 JND (just noticeable difference) and max-
imum less than 3/3/6 JND. We believe these thresholds are
conservative because 50% of the materials remain and sub-
jects find that many materials are still similar. A total of 153
questions are equally distributed among environments.

We observe that in this setting only 14% of the responses
were ‘Equally similar’. This means that our subjects found
significant enough differences between the two metrics to
justify a selection. We also observe that our subject popu-
lation was rather consistent among themselves. On average,
only 14.5% of the responses were the opposite of the major-
ity (e.g. majority prefers metric A and response prefers B).
In addition, we found this majority is usually significant: on
average 75% of the subjects agree on a choice. The consis-
tency of this population leads us to believe that the observed
preferences are generalizable to a larger population.

For the beach and Uffizi environments, we find that in
most cases where subjects have a preference they prefer our
metric compared to the point metric. It was chosen 73% ±
2% (p < 0.05). For the Grace environment, they prefer our
metric in only 41% ± 3.5% (p < 0.05). These results are
consistent with our discussion in the previous section.

In our second experiment, we compare our metric to an
RGB implementation of the cosine metric [PL07]. Since
we are comparing against an RGB implementation, we re-
stricted our study to only approximately monochrome mate-
rials in the MERL database, not necessarily out of gamut.
This study consisted of 35 materials for a total of 105
questions equally distributed among the three environments.
Since many materials are in gamut, we observed a higher
rate of ‘Equally similar’ responses 31%. We again observed
a consistent population, only 8% of the responses are the op-
posite of the majority opinion. Even though the target mate-
rials are monochrome, the mappings with the cosine metric
often result in some chroma. This led to users preferring our
metric in 74%±4% (p < 0.05) of the questions for Uffizi and
beach and 67%±6% (p < 0.05) for Grace.

All these results demonstrate a frequent preference for
our metric. This preference is also considerable, which is
attested by the non-forced choice nature of our study.

5. svBRDF Mapping

After finding improved BRDF mappings, we now consider
multiple BRDFs per image, i.e. an svBRDF. Possibly the
simplest approach to svBRDF mapping is to consider each
pixel’s BRDF in isolation and map it to the closest in gamut
BRDF. This approach is known as clipping. Another ap-
proach is the convex compression solution presented in Ma-
tusik et al. [MAG∗09]. In their work, they represent each
BRDF in the document by a convex combination of basis
BRDFs. They choose the basis near the convex hull of the
source gamut, so that, when these are mapped, all the other
BRDFs are compressed inside the destination gamut as well.

Both of these methods have advantages and drawbacks.
Clipping has the property that it does not change materi-
als that are already in gamut. However, it can lose spatial
details in regions of the svBRDFs where all pixels map to
the same in-gamut color. Convex compression can introduce
large changes even to in-gamut colors, which leads to a loss
of global contrast. In cases where multiple basis clip to the
same point, compression also leads to loss of details.

To overcome these limitations, we have adapted two al-
gorithms [KSES05, LHM11] from the spatial gamut map-
ping literature. Both techniques use optimization to preserve
point-wise BRDF similarity and their spatial differences.
They can be written in the following general form:

min
xp

∑
p∈V

d(Wxp,yp)+α ∑
(u,v)∈E

d(Wxu−Wxv,yu− yv)

s.t. xp ≥ 0,∑xi
p = 1,∀p ∈V.

where xi
p are all the ink weights associated with vertex p, yp

is the target BRDF at vertex p and W is the gamut matrix
as described in the previous section. Our objective function
is non-linear because similarity is measured using our envi-
ronment metric d. In fact, clipping can also be written in this
general form by setting α = 0.

The major difference between these two algorithms is how
to define the sets of vertices V and edges E. The first is
the gradient-based method [KSES05]. It aims at preserving
spatial gradients (i.e. difference between neighboring pix-
els). In other words, choose V to be the set of pixels and
E to be the edges in all four neighborhoods. While this so-
lution does manage to achieve a balance between clipping
and compression algorithms, often having the advantages of
both, it also suffers from two major drawbacks. It creates
halo artifacts around strong edges (Figure 9). Even though
halo could be improved with sparse gradient norms, this so-
lution is also very slow, on the order of an hour for a 30 by 30
image. Compared to gradient reconstruction methods, this
problem is harder because it is non-linear and constrained,
which renders common speed-up techniques inapplicable.

