
Hybrid Sort-First and Sort-Last
Parallel Rendering with a Cluster of PCs

RudrajitSamanta,ThomasFunkhouser, Kai Li, andJaswinderPal Singh
PrincetonUniversity

Abstract

We investigatea new hybrid of sort-first and sort-lastapproach
for parallelpolygon rendering,using as a target platform a clus-
terof PCs.Unlikepreviousmethodsthatstaticallypartitionthe3D
modeland/orthe2D image,ourapproachperformsdynamic,view-
dependentandcoordinatedpartitioningof both the3D modeland
the2Dimage.Usingaspecificalgorithmthatfollowsthisapproach,
weshow thatit performsbetterthanpreviousapproachesandscales
betterwith bothprocessorcountandscreenresolution.Overall,our
algorithmis ableto achieve interactive framerateswith efficiencies
of 55.0%to 70.5%during simulationsof a systemwith 64 PCs.
While it doeshave potentialdisadvantagesin client-sideprocess-
ing and in dynamicdatamanagement—whichalsostemfrom its
dynamic,view-dependentnature—theseproblemsarelikely to di-
minishwith technologytrendsin thefuture.

Keywords: Parallelrendering,clustercomputing.

1 Introduction

Theobjectiveof our researchis to investigatewhetherit is possible
to constructa fastandinexpensiveparallelrenderingsystemlever-
agingthe aggregateperformanceof multiple commoditygraphics
acceleratorsin PCsconnectedby asystemareanetwork. Themoti-
vationsfor thissystemarchitecturearenumerous:

� Lower-cost: The price-to-performanceratio of commodity
graphicshardwarefarexceedsthatof custom-designed,high-
endrenderingsystems,andsomeinexpensivePCgraphicsac-
celeratorscanalreadydeliver performancecompetitive with
an SGI InfiniteReality while costing orders-of-magnitude
less. A systemcomposedonly of off-the-shelfcommodity
componentsproducedfor a massmarket costsfar lessthan
traditionalhigh-end,custom-designedrenderingsystems.

� Technologytracking: The performanceof PC graphicsac-
celeratorshave beenimproving at a ratefar beyondMoore’s
law for the last several years,and their developmentcycles
arevery short(six months)ascomparedto custom-designed,
high-endhardware(oneyearor more). Accessinghardware
components(PCgraphicsaccelerators)only throughstandard
softwareAPIs (OpenGL)makesit easyto replacethemon a

frequentbasisas fasterversionsbecomeavailable from any
hardwarevendor.

� Modularity & flexibility: Networkedsystemsin whichcom-
puterscommunicateonly via network protocols,allow PCsto
be addedandremoved from the systemeasily, andthey can
even be heterogeneous.Network protocolsalso allow spe-
cific renderingprocessorsto be accesseddirectly by remote
computersattachedto thenetwork, andtheprocessorscanbe
usedfor othercomputingpurposeswhennot in usefor high-
performancegraphics.

� Scalablecapacity: The aggregatehardware compute,stor-
age,andbandwidthcapacityof a PC clustergrows linearly
with increasingnumbersof PCs. SinceeachPC hasits own
CPU,memory, andAGPbusdriving a singlegraphicsaccel-
erator, the scalabilityof a cluster-basedsystemis far better
than a tightly-integratedgraphicsarchitecturewheremulti-
ple graphicspipelinessharea bus, memoryandI/O subsys-
tem.Also, whenusinga cross-barsystemareanetwork, such
asMyrinet [1], the aggregatecommunicationsbandwidthof
thesystemscalesasmorePCsareaddedto thecluster, while
thepoint-to-pointbandwidthfor any pairof PCsremainscon-
stant.

Themainchallengeis to developefficient parallelrenderingal-
gorithmsthatscalewell within theprocessing,storage,andcommu-
nicationcharacteristicsof aPCcluster. As comparedto traditional,
tightly-integratedparallelcomputers,the relevant limitations of a
PCclusterarethat theprocessors(PCs)do not have fastaccessto
a sharedvirtual addressspace,and the bandwidthsand latencies
of inter-processorcommunicationaresignificantlyinferior. More-
over, commoditygraphicsacceleratorsusually do not allow effi-
cientaccessthroughstandardAPIs to intermediaterenderingdata
(e.g.,fragments),andthusthedesignspaceof practicalparallelren-
deringstrategiesis severelylimited. Thechallengeis to developal-
gorithmsthatpartitiontheworkloadevenly amongPCs,minimize
extra work dueto parallelization,scaleasmorePCsareaddedto
thesystem,andwork efficiently within theconstraintsof commod-
ity components.

Our approachis to partition the renderingcomputationdynam-
ically into coarse-grainedtasks requiring practical inter-process
communicationbandwidthsusing a hybrid sort-first and sort-last
strategy. Wetakeadvantageof thepoint-to-pointnatureof asystem
areanetwork, employing a peer-to-peersort-lastschemeto com-
positeimagesfor tiles constructedwith a sort-firstscreendecom-
position.Themostimportantcontribution of our work is theparti-
tioningalgorithmthatweuseto simultaneouslydecomposethe2D
screeninto tilesandthe3D polygonalmodelinto groupsandassign
themto PCsto balancetheloadandminimizeoverheads.Thekey
ideais thatboth2D and3D partitionsarecreatedtogetherdynami-
cally in a view-dependentcontext for every frameof aninteractive
visualizationsession.As aresult,ouralgorithmcancreatetilesand
groupssuchthat theregion of thescreencoveredby any groupof
3Dpolygonsis closelycorrelatedwith the2Dtile of pixelsassigned

to thesamePC.In this case,relatively little network bandwidthis
required

�
to re-distribute pixels from PCsthat have renderedpoly-

gonsto thePCswhosetiles they overlap.
In this paper, we describeour researchefforts aimedat using

a clusterof PCsto constructa high-performancepolygonrender-
ing system.Weproposeahybridsort-firstandsort-lastpartitioning
algorithmthatboth balancesrenderingloadandrequirespractical
imagecompositionbandwidthsfor typical screenresolutions.This
algorithmis usedto drive a prototypesystemin which server PCs
renderpartialimagesindependentlyandthencompositethemwith
peer-to-peerpixel redistribution. We report the resultsof simula-
tionsaimedat investigatingthescalabilityandfeasibilityof thisap-
proachandevaluatingalgorithmictrade-offs andperformancebot-
tleneckswithin suchasystem.

Thepaperis organizedasfollows. Thefollowing sectionreviews
previouswork in parallelrendering,while Section3 discussespo-
tential partitioningstrategies for our system. Section4 gives an
overview of ourapproach.Thedetailsof ourhybrid loadbalancing
algorithm are describedin Section5 followed by a communica-
tion overheadanalysisin Section6. Section7 presentsthe results
andanalysisof simulationswith our algorithmcomparedto previ-
oussort-firstandsort-lastmethods.Section8 discusseslimitations
andpossibleextensionsof our approach,while Section9 contains
abrief summaryandconclusion.

2 Previous Work

Previousparallelsystemsfor polygonrenderingcanbeclassifiedin
many ways:hardwarevs. software,sharedmemoryvs. distributed
memory, objectdecompositionvs. imagedecomposition,SIMD vs.
MIMD, sort-firstvs. sort-middlevs. sort-last,or functionalvs. data
vs. temporalpartitioning. See[6, 7, 17, 32] for moreon parallel
renderingtaxonomies.

Hardware-basedsystemsemploy customintegratedcircuitswith
fast, dedicatedinterconnectionsto achieve high processingand
communicationbandwidths.Earlyparallelrenderinghardwarewas
developedfor z-buffer scanconversion[9, 10, 24] andfor geometry
processingpipelining [3, 4]. Most currentsystemsarebasedon a
sort-middlearchitectureandrelyuponafast,globalinterconnection
to distributeprimitivesfrom geometryprocessorsto rasterizers.For
instance,SGI’sInfiniteRealityEngine[18] usesafastVertex Busto
broadcastscreenspacevertex informationfrom semi-customASIC
geometryprocessorsto ASIC rasterizationprocessors.The main
drawbackof thehardwareapproachis thatthespecial-purposepro-
cessorsandinterconnectsin thesesystemsarecustom-designedand
thereforevery expensive,sometimescostingmillions of dollars.

