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The question of what are good views of a 3D object has been addressed
by numerous researchers in perception, computer vision and computer
graphics. This has led to a large variety of measures for the goodness
of views as well as some special-case viewpoint selection algorithms. In
this paper, we leverage the results of a large user study to optimize the
parameters of a general model for viewpoint goodness, such that the fitted
model can predict people’s preferred views for a broad range of objects.
Our model is represented as a combination of attributes known to be
important for view selection, such as projected model area and silhouette
length. Moreover, this framework can easily incorporate new attributes in
the future, based on the data from our existing study. We demonstrate
our combined goodness measure in a number of applications, such as
automatically selecting a good set of representative views, optimizing
camera orbits to pass through good views and avoid bad views, and trackball
controls that gently guide the viewer towards better views.
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1. INTRODUCTION

Beauty is bought by judgement of the eye.
—Shakespeare, Loves Labours Lost, 1588

What makes for a good view of a 3D object? Different views are
not equally effective at revealing shape, and people express clear
preferences for some views over others [Blanz et al. 1999]. Object
recognition and understanding depends on both view-independent
properties [Biederman 1987] and view-dependent features [Koen-
derink and Doorn 1979]. Researchers have proposed a variety of
measures for view point preference, for example viewpoint en-
tropy [Vázquez et al. 2001], silhouette stability [Gooch et al. 2001],
mesh saliency [Lee et al. 2005], and symmetry [Podolak et al.
2006]. We combine attributes like these into an overall measure that
we call the goodness of views, based on human preference data.
While similar approaches based on machine learning algorithms
have been previously described, in one case the method only incor-
porates a single measure [Laga and Nakajima 2008], and in another
case the system is designed to produce a very specialized measure
trained on a small data set generated by one or few people [Vieira
et al. 2009].

Our goodness measure relies on weights determined via a large user
study, in which, given two views of the same object, hundreds of
subjects were asked to select a preferred view. The resulting dataset
covers each of 16 models with 120 pairs of views, and each pair
was evaluated by 30 to 40 people. From this data we can combine
attributes together in various predictive models and reliably predict
new view selections not used in the training.

Moreover, our methodology offers several benefits beyond the spe-
cific goodness measures recommended herein. First, we gain in-
sight by examining the relative effectiveness of various components
of our goodness measure, as well as other methods proposed in the
literature. For example, we find that the mesh saliency approach de-
scribed by Lee et al. [2005] is not as effective at describing our data
as projected area, a much simpler model. The optimization pro-
cedure can incorporate any attribute or combination of attributes
a posteriori and also evaluate any proposed model for viewpoint
preference using only the data acquired in our user study.

Our paper also considers several straightforward applications for
the goodness measure for views. Supposedly simple tasks such as
orbiting around a 3D shape (with the implied goal of understanding
it) are often reduced to a “turntable” with the camera rotating above
the equator [Google 2010], even where another path might reveal
the shape more effectively. We offer several tools motivated by this
observation. The first kind of tool automatically selects either good
individual viewpoints or an orbit around an object designed to pass
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through good views as much as possible. Likewise, a second class
of tool helps the user navigate in camera space by gently nudging
the camera towards good views and away from bad views.

The main contributions of this paper are:

—an evaluation of 14 attributes from the literature that encode a
range of desirable properties w.r.t. understanding and exploring
a 3D shape,

—a user study and methodology by which we evaluate and opti-
mize combinations of these attributes,

—a set of simple recommended measures for practical applications,
—a large dataset resulting from the study, publicly available for

download by other researchers,
—an optimization tool that finds good individual views of an object

or a smooth orbit around an object that passes through good
views, and

—an interface that allows users of various skill levels to navigate
around 3D shapes using a commodity 2D input device such as a
mouse or touch screen, or even 1D input widget such as a scroll-
bar.

2. RELATED WORK

Our work concentrates on finding good views of a single object.
While much work has been done on 3D camera control in scenes
(e.g. [Drucker and Zeltzer 1995; Byers et al. 2003]), full 3D camera
control is outside of our scope, and we refer to the excellent
taxonomy of general methods for camera control in 3D by Christie
and Olivier [2008].