A solution to these two problems is preserving the con-
trast between regions instead of pixels. This fixes halo be-
cause it focuses the optimization at preserving significant
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contrasts, as opposed to all pixel differences. In addition,
there is a major speed-up since the number of variables be-
comes much smaller, proportional to the number of regions.

This method is similar to the optimization based algo-
rithms of Lau et al [LHM11]. It consists of four parts:
clustering, optimization, interpolation and clipping. First, it
starts by clustering the pixels into regions defined by BRDF
and spatial distance with k-means. Clustering is performed
in the perceptual space implied by our metric appended by
the two spatial coordinates. In other words, we use the I(θo)
curves in CIELAB space weighted by

√
cosθo sinθo as our

feature vectors. Second, the same optimization above is ap-
plied by taking V to be the cluster BRDF means and E to
be neighboring clusters. This procedures preserves the dif-
ferences between adjacent regions. Third, we add back the
details. The simplest way would be to add the displacement
between the mapped and source cluster material to all the
other pixels in this cluster, but this may lead to artifacts at
clustering boundaries. To avoid this, we follow the approach
of Lau et al. [LHM11], in which the authors interpolate the
displacement vectors Wxp−yp based on the inverse distance
to each cluster center. Finally, to ensure that the image is in
gamut, we run a final clipping step. This whole process has
the advantage of good global contrast as a result of the opti-
mization but also good preservation of details. We will refer
to this method as the cluster-based solution.

In conclusion, clipping and convex compression fail to
preserve contrast and edges. The gradient and cluster-based
methods do a good job at preserving contrast, but only the
cluster-based scales to the size of svBRDF datasets. Next
section shows results that support these claims.

6. svBRDF Results

To compare these methods, we present three simple but chal-
lenging use cases. We use the same gamut in all cases: the
convex combinations of the diffuse and specular inks shown
in Figure 9-a. The metallic ink also shown in this figure is
out of gamut and is mapped to the specular ink by our metric.
Each svBRDF is a horizontal gradient of two of these three
materials (Figure 9). We choose to visualize them wrapped
around cylinders because they are isometric to the document
plane, but let us see multiple orientations in one single im-
age. As a result, in a single cylinder any left to right variation
is due to material change while top to bottom variations are
caused by illumination. The number of clusters and α are
inputs to the algorithm (values used are shown in captions).

In the first column, the input cylinder (top) is completely
out of gamut: a gradient between specular and metallic. Both
convex mapping and clipping lose all spatial variation. Gra-
dient and cluster preservation preserve the spatial variation
by using some diffuse ink on the left. The second input cylin-
der is only half out of gamut: a gradient with noise added
to the combination weights. Convex compression preserves

(a) Left and middle define the gamut. Right is out of gamut.

Figure 9: Comparison of four svBRDF gamut mapping al-
gorithms. Each column shows the mappings of a different
cylinder. The target (above green line) is mapped using con-
vex compression (first below green line), clipping (second),
gradient preservation (third) and the cluster-based solution
(bottom). Only the cluster-based solution works in all cases.

the gradient variations, but compresses the details. Clipping
perfectly reproduces the left half of the cylinder, but loses
all variations in the right half. Again, gradient and cluster
preservation achieve good reproductions. Our third case is a
simple edge between out of gamut materials. Convex com-
pression and clipping lose the edge. Gradient preservation
preserves the edge but leads to halo artifacts. The cluster-
based solution preserves the edge without halo. Overall, the
cluster-based method gives good results in all cases.

We also ran experiments on the svBRDFs from Lawrence
et al. [LBAD∗06]. We found the full set of 57 inks to result in
very good reproductions for this svBRDF dataset. To create
more challenging cases, many of the experiments presented
include gamuts with a reduced number of inks, gamuts with
darker inks or svBRDFs where we retained the spatial vari-
ations but replaced the basis materials.

In Figure 11, all inks were scaled by 90% and we also
mixed 25% diffuse white into all pixels to move the image
more out of gamut. In the middle, we show how clipping
can lead to total loss of edges. On the right, the cluster-based
method can recover the contrast and make the edges visible
again at the cost of worse matching of specularity.

As another example, we replaced the basis materials for
the wheel. Our target appearance is made of a convex combi-
nation of brass, mapped brass and perfect black (Figure 13).
Combinations of mapped brass and brass are projected to the
same material. This leads to a strong loss of texture when
using the simple clipping method. For both the wheel and
the season greetings card, the convex compression method
of Matusik et al. [MAG∗09] would lead to similar results to
clipping because these are cases where multiple basis mate-
rials are mapped to the same place.