Software-basedsystemshave beenimplementedon massively
parallel architectures,such as Thinking Machines’ CM-5 [23],
BBN’sButterflyTC2000[33], Intel’sTouchstoneDeltasystem[8],
and SGI’s Origin 2000 [14, 30]. Unfortunately, tightly-coupled,
scalableparallelcomputersarealsoexpensive, andsincethey are
typically designedor configuredfor scientificcomputationsandnot
for graphics,the price-to-performanceratio of puresoftwareren-
deringis notcompetitive with currentgraphicshardware.

Relatively little work hasbeendoneon interactive polygonren-
deringusingaclusterof networkedPCs[13, 28, 29]. Traditionally,
the latency andbandwidthsof typical networkshave not beenad-
equatefor fine-grainedparallelrenderingalgorithms.Rather, most
prior cluster-basedpolygon renderingsystemshave utilized only
inter-frameparallelism[13, 25], renderingseparateframesof an
imagesequenceon separatecomputersin parallel. Otherparallel
renderingalgorithms,suchas ray tracing, radiosity [11, 26], and
volumetric rendering[12] have beenimplementedwith PC clus-
ters. However, they generallyhave not achieved fast, interactive
framerates(i.e.,thirty framespersecond).Wearenotawareof any
prior systemthat hasachieved scalablespeedupsvia intra-frame

dataparallelismwhile renderingpolygonalmodelswith a network
of workstations.

Lastyear, Samantaet al. [28] describeda sort-firstparallelren-
deringsystemrunningonaclusterof PCsdriving ahigh-resolution,
multi-projectordisplaywall. In thatpaper, thegoalwasto balance
theloadamonga fixednumberof PCs(eight)eachdriving a sepa-
rateprojectorcorrespondingto part of a very largeandhigh reso-
lution seamlessimage.They focusedonsort-firstalgorithmsaimed
at avoiding large overheadsdueto redistribution of big blocksof
pixels betweenmultiple PCsdriving full-screenprojectors. The
methoddescribedin this paperis similar in concept.But, it uses
asort-lastimagecompositionschemeto achieve scalablespeedups
for largeclustersof PCsdriving asingledisplay.

3 Choosing a Partitioning Strategy

Thefirst challengein implementinga parallelrenderingsystemis
to choosea partitioningstrategy. Following thetaxonomyof Mol-
nar et al. [5, 17], we considersort-middle,sort-first,andsort-last
approaches.

In sort-middlesystems,processingof graphicsprimitivesis par-
titioned equallyamonggeometryprocessors,while processingof
pixels is partitionedamongrasterizationprocessorsaccordingto
overlaps with screen-spacetiles. This approachis best suited
for tightly-coupledsystemsthat usea fast,global interconnection
to sendprimitivesbetweengeometryandrasterizationprocessors
basedon overlapswith simpleand static tilings, suchas a regu-
lar, rectangulargrid. Usinga sort-middleapproachwould bevery
difficult in acluster-of-PCssystemfor two reasons.First,commod-
ity graphicsacceleratorsdonotgenerallyprovidehigh-performance
accessto theresultsof geometryprocessingthroughstandardAPIs
(e.g.,“feedback”modein OpenGL).Second,network communica-
tion performanceis currentlytoo slow for every primitive to bere-
distributedbetweenprocessorsondifferentPCsduringeveryframe.

In sort-first systems, screen-spaceis partitioned into non-
overlapping2D tiles, eachof which is renderedindependentlyby
atightly-coupledpairof geometryandrasterizationprocessors(i.e.
a PC graphicsaccelerator, in our case),andthe subimagesfor all
2D tiles arecomposited(without depthcomparisons)to form the
final image.Themainadvantageof sort-firstis thatits communica-
tion requirementsarerelatively small.Unlikesort-middle,sort-first
canutilize retained-modescenegraphsto avoid most datatrans-
fer for graphicsprimitivesbetweenprocessors,asgraphicsprimi-
tivescanbereplicatedand/orsentdynamicallybetweenprocessors
as they migratebetweentiles [20]. The disadvantageis that ex-
tra work mustbe doneto transformgraphicsprimitives,compute
anappropriatescreenspacepartition,determineprimitive-tileover-
lapsfor eachframe,andrendergraphicsprimitivesredundantlyif
they overlapmultiple tiles. Most significantamongtheseis theex-
tra renderingwork, which canbecharacterizedby theoverlapfac-
tor – theratio of thetotal renderingwork performedover theideal
renderingwork requiredwithout redundancy. Sinceoverlapfactors
grow linearlywith increasingnumbersof processors,thescalability
of sort-firstsystemsis limited. In our experience,theefficiency of
sort-firstalgorithms[19] dropsbelow 50%with 16processors[27].

In sort-lastsystems,eachprocessorrendersa separateimage
containinga portionof thegraphicsprimitives,andthentheresult-
ing imagesarecomposited(with depthcomparisons)into a single
imagefor display. Themainadvantageof sortlastis its scalability.
Sinceeachgraphicsprimitive is renderedby exactlyoneprocessor,
theoverlapfactoris always ��� � . Themaindisadvantageof sort-last
is that it usuallyrequiresan imagecompositionnetwork with very
highbandwidthandprocessingcapabilitiesto supporttransmission
andcompositionof overlappingdepthimages.Also, the sort-last
approachusuallyprovides no strict primitive orderingsemantics,

andit incurslatency assubimagesmustbecompositedbeforedis-
play.

To summarize,noprior parallelrenderingalgorithmis bothscal-
ableandpracticalfor a PC cluster. At oneextreme,sort-firstsys-
temsrequirerelatively little communicationbandwidth.However,
they arenotscalable,asoverlapfactorsgrow linearlywith increas-
ing numbersof processors.On theotherextreme,sort-lastsystems
arescalable.But, their bandwidthrequirementsexceedthe capa-
bilities of currentsystemareanetworks. The goal of our work is
to develop a parallelrenderingalgorithmwhich strikesa practical
balancebetweenthesetrade-offs.

4 Overview of Our Approach

Our approachis to usea hybrid parallel renderingalgorithmthat
combinesfeaturesof both“sort-first” and“sort-last”strategies.We
executea view-dependentalgorithm that dynamically partitions
both the 2D screeninto tiles andthe 3D polygonsinto groupsin
orderto balancetherenderingloadamongthePCsandto minimize
the bandwidthsrequiredfor compositingtiles with a peer-to-peer
redistributionof pixels.

The key ideais to cluster3D polygonsinto groupsfor render-
ing by eachserver dynamicallybasedon theoverlapsof their pro-
jectedboundingvolumesin screenspace.The motivation for this
approachis bestdemonstratedwith an example. Considerthe ar-
rangementof polygonsshown in Figure1. If polygonsareassigned
randomlyto twogroups,asshown in Figure1(a),theareaof overlap
betweentheboundingboxesof thetwogroupsis quitelarge(shown
in hatchpattern).Ontheotherhand,if thepolygonsaregroupedac-
cordingto their screenspaceoverlaps,asshown in Figure1(b), the
areaof intersectionbetweenthe groups’boundingboxes is much
smaller. Thisdifferencehascritical implicationsfor thebandwidth
requiredfor imagecompositingin asort-lastsystem.

(a)Randomgrouping. (b) Spatialgrouping.

Figure1: Polygongroupingsaffect imagecompositionbandwidths.

Wehaveimplementedaview-dependentobject-partitionstrategy
motivatedby examplessuchas this oneusinga sort-first screen-
partition algorithmin a client PC controlling a parallel rendering
systemcomprising� server PCsandonedisplayPC.Specifically,
for every frameof an interactive visualizationsession,the system
proceedsin a threephasepipeline,asshown in Figure2.

� Phase1: In thefirst phase,theclient executesa partitioning
algorithmthatsimultaneouslydecomposesthe3D polygonal
modelinto � disjoint groups,assigningeachgroupto a dif-
ferentserverPC, andpartitionsthe pixels of the 2D screen
into non-overlappingtiles,alsoassigningeachtile to adiffer-
entserverPC.