Several researchers have investigated ways of evaluating the good-
ness of a view. For example, Kamada and Kawai [1988] attempt to
minimize the number of degenerate faces in orthographic projec-
tion. Plemenos and Benayada [1996] describe a measure for good-
ness of views based on projected area of the model, while Roberts
and Marshall [1998] compute multiple views that, combined, cover
the entire surface of the model as well as possible, using an approx-
imation of the aspect graph [Koenderink and Doorn 1979]. Scene
visibility is also used for camera placement in the work of Fleish-
man et al. [1999]. Blanz et al. [1999] perform studies that show
what attributes are important for determining canonical views for
humans, following the seminal work by Palmer et al. [1981] that
first introduces the notion of canonical views as well as the first
such study. In the work of Gooch et al. [2001], an optimization
process adjusts camera parameters to produce more “artistic” com-
positions by causing silhouette features to match known composi-
tional heuristics such as “the rule of fifths.” Vazquez et al. [2001]
coin the term viewpoint entropy, inspired by Shannon’s informa-
tion theory [1948] and based on relative area of the projected faces
over the sphere of directions centered in the viewpoint. Sokolov and
Plemenos [2005] use dihedral angles between faces and discrete
gaussian curvature. Also inspired by information theory, Lee et
al. [2005] describe mesh saliency and show how it can be used to
optimize viewpoint selection. Yamauchi et al. [2006] partition the
view sphere based on silhouette stability [Weinshall and Werman
1997], and then use mesh saliency to determine the best view in
each partition. Finally, Podolak et al. [2006] describe a goodness
measure based on object symmetries.

In principle, the tools we present in this paper could make use of
any of these goodness measures, and indeed we investigate and
combine several of them. To the best of our knowledge, Polonsky et

al. [2005] were the first to explore a number of different attributes,
which they call view descriptors. They suggest the possibility of
a combined measure, but leave this as future work. Most closely
related to our own is the work of Vieira et al. [2009]. They train a
support vector machine classifier using a small set of tuples, one for
each view, where each consists of a vector containing concatenated
goodness values, and a user-provided binary preference for this
specific view. They compare to individual goodness measures, and
show that using a combination better fits to a wider range of
models—an inspiration for our work. Their approach is designed
for user interaction on a small set of models with similar objectives,
and they leave a validating user study for future work. In contrast,
our motivation is to find a goodness measure designed for a broad
range of models and applications, and is based on a large user study.

The tools presented in this paper are designed to work for both
static and moving cameras, either under guided user control or
as a path designed to offer a good overall view of the object.
Barral et al. [2000] optimize paths for a moving camera so as to
provide good coverage of an overall scene, but the resulting paths
appear to be unpleasantly jerky. In follow-up work to [Yamauchi
et al. 2006], Saleem et al. [2007] show how to compute smooth
animation paths that connect the best viewpoints, and adjust zoom
and speed according to the goodness along the path. In comparison,
the paths computed by our method are smooth, but additionally
optimize the integral of goodness along the path. Recent work by
Kwon and Lee [2008] shows how to optimize a camera path given
animated character motion as input, where the goal is to optimally
cover the space swept out by the motion.

3. MEASURING VIEW GOODNESS

In this section we describe our process for obtaining a measure for
the goodness of views. First, we describe a set of view-dependent
attributes that we will later combine to form various overall good-
ness metrics. Next, we present the results of a large user study in
which we gather information about subjects’ preferences among
pairs of nearby views. Finally, we use the data from the study to
optimize the weights of our combined goodness measures, and also
evaluate the relative contributions of the different attributes.

3.1 Attributes of Views

As reviewed in Section 2, the literature offers many attributes
of views that may contribute to the overall goodness. However,
previous efforts have typically considered just one attribute in
forming a goodness measure. Obviously no single measure taken
alone fully characterizes what people consider good, and one would
expect different measures to combine with differing relative impact
overall. In this section we present a group of attributes with the
hope that they may combine to form a more accurate measure
than any one or a few measures taken alone. These measures are
visualized over the sphere of viewing directions for one model in
Figure 1. Each of the attributes we selected is taken directly from
the literature or inspired by previously described attributes. In the
presentation below, the attributes are organized into five categories
relating to different aspects of a view, for example, surface area or
silhouettes.