The target in Figure 10 is a combination of copper and
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Figure 10: The clipping output is closer to the target (left)
but loses global contrast. The cluster-based result (right) is
darker in the red region enhancing the contrast. Visualized
with our environment (top triangle) and point light (bottom).
Generated with α = 50 and 25 clusters.

Figure 11: Clipping (middle) can lead to total loss of edges
from the target (left). In this case, the cluster method can re-
cover the contrast and make the edges visible (right) at the
cost of worse matching of specularity. Visualized with our
environment (top triangle) and point light (bottom). Gener-
ated with α = 250 and 10 clusters.

brass, both out of gamut. The clipping output is closer to the
target but loses the contrast between red and yellow regions.
The cluster-based method leads to a darker reproduction, but
recovers the contrast. It preserves the specularity of the in-
put, which is only possible by using the gold and silver foil
inks. This explains the reproduction’s lack of red.

As a final example, we studied the behavior of our met-
ric with progressively restricted gamuts (Figure 12) using
the clipping method. The target dove (first column) is well
reproduced by the full gamut (second column). In the third
column, we removed the metallic inks. This led the system
to use the foil inks, which are more specular than desired.
For the fourth column, we removed both metallic and foil
inks. The result still shows a very narrow highlight from the
inks that include a finish layer. The fifth column displays the
svBRDF clipped using only the diffuse inks. Some specular-
ity can still be seen since these are not perfectly diffuse.

7. Implementation Details

Discrete metric: Discretizing our metric is straightforward.
All functions of θh and θo become vectors by sampling the
angles uniformly and transforming the integrals into summa-
tions. Equation 2 defines a linear mapping between the space
of θh curves and the space of θo curves, which we write in
vector notation as: I =Aρ. Each of its entries is precalculated
by numerical integration. Our metric can be computed by

Figure 12: On the left we show the target svBRDF, which
is well reproduced by the inks (second column). In the third
column, we show the result using a gamut without metallic
inks. In the fourth column, we further remove the foil inks.
Finally, we show the projection on a diffuse gamut. Top row
shows the dove visualized with the point light environment,
bottom row with a 1/ f environment.

Figure 13: The cluster-based method (right) preserves tex-
ture, while clipping destroys it (middle). Generated with
α = 1.25 and 25 clusters.

applying this matrix to the reflectance vectors, transforming
the result to CIELAB and replacing the image space integral
by a weighted summation.

Optimization: We implemented the BRDF gamut mapping
process using an interior point method available through
MATLAB’s fmincon function. Because of the CIELAB
non-linearity, our metric is a non-convex function. However,
in practice, we did not observe local minima. We initial-
ize the algorithm with a uniform combination of all inks.
All the svBRDF algorithms were also implemented using
the interior-point method in MATLAB. All are initialized
with uniform inks. Most of the implementation details of the
cluster-based method can be found in Lau et al. [LHM11],
but there are two major differences that we find necessary
to make this solution practical for svBRDFs. First, in their
work, they formulate this problem with a quadratic objective
function subject to non-linear gamut constraints. Instead, we
chose to formulate the non-linear objective function but lin-
early constrained problem. Second, even though projecting
a single BRDF to a gamut of 57 inks takes only 2 seconds,
we find it computationally prohibitive to simply project all
pixels in our final svBRDF clipping step. Instead we quan-
tize the input svBRDF with a large number of clusters (on
average 400) using k-means. We only project the centers of
these clusters. We visually inspected all images to make sure
this quantization step is introducing negligible distortion.
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8. Conclusion and Future Work

We presented a new gamut mapping algorithm for svBRDFs.
We have shown how a synthetic environment can lead to a
simple metric, but still agree with most natural environments
resulting in perceptually accurate reproductions, including
material color and highlights. We have also adapted some
existing image gamut mapping methods to the svBRDF con-
text. We show how the cluster-based solution leads to good
preservation of textures and edges, avoids halo artifacts and
scales well to size of the svBRDFs.

One limitation of our approach is that we restricted the
BRDF to depend only on θh. Therefore, we cannot represent
retro-reflection, grazing-angle and anisotropic appearance.
An interesting question is how to approximate anisotropic
by isotropic BRDFs. In addition, our method is limited to
svBRDFs, in which all interaction happens at the surface.
We would like to extend our metric to scattering materi-
als. Another future direction is extending our methods to
svBRDFs on height maps or even 3D surfaces, allowing its
application in 3D printing.
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