� Phase2: In the secondphase,every server � rendersthe
groupof the 3D primitives it hasbeenassignedinto its lo-
cal frame buffer. It then readsback from the frame buffer
into memorythecolor anddepthvaluesof pixels that reside
within any intersectionof thegroup’s projectedscreen-space

boundingbox anda tile assignedto anotherserver � , andit
sendsthemover thesystemareanetwork to server � . Mean-
while, afterevery server � hascompletedrenderingits own
groupof polygons,it receivespixelsrenderedby otherservers
from thenetwork, andit compositestheminto its local frame
buffer with depthcomparisonsto form a completeimagefor
its tile. Finally, eachserver readsback the color valuesof
pixelswithin its tile andsendsthemto adisplayPC.

� Phase3: In the third phase,the displayPC receivessubim-
agesfrom all servers, and compositesthem (without depth
comparisons)to form a final completeimage in its frame
buffer for display.

Display

Client

Servers

P
ha

se
 1

P
ha

se
 2

P
ha

se
 3

Figure 2: Systemarchitecturewith client, server and display
phases.

This systemarchitecturehastwo importantadvantages.First,
it usespeer-to-peercommunicationto redistribute pixels between
servers,astrategy thatis verywell-suitedfor point-to-pointsystem
areanetworks,whichareavailablefor clustersof PCs.Theresultis
lower latenciesandhighernetwork utilizationsthanothermoretra-
ditional sort-lastmethods.Second,the aggregatepixel bandwidth
received by the displaymachineis minimal, asevery pixel is sent
to the display exactly oncefor eachimagein the third phaseof
thepipeline. This featureis importantfor our systembecausethe
bandwidthof network communicationinto any onePC is limited
(100 MB/s), andsort-lastmethodsin which the displayproces-
sorreceivespixelswith depthvaluesfor thewholescreenwouldbe
impracticalfor aninteractive system.

5 Hybrid Partitioning Algorithm

In orderto make oursystemarchitectureviable,wemustdevelopa
partitioningalgorithmthatconstructstiles of pixelsandgroupsof
objectsandassignsthemto servers for eachframe. An effective
algorithmshouldachieve threegoals:

� It shouldbalancethework loadamongtheservers.� It shouldminimizetheoverheadsdueto pixel redistribution.� It shouldrunfastenoughsuchthattheclientis notthelimiting
pipelinestage.

Priorwork ondynamicscreen-spacepartitioninghasfocusedon
constructing
 partitionswith balancedrenderingloads.For instance,
Whelandevelopeda median-cutmethodin which the screenwas
partitionedrecursively into a numberof tiles exactly equalto the
numberof processors[31]. For eachrecursive step,a tile wassplit
by a line perpendicularto its longestaxissothatthecentroidsof its
overlappinggraphicsprimitiveswerepartitionedmostequally. In
laterwork, Muellerdevelopeda mesh-basedmedian-cutmethodin
whichprimitiveswerefirst talliedupaccordingto how theirbound-
ing boxesoverlappedafinemesh,andanestimatedcostwascalcu-
latedfor eachoverlappedmeshcell [19]. Then,usingthis dataas
a hint, screenspacetiles wererecursively split alongtheir longest
dimensionsuntil thenumberof regionsequaledthenumberof pro-
cessors.Whitmanuseda dynamicschedulingmethodin which he
startedwith a set of initial tiles and “stole” part of anotherpro-
cessor’s work dynamicallywhenno initial tiles remain[33]. The
stealingis achieved by splitting the remainingtile region on the
maximallyloadedprocessorinto twoverticalstripshaving thesame
numberof scanlines.

In contrastto this previouswork, we not only try to balancethe
renderingload acrossthe partition, but we alsoaim to minimize
the screenspaceoverlapsof the subimagesrenderedby different
servers.Ourmethodis a recursivebinarypartitionusinga two-line
sweep.

Eachsinglepartitionstepproceedsasfollows: We split thecur-
rentregionalongthelongestaxis.Without lossof generality, let us
assumethewidth is largerthantheheightof theregion. Hence,we
shallsweepvertical lines. We begin with two vertical lines,oneat
eachsideof the region to be partitioned. The vertical line on the
left will alwaysmove to theright, andtheoneon theright will al-
waysmove left (asshown in Figure3(a)). Theobjectsassignedas
we move the left line will belongto the left group. Similarly, the
right line will assignobjectsfor theright group.At every step,the
algorithmmovesthe line associatedwith the groupwith the least
work in an attemptto maintaina good load balance.The line is
moved until it passesa currentlyunassignedobject. In our figure,
we move theline on theleft until it completelypassestheleftmost
objecton the screen(which is unassignedsincethe algorithmhas
justbegunexecuting).Thisobjectis assignedto theleft group(see
Figure3(b)). This processis repeateduntil all objectshave been
assigned,in whichcasethesweeplinesmayhavecrossedandthere
is a narrow swath (labeledC in Figure3(c)) wherethe bounding
boxesof the left andright groupsoverlap. This swath is a region
requiringcompositionof the two imagesrenderedfor the objects
assignedto theleft andright groups.Onaverage,theswath’swidth
is themeanwidth of a boundingbox. Thescreenpartitioncontin-
uesrecursively until exactly � tilesandgroupsareformed,andone
is assignedto eachof the � servers.

(a)Beginning

Assigned

(b) 1 objectassigned

BA C

(c) All objectsassigned

Figure3: Exampleexecutionof thehybridpartitionalgorithm.

This algorithmhasa runningtime complexity of O(�������� +
���), where� is thenumberof boundingboxesin thesceneand
� is the numberof servers. The �������� term arisesfrom the
stagethe � boundingboxesaresortedaccordingto their screen
position,andthe ��� factorcomesfrom thefact that ����� cuts
aremade,while O(�) boundingboxesareconsideredfor eachcut.

6 Analysis of Communication Overheads

Weanalyzetheaveragecasecommunicationrequirementswith our
algorithmby makingthefollowing simplifying assumptions:

� All objectsareevenlydistributed.� All objectsaresquaresof equalsize(in screenspace).The
edgeof thesquareis of length� .� Thereare� totalpixelson screenand� servers.� Eachserver is assigneda squaretile with area� /� anddi-
mension� ����� � .

Basedontheseassumptions,eachtile will havearegionof width
����� aroundits perimeterwhich its server will needto readback
from its framebuffer andsendto otherserversfor compositing(see
Figure4). Similarly, everyserverwill receivepixelswithin approx-
imatelythesamesizedregionsfrom otherservers.

N
P

B

B

2
B

Figure4: Pixel areasto besentout.

The numberof pixels compositedby eachserver is the sumof
thefour cornersquaresandthefour rectanglesalongtheperimeter
of thebox. Thefour cornersquareseachhavearea:

�
���

�
� (1)

Theareaof eachrectangleon thefour sidesis :

�
�
� �
� � (2)

Summingtheareaof theseregions,wehave:

 �
�
� �
� �

! �
�
�
� (3)

or,

�"� � �
� �

! ��# (4)

whichrepresentstheaveragenumberof pixelstransferredoneway
from asingleserver for eachframe.

This pixel redistribution overheadcomparesfavorablywith pre-
vious sort-lastmethods. For instance,several volume rendering
systemsemploy static partitionswhich result in an approximate
depthcomplexity of $� � , sincethe volume is divided into $� �
blocksalong eachof its threeaxes [15, 21]. If we assumeeach
server is responsiblefor a tile covering �%�&� pixels,thetotal num-
berof pixelscompositedby eachserver is:

�
$� � #

(5)

(a)Hand
(643objects,654,666polygons)

(b) Dragon
(1,257objects,871,414polygons)

(c) Buddha
(1,476objects,1,087,716polygons)

Figure5: Testmodels.

Wecannow comparetheoverheadsin thetwo methodswith re-
spectto � and� . Increasing� reducesthesizeof thecompositing
areasby a factorof $� � # with thepreviousalgorithms,whereasit
affectsourcompositeregionsby a factorof � � . This factorfavors
previousalgorithms.