3.1.1 Area attributes. Area attributes are related to the area of the
shape as seen from a particular viewpoint.
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Area attributes Silhouette attributes

Semantic attributesSurface curvature attributes

Depth attributes

Fig. 1: Five groups of attributes, visualized over the sphere of viewing directions, for the armadillo model shown in the lower right. Color
values range from blue (low) to red (high).

a1: Projected area. This attribute is the projected area of the
model in the image plane as a fraction of the overall image area.
Introduced by Plemenos and Benayada [1996], this measure is
generally maximized by non-degenerate views.

a2: Surface visibility. Plemenos et al. [1996] define the surface
visibility as the ratio of visible surface area in a particular view to
the total surface area of an object. Maximizing surface visibility
should reduce the amount of hidden surface of an object.

a3: Viewpoint entropy. Introduced by Vázquez et al. [2001], this
attribute converts projected areas of mesh faces into a probability
distribution and measures the entropy of the result. Since the orig-
inal viewpoint entropy method employed a spherical camera, we
use the extension to perspective frustum cameras due to Vázquez
and Sbert [2002].

3.1.2 Silhouette attributes. Silhouette features are believed to be
the first index into the human memory of shapes [Hoffman and
Singh 1997], and, as a direct result of Shannon’s information
theory, it was known as early as the 1950s that edges and contours
contain a wealth of information about a 3D shape [Attneave 1954;
Koenderink and Doorn 1979].

a4: Silhouette length. The overall length a4 of the object’s sil-
houettes in the image plane, expressed in units of the average di-
mension of the image plane. This attribute is correlated with the
appearance of holes and protrusions such as arms or legs.

a5: Silhouette curvature. Vieira et al. [2009] introduce silhouette
curvature as an attribute, defined as

a5 =

∫
|κ(`)|d`

where the curvature κ is parameterized by arc length `.

a6: Silhouette curvature extrema. While silhouette curvatures
will capture general complexities in the silhouette of an object, we
are often interested in sharp features such as creases or the tips of
fingers. To that end, we introduce a simple measure that emphasizes
high curvatures on the silhouette:

a5 =

∫
κ(`)2d`.

However, through experimentation we found it best to drop the cur-
vatures found at depth discontinuities (i.e. T-junctions) as these ar-
eas sometimes contribute high curvatures without obvious connec-
tion to visual interest or features.

3.1.3 Depth attributes. Depth attributes are related to the depth
of the shape as seen from a particular viewpoint; similar to area
attributes, depth attributes can help avoid degenerate viewpoints.

a7: Max depth. The maximum depth value of any visible point of
the shape is used to avoid degeneracies in [Stoev and Straßer 2002].

a8: Depth distribution. Since the maximum used in a7 is noisy,
we also introduce an attribute that is designed to encourage a broad,
even distribution of depths in the scene:

a8 = 1−
∫
H(z)2dz

where H is the normalized histogram of the depth z of the object,
sampled per pixel. This measure becomes small whenH is “peaky”
(most of the object is at a single depth) and is maximized when H
is “equalized” (a range of depths are visible). Thus, a8 encourages
objects with largely planar areas to take oblique rather than head-
on views, conforming to a human preference observed by Blanz et
al. [1999].

3.1.4 Surface curvature attributes. Geometric surface curvatures
of the shape are assumed to be related to the shape’s semantic
features and are easily computed.

a9: Mean curvature. We compute the mean curvature on the
surface of the object using [Meyer et al. 2002]. We consider
curvature magnitudes to be relevant (not generated by noise) if they
could be generated by a feature larger than 1% of the object’s size.
We then linearly map the curvature values into [0, 1] and compute
the mean value visible at a particular viewpoint:

a9 =
1

Ap

∫
x∈Ap

[
|h(x)|
hmax

]
01

dA.