However, increasing� causestheoverheadsof imagecomposit-
ing to grow linearlyusingpreviousalgorithms,while they only in-
creasewith � � usingourmethod.Since� is generallyquitelarge
(e.g.,1280 ' 960), this is usuallythedominantfactorin practice,
and thusour algorithmhassignificantly lower compositingover-
headsthanpreviousschemes.

7 Results

Wehave implementedseveralparallelrenderingalgorithmsin C++
underWindowsNT andincorporatedtheminto acluster-basedpar-
allel renderingsystemfor interactivevisualizationof 3D polygonal
modelsin a VRML browser. Our prototypesystemis comprised
of a 550 Mhz Pentium-III client PC, eight 500 Mhz Pentium-III
server PCswith 256 MB RAM andnVidia GeForce256 graphics
accelerators,anda 500 MHz Pentium-III displayPC with an In-
tergraphWildcat graphicsaccelerator. All ten PCsareconnected
by a Myrinet systemareanetwork anduseVMMC-2 communica-
tion firmwareandsoftware[2]. This implementationallows us to
measurevariousarchitecturalandsystemparametersfor studiesof
feasibilityandscalability.

In this section,we reportdatacollectedduringa seriesof simu-
lationsof our parallelrenderingsystem.Thegoalsof thesesimu-
lationsareto investigatethealgorithmictrade-offs of differentpar-
titioning strategies,to identify potentialperformanceissuesin our
prototypesystem,to analyzethescalabilityof ourhybridalgorithm,
andto assessthefeasibilityof constructingaparallelrenderingsys-
temwith a clusterof PCs.Unlessotherwisespecified,theparame-
tersof every simulationweresetasfollows (these“default” values
reflectthemeasuredparametersof ourprototypesystem):

� Numberof servers(N) = 64PCs� Numberof pixels(P)= 1280x960pixels� Network i/o latency = 20 microseconds� Network bandwidth= 100MB/second� Serverpolygonthroughput= 750Kpolygons/second� Serverpixel fill throughput= 300Mpixels/second� Servercolorbuffer i/o latency = 50 microseconds� Servercolorbuffer readthroughput= 20 Mpixels/second

� Servercolorbuffer write throughput= 10Mpixels/second� ServerZ buffer i/o latency = 50 microseconds� ServerZ buffer readthroughput= 20 Mpixels/second� ServerZ buffer write throughput= 10 Mpixels/second� Displaycolorbuffer write throughput= 20Mpixels/second

During every simulation,we loggedstatisticsgeneratedby the
partitioning algorithmsrunning on a 550 MHz Pentium-III PC
while renderinga repeatablesequenceof framesin an interactive
visualizationprogram. Every test was run for three3D models
(shown in Figure 5), eachof which was representedas a scene
graphin which multiple polygonsweregroupedat the leaf nodes
and treatedas atomic objectsby the partitioning algorithms(the
numbersof polygonsandobjectsarelistedundertheimageof each
test model in Figure 5). The objectswere formed by clustering
polygonswhosecentroidslie within thesamecell of anoctreeex-
pandedto a user-specifieddepth(usually3-5 levels in our cases).
In all threemodels,theinputpolygonswererathersmall,asis typ-
ical for a high-performancerenderingsystem,andthusthe object
boundingboxescloselyresembledboxesof anoctree,andrender-
ing was always “geometry-bound.” It was assumedthat the 3D
modelwasstaticandwasreplicatedin thememoryof everyserver,
a currentlimitation of our systemthatwill bediscussedin Section
8. For eachmodel,the cameratraveledalonga presetpathof 50
framesthat rotatedat a fixed distancearoundthe model, looking
at it from a randomvarietyof viewing directionswhile themodel
approximatelycoveredthefull heightof thescreen.

Oursimulationstudyaimsto answerthefollowing performance
questionsabouttheproposedhybridapproach:

� Is it feasiblefor moderately-sizedPCclusters?� Doesit scalewith increasingnumbersof processors?� How doesit comparewith asort-firstalgorithm?� How doesit comparewith asort-lastalgorithm?� Whatis theimpactof increasingdisplayresolution?� Whatis theimpactof varyingobjectgranularity?

7.1 Feasibility of Proposed Rendering System

Ourfirst studyinvestigateswhetherit is practicalto build aparallel
renderingsystemwith aclusterof PCsusingourhybridpartitioning
algorithm. We definesuccessin this caseto be interactive frame
rates(e.g.,30framespersecond)andattractiveefficiencies(e.g., (
50%)for moderatelysizedclusters(e.g.,8-64PCs).

For this investigation,we executeda seriesof simulationtests
with our hybridalgorithmusingincreasingnumbersof serverPCs.
Thetiming resultsfor client,server, anddisplayPCsappearfor all
threetestmodelsin the top one-thirdof Table1 (all timesare in
milliseconds). Note that the averagetime taken (per frame)by a
uniprocessorsystemwith thesamehardwareastheserver PCsfor
thethreemodelsis asfollows : Hand- 872.9ms,Dragon- 1161.9
msandBuddha- 1450.3ms. Bar chartsof the total client, server,
anddisplayphasesareshown for the Buddhamodel in Figure6.
During analysisof theseresults,note that the client, servers,and
displayexecuteconcurrentlyin a pipeline,so the slowestof these
threestagesdeterminestheeffective frametime.

0

20

40

60

80

100

120

140

160

180

200

8 16 32 64

Number of servers

T
im

e
(m

s)

Client

Server

Display

Figure6: Client,server, anddisplaytimesfor Buddhamodel.

Examiningthebarsin Figure6, weseethattheserver is usually
thelimiting factorin thesetests(thedarkbarin themiddleof each
triple). Theclient(gray)wasnever limiting, andthedisplay(white)
wasthebottleneckin only two tests(when64 serverswereusedto
renderthe simpler3D models). In thosecases,the servers were
cumulatively ableto deliver imagesto thedisplayatapproximately
40 framespersecond.But, dueto thelimited I/O bandwidthof the
displayPC,it couldonly receivearound30framespersecondworth
of data(100MB/second/ 4 bytes/pixel * 1280 ' 960pixels* 0.75
screencoverage). The net result is an interactive framerate (30
framesper second),but with slight under-utilization of the server
PCs.Thisresultpointsouttheneedfor fasterdigitaldisplaydevices
or for fasterI/O bandwidthsin commoditydisplayPCs.

Examining the rightmost column of Table 1, we seethat the
speedupsof the hybrid algorithmremainshigh for up to at least
64 processors.Theefficiency of thesystemrangedbetween55.0%
and70.5%for 64processorsfor all threetestmodels.

From theseresults,we concludethat our hybrid algorithmcan
provideapractical,low-costsolutionfor high-performancerender-
ing of static,replicated3D polygonalmodelson moderatelysized
clustersof PCs.

7.2 Scalability with Increasing Processors

Our secondstudy investigatesthe scalability of the hybrid parti-
tioning algorithmasthenumberof servers(�) increases.System
speedupsfor up to 64 servers are shown in Figure9. Thereare
two concernsto beaddressedin thisstudy- scalabilityof theclient
andscalabilityof theservers- sincetheleastscalablepipelinestage
dictatesoverall systemscalability.

First, considerclient scalability. As statedin Section5, thehy-
brid partitioningalgorithmgrows linearly with � . This trendcan
beseenclearlyin thedarkblackline in Figure7,whichshowsclient
processingtimesfor thehybridalgorithmasa functionof thenum-
berof serversmeasuredona550MHz Pentium-IIIPCduringtests

with theBuddhamodel.Extrapolatingthis curve indicatesthat the
client will beableto achieve 30 updatespersecondfor at leastup
to 150serversor so. This resultis encouraging,assuchlargeclus-
tersareveryraretoday, andclientPCprocessorspeedsaregrowing
morerapidly thanclustersizes.

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Number of servers

C
lie

n
t

T
im

e
(m

s)

Hybrid

Sort First

Sort Last

Figure7: Client timesfor sort-first,sort-last,andthehybrid algo-
rithmsfor increasingnumbersof servers.

Second,considerserver scalability. As statedin Section6, the
pixel redistribution overheadsof eachserver scalewith)* + . This
resultcanbeseenin Figure8, which shows breakdowns of server
processingtimes. In the caseof the hybrid algorithm (the mid-
dle setof bars),theoverheadsaredueprimarily to pixel readsand
pixel writesduring server-to-server pixel redistribution. Although
the reductionin overheadsis not linear, the simulatedspeedups
of our systemare quite good. For 64 processors,the speedups
of the hybrid approachare36.3,43.7and46.5 for Hand,Dragon
andBuddha,respectively, correspondingto effectiveframetimesof
32.8ms,34.6ms,and31.1ms,respectively (seeFigure9). These
speedupscomparefavorablyto previousparallelrenderingsystems
whoseframetimesaresignificantlylonger.

0

50

100

150

200

250

300

350

400

8 16 32 64 8 16 32 64 8 16 32 64

Sort First Hybrid Sort Last

T
im

e
(m

s)

Imbalance

Final Read

Pixel Write

Pixel Read

Overlap Render

Ideal Render

Figure8: Server times for sort-first, sort-last,and the hybrid al-
gorithmsfor screenresolution1280x960.The heightof eachbar
representsthetime requiredfor processingin theserver.

As an addendum,we note that bandwidthrequirementsof the
displayPC are not affectedby increasingthe numberof servers.
Exactlyonescreen-fullof pixelsarrivesat thedisplayPCfor each
image,no matterhow finely theimageis split into tiles. Latencies
of pixel I/O operationsdo impactdisplayscalability, but they are
significantonly for very largenumbersof servers.

Client Server Display
Parrallel Test Obj Compute Ideal Overlap Pixel Pixel Final Wait for Final Speedup
Algorithm Model N Xform Partition Total Render Render Read Write Read Imbalance Total Write Factor
Hybrid Hand 8 2.1 5.6 7.7 108.8 - 2.6 4.9 3.7 4.9 124.9 29.7 7.0

16 2.1 6.2 8.3 54.4 - 1.9 3.4 1.9 5.8 67.4 30.1 12.9
32 2.1 7.2 9.3 27.2 - 1.8 3.1 1.0 6.8 39.9 30.8 21.8
64 2.1 9.6 11.7 13.6 - 1.5 2.3 0.5 6.1 24.0 32.8 36.3

Dragon 8 4.1 10.6 14.7 144.9 - 2.5 4.7 4.0 4.8 160.9 32.0 7.2
16 4.1 11.7 15.8 72.4 - 2.1 3.6 2.0 4.4 84.5 32.3 13.7
32 4.1 13.1 17.2 36.2 - 1.8 3.1 1.0 4.2 46.3 33.0 25.0
64 4.1 16.5 20.6 18.1 - 1.5 2.4 0.5 4.0 26.5 34.6 43.7

Buddha 8 4.8 9.6 14.4 180.8 - 2.4 4.4 3.4 4.0 195.0 27.6 7.4
16 4.8 10.8 15.6 90.4 - 1.9 3.3 1.7 4.3 101.6 27.9 14.2
32 4.8 12.7 17.5 45.2 - 1.7 2.9 0.9 4.3 55.0 28.6 26.3
64 4.8 16.5 21.3 22.6 - 1.4 2.2 0.5 4.4 31.1 30.2 46.5

Sort-First Hand 8 2.1 3.2 5.3 108.8 66.6 - - 2.7 37.9 216.0 30.6 4.0
16 2.1 4.0 6.1 54.4 59.5 - - 1.3 42.9 158.1 31.0 5.5
32 2.1 5.4 7.5 27.2 50.1 - - 0.6 46.1 124.0 31.8 7.0
64 2.1 8.4 10.5 13.6 42.1 - - 0.3 45.0 101.0 33.4 8.0

Dragon 8 4.1 4.8 8.9 144.9 60.7 - - 3.4 28.2 237.2 32.9 4.9
16 4.1 6.1 10.2 72.4 49.7 - - 1.6 29.0 152.7 33.3 7.6
32 4.1 8.6 12.7 36.2 39.4 - - 0.8 26.2 102.6 34.1 11.3
64 4.1 13.5 17.6 18.1 32.5 - - 0.4 27.0 78.0 35.6 14.9

Buddha 8 4.8 5.5 10.3 180.8 67.2 - - 3.1 25.0 276.1 28.4 5.2
16 4.8 6.8 11.6 90.4 60.0 - - 1.5 30.6 182.5 28.8 7.9
32 4.8 9.7 14.5 45.2 50.2 - - 0.7 32.2 128.3 29.6 11.3
64 4.8 15.1 19.9 22.6 41.0 - - 0.4 32.0 96.0 31.2 15.1

Sort-Last Hand 8 2.1 0.1 2.2 108.8 - 14.1 26.2 3.9 4.6 157.6 31.5 5.5
16 2.1 0.2 2.3 54.4 - 9.2 16.8 1.8 11.2 93.4 29.5 9.3
32 2.1 0.5 2.6 27.2 - 5.2 9.5 0.9 9.9 52.7 29.2 16.5
64 2.1 0.6 2.7 13.6 - 3.1 5.5 0.4 9.4 32.0 28.8 27.2

Dragon 8 4.1 0.1 4.2 144.9 - 14.0 26.0 4.4 6.7 196.0 34.8 5.9
16 4.1 0.2 4.3 72.4 - 9.3 17.1 2.0 7.9 108.7 32.4 10.7
32 4.1 0.5 4.6 36.2 - 5.6 10.1 1.0 9.6 62.5 31.6 18.5
64 4.1 0.6 4.7 18.1 - 3.2 5.7 0.4 10.7 38.1 30.8 30.4

Buddha 8 4.8 0.1 4.9 180.8 - 14.2 26.1 4.0 9.7 234.8 31.8 6.2
16 4.8 0.2 5.0 90.4 - 9.5 17.5 1.9 14.2 133.5 31.2 10.8
32 4.8 0.5 5.3 45.2 - 6.3 11.5 0.9 10.8 74.7 29.8 19.4
64 4.8 0.6 5.4 22.6 - 3.8 6.7 0.4 17.3 50.8 29.2 28.5

Table1: Timing statisticsgatheredduringsimulationson testmodelswith sort-first,sort-last,andthehybrid parallelrenderingalgorithms.
All timesarein milliseconds.

0

10

20

30

40

50

60

70

0 20 40 60 80

Number of servers

S
p

ee
d

u
p

Ideal

Hybrid

Sort Last

Sort First

(a)Hand

0

10

20

30

40

50

60

70

0 20 40 60 80

Number of servers

S
p

ee
d

u
p

Ideal

Hybrid

Sort Last

Sort First

(b) Dragon

0

10

20

30

40

50

60

70

0 20 40 60 80

Number of servers

S
p

ee
d

u
p

Ideal

Hybrid

Sort Last

Sort First

(c) Buddha

Figure9: Speedupcurveswith increasingnumbersof processors.

7.3 Comparison to Sort-First Algorithms

In our third study, we compareour hybrid partitioningalgorithm
to a sort-firstapproachpreviously describedin the literature. Al-
though we have implementedtwo sort-first methods,Mueller’s
MAHD [19] andSamanta’s KD-Split [28], wecomparesimulation
resultsfor only theMAHD algorithmin thispaper. Thecomparison
for KD-Split is similar.

In our implementationof the MAHD algorithm, the client PC
first transformstheobjectsinto 2D andmarksa2D grid-baseddata
structurewith an estimateof the renderingload associatedwith
eachcell in this grid. Next, the algorithmpartitionsthis grid data
structureinto tileswith balancedrenderingloadby recursively par-
titioning thegrid structurealongthelongestdimensionateverystep
of the recursion. The algorithm terminateswhen the numberof
tiles is equalto the numberof servers. Eachtile is thenassigned
to a server PC,which rendersan imagecontainingall polygonsin
any objectthatat leastpartially overlapstheextentof its tile. The
serversthenreadtheresultingpixelsbackfrom their color buffers
andsendthemto the displayPC so that they canbe composited
into a completeimagefor display. Theclient processingtimesfor
thismethodgrow with ��� for � objectsand� tiles,just likethe
hybridalgorithm.Themainoverheadsincurredby thesort-firstal-
gorithmaredueto clientprocessingasthescreenis partitioned,re-
dundantserver renderingof objectsoverlappingmultiple tiles,and
server-to-serverpixel redistribution.

Timing resultsmeasuredduring testswith both the hybrid and
sort-firstmethodsappearfor all threetestmodelsin Table1, and
moredetailedbreakdownsof theserverprocessingtimesareshown
for thetestswith theBuddhamodelin Figure8. Fromthesebreak-
downs of Figure8, we canvisually comparetheoverheadsof dif-
ferentalgorithms.In particular, thedarkbands(“OverlapRender”)
in the barsfor sort-first (the leftmostsetof bars)representover-
headsdueto redundantrenderingof objectsoverlappingmultiple
tiles. Notehow thesebandsbecomea largerpercentageof thetotal
server time astheoverlapfactorgrows with increasingnumbersof
processors.Thehybrid algorithmsincur no suchoverheadsdueto
overlaps,asevery objectis renderedexactly onceby a server. As
a result,theserver timessimulatedwith thehybrid algorithmscale
betterthanwith sort-first.

Speedupcurves for the hybrid andsort-firstalgorithmscanbe
compareddirectly in Figure9. For 64 processors,thespeedupsof
thehybrid approachare36.3,43.7and46.5for Hand,Dragonand
Buddharespectively, whereasthe sort-firstapproachspeedupsare
8.0,14.9,and15.1. Overall, theefficiency of thehybrid algorithm
is generallyaround3 to 4 timesbetterthanthesort-firstalgorithm
in thesetests.

7.4 Comparison to a Sort-Last Algorithm

In our fourth study, we compareour hybrid partitioningalgorithm
to a sort-lastapproach.For the purposesof this experiment,we
have implementeda polygonrenderingversionof a sort-lastalgo-
rithm motivatedby Neumann’s “Object Partition with Block Dis-
tribution” algorithm[22]. This algorithmis usedfor comparison
becauseit requiresthe leastcompositionbandwidth,provides the
bestbalance,andfits into our peer-to-peerimagecompositionsys-
tembetterthanany othersort-lastalgorithmweareawareof.

In our implementationof Neumann’s algorithm,groupsof ob-
jectsarepartitionedamongserversstaticallyusinganalgorithmthat
is a direct3D extensionof the2D methoddescribedin Section5.
Then,duringeachframeof aninteractivevisualizationsession,ev-
ery server rendersits assignedgroupof objectsinto its own frame
buffer. Then,theserversredistributerenderedpixelsaccordingto a
staticassignmentof aninterleavedfine-grainedgridof tiles. Specif-
ically, after renderingis complete,every server readsthepixels in
theboundingboxof renderedobjectsfrom bothits colorbuffer and
its Z-buffer andsendsthemto the server PCto whomthe tile has
beenassigned.Uponreceiving pixels, theserverscompositethem
into their framebuffers.Finally, afterall tiles havebeenfully com-
posited,theserversreadtheresultingpixelsbackfrom their frame
buffers andsendthemto the displayPC so that they canbe com-
positedinto acompleteimagefor display.

Simulationresultsfor this sort-lastalgorithmareshown in the
bottomone-thirdof Table1. Thekey comparisonpointsareclient
processingtimesandserveroverheads.

Clearly, the client processingtimes for the sort-lastalgorithm
aresignificantlylessthanfor thehybridandsort-firstmethods(see
Figure7). Theonly work thatmustbedoneby thesort-lastclient is
to transform� 3D boundingboxesinto the2D screenspacesothat
“active” tiles can be marked, and server-to-server pixel transfers
canbeavoidedfor theothers.This simpleprocessingcouldeasily
bedonedirectly on theservers,or possiblyon thedisplayPC.So,
in effect, thehybridandsort-firstalgorithmsrequireonemorePC’s
processingpowerthanthesort-lastalgorithm- anadvantageof pure
sort-last.However, theimpactof this differenceis rathersmall for
largenumbersof servers.

On theserver side,thereis a significantdifferencebetweenthe
sort-lastandhybridalgorithmsin pixel redistributioncosts(seethe
columnslabeled“Pixel Read”and“Pixel Write” in Table1). The
sort-lastalgorithmincursmoreoverheads,asit mustperformimage
compositiontransfersandprocessingfor larger numbersof pixels
(seeSection6). The differencecanbe seenin our simulationre-
sultsasthewhiteregionsin therightmostsetof barsin Figure8. In
thesort-lastcase,theaveragenumberof pixelstransferredbetween

(a)Sort-first (b) Sort-last (c) Hybrid

Figure10: Visualizationsof serveroverheadswith differentalgorithms.In (a)highlightedobjectboundingboxesspanmultipletilesandmust
berenderedredundantly. In (b) and(c) brighterpixel intensitiesrepresentmoreimagecompositionoverheads.

serversduringeachframeis relatedto thescenedepthcomplexity
(D) multipledby theresolutionof thescreen(P),whereD isapprox-
imately �)-,/. andthetotal overheadis 0$ * +21 [15, 21]. In contrast,
for thehybridalgorithm,thenumberof pixelstransferredis related
to �"� *

0* + ! � # , whereB is theaveragesizeof anobject’sbounding
box (seeSection6). Empirically, thepixel redistributionoverheads
of thehybridalgorithmaremuchsmallerthanfor sort-lastin all of
oursimulations.

Thedifferencebetweenthepixel redistributioncostscanbeseen
veryclearlyin thevisualizationsof Figures10(b)andFigure10(c),
which show pixels transferredacrossthe network for the sort-last
and hybrid algorithmsrespectively, shadedin transparentwhite.
Justby looking at “the amountof white” in theseimages,onegets
an intuitive feel for how muchpixel redistribution overheadis in-
curredby thesystem.

Overall, theefficiency of thehybrid algorithmis approximately
33%to 53%betterthanthesort-lastalgorithmin all of our tests.

7.5 Impact of Increasing Screen Resolution

In ourfifth study, weanalyzetheeffectof increasingscreenresolu-
tion oneachof thepartitioningalgorithmsdiscussedsofar: hybrid,
sort-first,andsort-last.Therearetwo issuesto consider– display
times(for all algorithms)andservertimes(for hybridandsort-last).

First, considerdisplaytimes. As previously discussed,the dis-
play PC canbe the limiting factor if it is not ableto receive data
from the network or write it into its framebuffer quickly enough
to keepup with the client and servers. Of course,this problem
getsworsewith increasingscreenresolution.For example,increas-
ing theresolutionfrom 1280' 960to 2560' 1920,thefinal display
time will increaseby a factorof 4. However, this concernmaygo
away in a few years,asPCnetwork andAGPbandwidthsimprove
at a ratehigherthanscreenresolution.

Second,considerserver times.Here,therearefundamentaldif-
ferencesbetweensort-first,sort-last,andour hybridalgorithm.For
sort-first,thedominantoverhead(overlapfactor)is completelyin-
dependentof screenresolution(until therenderingbecomesraster-
ization bound). As a result, sort-first is probablyappropriatefor
very high-resolutionscreens,suchasmulti-projectordisplaywalls
[28].

In contrast,thesort-lastandhybridalgorithmsaredefinitelyim-
pactedby higherscreenresolutions.It is importantto note,how-
ever, that the pixel redistribution overheadsof the sort-lastalgo-
rithm grow linearly with � , while theoverheadsof our hybrid al-
gorithm grow only with � � . Essentially, sort last mustcompos-
ite areas,while the hybrid algorithmcompositesperimeters.This
is a significantdifference,which can be seenvery clearly when

comparingFigures8 and 11, which show breakdowns of server
timesfor displayresolutions1280x960and2560x1920.The sig-
nificantly taller white areasin the barsfor sort-lastindicatelarger
pixel redistributionoverheadsthatthwart speedupsfor high resolu-
tion screens.By comparison,pixel redistribution timesarearound
5 timeslessfor 2560x1920imageswith thehybridalgorithm.

0

50

100

150

200

250

300

350

400

8 16 32 64 8 16 32 64 8 16 32 64

Sort First Hybrid Sort Last

T
im

e
(m

s)

Imbalance

Final Read

Pixel Write

Pixel Read

Overlap Render

Ideal Render

Figure11: Server timesfor sort-first,sort-last,andthe hybrid al-
gorithmsat screenresolution2560x1920.The heightof eachbar
representsthetime requiredfor processingin theserver.

7.6 Impact of Increasing Object Granularity

In ourfinal study, weinvestigatetheeffectsof differentobjectgran-
ularities on partitioning algorithms. Figure 12 and 13 show the
client andserver timesmeasuredwith threedifferentobjectgranu-
larities(399,1,476,and6,521objects,respectively) for theBuddha
model– eachcasehasthesamenumberof polygons,justseparated
into differentnumbersof objects.In this case,we cantrade-off in-
creasesin clientprocessingfor betterefficienciesin serverswith the
hybrid andsort-firstalgorithms.The sort-lastalgorithmis largely
unaffected.

First,considertheimpactof increasingthenumberof objectsto
be processedby theclient. Judgingfrom thecurvesin Figure12,
we seethattheclient timesof all algorithmsincreaselinearlywith
objectgranularity. This result is dueto a combinationof linearly
increasingobjecttransformationsandlinearly increasingpartition
processingtimes. For 6,521objects,theclient processingtime for
thehybridmethodclearlybecomesthebottleneck.

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000

Number of objects

C
lie

n
t

T
im

e
(m

s)
Hybrid

Sort First

Sort Last

Figure12: Plotof clientprocessingtimesfor differentgranularities
of objectsin theBuddhamodel.

Second,considertheimpacton theservers.Weseein Figure13
that the relative overheadsfor the hybrid andsort-firstalgorithms
decreasesignificantlyfor finer objectgranularities.Essentially, as
objectboundingboxesgetsmaller, theoverlapsgetsmaller, aspre-
dictedby Molnaretal. [16]. In thecaseof thehybridalgorithm,the
effect is to make theregionon theboundaryof eachtile to becom-
positedwith neighbors“thinner.” This effect canbeseenclearlyin
theimagesof Figure14,whichshow visualizationsof pixel redistri-
bution costs(morewhite meansmoreoverhead)for threedifferent
objectgranularities– the“swaths”requiringimagecompositionget
thinnerwith shrinkingboundingboxes.

0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000 5000 6000 7000

Number of objects

%
 o

ve
rh

ea
d

Sort First

Sort Last

Hybrid

Figure13: Plotof serveroverheadsasapercentageof idealrender-
ing time for differentgranularitiesof objectsin theBuddhamodel.

In thelimit, astheobjectgranularityof increases,andbounding
boxwidthsapproachzero,theoverheadsof hybridandsort-firstal-
gorithmstendtoward zero. Hence,fasterclientscansignificantly
improve server efficienciesby partitioningat finer objectgranular-
ities. This is a significantdifferencefrom the sort-lastalgorithm,
which is unaffectedby objectgranularity. Developingandanalyz-
ing theeffectsof hierarchicaland/orparallelclientalgorithmsis an
interestingtopic for futurestudy.

8 Discussion

The novel ideapresentedin this paperis that of dynamic,view-
dependentpartitioning of both the 3D model spaceand the 2D

screenspacefor parallelpolygonrenderingon a cluster. The key
result is that this approachboth performsbetterandscalesbetter
with processorcount than the bestknown earlier approaches,at
leastin the clusterenvironment. Comparedto pure sort-firstap-
proaches,thisapproachgreatlyreducestheproblemsthatarisedue
to objectsoverlappingmultiplescreenpartitions.Comparedto sort-
lastapproacheswith one-time,view-independentpartitioningof the
model,it greatlyreducesthebandwidthrequiredfor pixel transfer.
The approachhasfurther advantagesin situationswhereapplica-
tionsnot only renderthemodelfrom differentviewpointsbut also
zoomin on certainsub-areasandusegreaterdetail in thoseareas
(which would make staticpartitionsperformpoorly sincethearea
zoomedin onwouldbeassignedto only asmallnumberof proces-
sorsin thatcase).

Theapproachis not without disadvantages,however, andthese
too stemfrom the dynamic,view-dependentnatureof computing
partitions.Themajordisadvantagesarein thefollowing two areas.

First, a separateclient machinecomputespartitions for every
frame, so the speedof partitioning on the client can limit the
achievedframerate. This tradeoff is particularlyvisible in our ap-
proach,sinceunlike in other approachesmaking objectssmaller
continuesto help the parallel renderingrate, asymptoticallyre-
sulting in near-zerooverheads.However, makingobjectssmaller
makespartitioningmoreexpensive andhencemakesit difficult for
the client to keepup with the servers. A possiblesolution is to
useaparallelclient-sideenginefor partitioning.Anotheris to have
theclient maintaina hierarchicalview of theobjectsin themodel
andsubdivideobjectsadaptively asit computesits partitions,asop-
posedto thecurrentmethodof fixing thesizesof objectsup front.
Thesemethodsremaintopicsfor futureinvestigation.

Second,with a dynamic,view-dependentapproach,the3D data
renderedby a given server may changefrom frameto frame. In
theabsenceof a sharedaddressspace,it canbe bothdifficult and
overhead-consumingto managethe partitioningor distribution of
the3D modeldataamongprocessorsandthe dynamicreplication
of dataondemand.Wehave thereforechosento replicatetheentire
3D modelon all processingnodesfor now, to eliminatethe data
managementproblemandfocuson the partitioningissues.How-
ever, this clearly restrictsour currentimplementationto rendering
staticmodelsandlimits thesizeof themodelsthatcanberendered.
Sincedynamicdatadistributionandreplicationwill introducerun-
timeoverheads,to build atruly scalableapproachwemustexamine
methodsto performthisdatamanagementefficiently. Weplanto do
this in future work, examiningsystem-level approacheslike soft-
wareimplementationof a sharedmemoryprogrammingmodelor
memoryserversonclusters,aswell asapplication-level approaches
like customized“sharedmemory” or conservative replicationof
dataat partitionboundariesbasedon thepartitionconstruction.It
is worth noting, of course,that an approachthat usesstaticparti-
tioningof the3D modeldoesnot suffer from this replicationprob-
lem, so it is likely that for situationsin which the 3-D model is
very largeandthescreenis small(sothatsort-lastbandwidthis not
a major problem),a staticsort-lastapproachthat avoids the data
managementoverheadsmay work bestaslong asthereis enough
bandwidthto sustainthedesiredframerate.

Weexpectthatlimitationsof ourapproachshoulddiminishwith
time and its performanceand scalability shouldimprove further,
giventechnologytrends.In particular, bothclient processorspeed
andbandwidthtend to grow much fasterthandisplay resolution.
Theformerhelpstheclientpartitionatfinergranularities,while the
latterhelpsreducetheoverheadsof pixel redistributionby alleviat-
ing thedynamicdatamanagementproblem. We thereforebelieve
that this typeof dynamic,view-dependentapproachis likely to be
averygoodonefor parallelpolygonrenderingoncommodityclus-
ters (andpotentiallyotherparallelmachines),as long asthe data
managementproblemscanbesolvedsatisfactorily.

(a)293objects (b) 1,476objects (c) 6,521objects

Figure14: Visualizationsof tile overlapsin partitionscreatedwith our hybrid algorithmusingdifferentobjectgranularities.The top row
of imagesshows 3D objectboundingboxes. Thebottomrow shows tiles with overlapregionsshaded.Largeroverlapregionscausehigher
serverpixel redistributionoverheads.

9 Summary and Conclusion

Thispaperpresentsahybridparallelrenderingalgorithmthatcom-
binesfeaturesof both“sort-first” and“sort-last”strategiesfor aPC-
clusterarchitecture.Thealgorithmdynamicallypartitionsboththe
2D screeninto tiles and the 3D polygonsinto groups in a view-
dependentmannerper-frame,to balancetherenderingloadamong
thePCsandto minimize thebandwidthsrequiredfor compositing
tileswith apeer-to-peerredistributionof pixels.

During simulationsof our working prototypesystemwith vary-
ing systemparameters,we find that our hybrid algorithmoutper-
formssort-firstandsort-lastalgorithmsin almostall tests,includ-
ing oneswith larger numbersof processors,higherscreenresolu-
tions, andfiner objectgranularities.Overall, it is ableto achieve
interactive framerateswith efficienciesof 55.0%to 70.5%during
simulationsof asystemwith 64PCs.Webelieve thisapproachpro-
videsapractical,low-costsolutionfor high-performancerendering
of static,replicated3D polygonalmodelsonmoderatelysizedclus-
tersof PCs.

Topics for futher study includedevelopmentof algorithmsfor
dynamicdatabasemanagement,supportfor fastdownloadof im-
agesfrom a network into a framebuffer, andmethodsto partition
graphicsprimitivesamongserverswith finer granularityusingei-
therparallelclients,hierarchicalalgorithms,or fasteralgorithms.

Acknowledgements

This projectis partof thePrincetonScalableDisplayWall project
which is supportedin part by Departmentof Energy undergrant
ANI-9906704andgrantDE-FC02-99ER25387,by Intel Research
Council andIntel Technology2000equipmentgrant,andby Na-
tional ScienceFoundationunder grant CDA-9624099and grant
EIA-9975011.ThomasFunkhouseris alsosupportedby anAlfred
P. SloanFellowship.

Wewouldliketo thankJiannanZhengwhodiscussedwith usthe
hybridalgorithm,andYuqunChenandXiangYu whodesignedand
implementedtheVMMC-II communicationmechanismsfor thePC
cluster. We alsowould like to thankGreg Turk andthe Stanford
ComputerGraphicsLaboratoryfor sharingwith usthemodelsused
in our experiments.

References
[1] Nanette J. Boden, Danny Cohen, Robert E. Felderman,

Alan E. Kulawik, CharlesL. Seitz, Jakov N. Seizovic, and
Wen-KingSu. Myrinet: A gigabit-per-secondlocal areanet-
work. IEEEMicro, 15(1):29–36,February1995.

[2] Y. Chen,A. Bilas, S. Damianakis,C. Dubnicki, and K. Li.
Utlb: A mechanismfor translationson network interface. In
Proceedingsof the8th InternationalConferenceon Architec-
tural Supportfor ProgrammingLanguagesandOperaingSys-
tems, pages193–204,1998.

[3] J.Clark. A VLSI geometryprocessorfor graphics.Computer
(IEEE), 13:59–62,64,66–68,July 1980.

[4] JamesH. Clark.Thegeometryengine:A VLSI geometrysys-
tem for graphics. ComputerGraphics, 16(3):127–133,July
1982.

[5] MichaelCox. Algorithmsfor Parallel Rendering. PhDthesis,
Departmentof ComputerScience,PrincetonUniversity, 1995.

[6] ThomasW. Crockett. Parallel rendering. TechnicalReport
TechnicalReportTR95-31,Institute for ComputerApplica-
tions in ScienceandEngineering,NASA Langley Research
Center, 1995.

[7] T.W. Crockett. An introductionto parallelrendering.Parallel
Computing, 23:819–843,1997.

[8] David Ellsworth. A new algorithmfor interactivegraphicson
multicomputers.IEEEComputerGraphicsandApplications,
14(4):33–40,1994.

[9] H. FuchsandB. Johnson.An expandablemultiprocessorar-
chitecturefor videographics. In Proceedingsof the 6th An-
nualACM-IEEESymposiumonComputerArchitecture, April
1979.

[10] Henry Fuchs. Distributing a visible surfacealgorithmover
multipleprocessors.In Proceedingsof the1977ACM Annual
Conference, Seattle, WA, pages449–451,October1977.

[11] ThomasA. Funkhouser. Coarse-grainedparallelismfor hier-
archicalradiosityusinggroupiterativemethods.In Computer
Graphics(SIGGRAPH96), 1996.

[12] C. GrietsenandJ. Petersen.Parallel volumerenderingon a
network of workstations.IEEE ComputerGraphicsandAp-
plications, 13(6):16–23,1993.

[13] JeremyHubbell. Network rendering. In AutodeskUniver-
sity Sourcebook, volume2, pages443–453.Miller Freeman,
1996.

[14] HomanIgehy, GordonStoll, andPat Hanrahan.The design
of aparallelgraphicsinterface.In SIGGRAPH98Conference
Proceedings, pages141–150.ACM SIGGRAPH,July1998.

[15] K.L. Ma, J.S.Painter, C.D. Hansen,andM.F. Krogh. Paral-
lel volumerenderingusingbinary-swap compositing. IEEE
ComputerGraphicsandApplications, 14(4):59–68,1994.

[16] S.Molnar. Image-compositionarchitecturesfor real-timeim-
agegeneration.Ph.d.thesis,Universityof North Carolinaat
ChapelHill, 1991.

[17] Steve Molnar, Michael Cox, David Ellsworth, and Henry
Fuchs. A sortingclassificationof parallel rendering. IEEE
ComputerGraphicsandApplications, 14(4):23–32,1994.

[18] J.S.Montrym, D.R. Baum,D.L. Dignam,and C.J. Migdal.
Infinitereality:A real-timegraphicssystem.In Proceedingsof
ComputerGraphics(SIGGRAPH97), pages293–303,1997.

[19] Carl Mueller. The sort-first renderingarchitecturefor high-
performancegraphics.In ACMSIGGRAPHComputerGraph-
ics (Special Issueon 1995 Symposiumon Interactive 3-D
Graphics), 1995.

[20] Carl Mueller. Hierarchicalgraphicsdatabasesin sort-first. In
Proceedingsof the IEEE Symposiumon Parallel rendering,
pages49–57,1997.

[21] Ulrich Neumann. Parallel volume-renderingalgorithmper-
formanceon mesh-connectedmulticomputers.In ACM SIG-
GRAPHSymposiumon Parallel Rendering, pages97–104.
ACM, November1993.

[22] Ulrich Neumann.Communicationcostsfor parallelvolume-
renderingalgorithms.IEEEComputerGraphicsandApplica-
tions, 14(4):49–58,1994.

[23] FrankA. Ortega, CharlesD. Hansen,andJamesP. Ahrens.
Fastdataparallelpolygonrendering. In IEEE, editor, Pro-
ceedings,Supercomputing’93: Portland, Oregon,November
15–19,1993, pages709–718.IEEE ComputerSocietyPress,
1993.

[24] F. I. Parke. Simulationandexpectedperformanceanalysisof
multiple processorz-buffer systems.In Proceedingsof Com-
puterGraphics(SIGGRAPH80), pages48–56,1980.

[25] Pixar. PhotoRealisticRenderManToolkit. 1998.

[26] R.J.Recker, D.W. George,andD.P. Greenberg. Acceleration
techniquesof progressive refinementradiosity. In Computer
Graphics(Proceedingsof the1990SymposiumonInteractive
3D Graphics), pages59–66,1990.

[27] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and
JaswinderPal Singh.Sort-firstparallelrenderingwith aclus-
ter of pcs. In SIGGRAPH2000Technical sketches, August
2000.

[28] Rudrajit Samanta,JiannanZheng,ThomasFunkhouser, Kai
Li, and JaswinderPal Singh. Load balancingfor multi-
projectorrenderingsystems.In SIGGRAPH’99. Proceedings
1999Eurographics/SIGGRAPHworkshoponGraphicshard-
ware, Aug. 8–9,1999,LosAngeles,CA, pages107–116.ACM
Press,1999.

[29] Bengt-OlafSchneider. Parallelrenderingon pc workstations.
In InternationalConferenceon Parallel andDistributedPro-
cessingTechniquesand Applications(PDTA98), Las Vegas,
NV, 1998.

[30] JaswinderPal Singh, Anoop Gupta,and Marc Levoy. Par-
allel visualizationalgorithms:Performanceandarchitectural
implications.Computer, 27(7):45–55,July1994.

[31] DanielS.Whelan.Animac:A multiprocessorarchitecturefor
real-timecomputeranimation. Ph.d.thesis,California Insti-
tuteof Technology, 1985.

[32] Scott Whitman. MultiprocessorMethods for Computer
GraphicsRendering. JonesandBartlettPublishers,20 Park
Plaza,Boston,MA 02116,March1992.

[33] ScottWhitman. Dynamic load balancingfor parallel poly-
gon rendering. IEEE ComputerGraphicsand Applications,
14(4):41–48,1994.