Here, Ap is the projected screen area occupied by the object, hmax

is the absolute value of largest relevant curvature, and the operator
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[ ∗ ]01 clamps its argument to the range [0, 1]. We use the absolute
value of the curvature to avoid cancellations in the integration.

a10: Gaussian curvature. Gaussian curvature is also used in
previous work ([Page et al. 2003; Polonsky et al. 2005]); we
compute Gaussian curvature on the surface of the object using
Meyer et al.’s angle defect formula [2002]. We treat the computed
Gaussian curvatures analogously to the mean curvatures:

a10 =
1

Ap

∫
x∈Ap

[
|k(x)|
kmax

]
01

dA.

a11: Mesh saliency. The final surface curvature attribute is mesh
saliency, introduced by Lee et al. [2005]. Mesh saliency is con-
structed from the mean curvature of the surface at multiple levels
of detail; Lee et al. apply this attribute for both mesh simplifica-
tion and viewpoint selection. As defined by Lee et al., the attribute
a11 is the total sum of mesh saliency visible from a viewpoint.
We note that this confounds two factors—average mesh saliency
and the projected area measure a1 described above. While it would
probably be wise to decorrelate these two factors, we use a11 as
described in the literature for easier comparison.

3.1.5 Semantic attributes. Much of the previous work in auto-
matic viewpoint selection has avoided the use of semantic features
preferring that view goodness can be fully computed from the ge-
ometry of the object. We include semantic features because we be-
lieve that they are important in human preference, and we will be
able to measure this importance in Section 3.3.

a12: Above preference. Blanz et al. [1999] observe that people
tend to prefer views from slightly above the horizon. Based on their
observation, Gooch et al. [2001] initialize their optimization for
“artistic” compositions from such a view. Thus attribute a12 favors
these views with a smooth falloff towards the poles:

a12 = G
(
φ;

3π

8
,
π

4

)
,

where φ is the latitude with 0 at the north pole and π
2

at the
equator, and G(x, µ, σ) is the non-normalized Gaussian function
exp(−(x−µ)2/σ2). The a12 attribute peaks at π

8
above the equator

and is minimal at the south pole. For objects with no inherent
orientation, such as the heptoroid and rocker arm models (Figure 6),
we simply set this term to zero. Nevertheless, typical computer
graphics models generated by CAD or acquisition processes do
indeed have a stored up-direction, and it is also possible to use
techniques like those of Fu et al. [2008] to determine the orientation
of man-made objects with unknown up directions.

a13: Eyes. When the object of interest is a creature with eyes or
a face, we observe that people strongly prefer views where the
eyes can be seen [Zusne 1970]. Thus, attribute a13 measures how
well the eyes of a model can be seen, when appropriate. In our
system we mark the eyes by hand, by annotating a central vertex
on the surface with a tiny radius. We note that just as technology
for automatic face detection in images and video has matured, we
expect that analogous algorithms for 3D models will become robust
in the future and will obviate this manual task. To measure a13, we
simply sum this “eyes” surface value for all visible pixels. Most
pixels do not contribute, so the behavior of this attribute is roughly
that of a delta function for visibility attenuated by a cosine term for
oblique views. For objects without eyes, this attribute is set to zero.

Table I. : Time to precompute the 14 attributes for a single viewpoint,
averaged over 10242 views, for a range of example models. One of the
simpler models, the fish, was fastest at more than 5 FPS, whereas the
slowest was Lucy, the most complex of our models, at less than 1 FPS.
Timings are reported for a single thread on a 2.26 GHz Intel Core 2 Duo
with 4 GB of memory assisted by a NVIDIA GeForce 9400M graphics card.

Model Faces Time(ms)
Fish 11K 194
Airplane 24K 260
Dragon 100K 483
Lucy 526K 1256

a14: Base. Just as people tend to prefer seeing eyes, they tend to
avoid views from directly below for objects that have an obvious
base on which they sit. The attribute a14, measures the amount
that the hand-marked base is visible, using the same strategy as
for eyes. While we mark these features by hand, for many models
they could be found using the automatic method of Fu et al. [2008].
Note that we distinguish the base from the eyes because we expect
their behaviors to be anti-correlated, and because some models will
have eyes, some will have base, some will have both, and some
neither.

3.1.6 Implementation. Our implementation uses an image-based
pipeline to avoid dependencies on mesh representation. To compute
the attributes described above we render the object into an ID, a
depth and several color images, and then use image processing
to compute projected area, silhouettes, and so forth. For mesh
saliency, we use the implementation of Lee et al. to assign a value at
every vertex as a preprocess. Similarly, we compute the mean and
Gaussian curvatures of the surface using the method of Meyer et
al. [2002]. For any particular view we render a “color” buffer
containing these values interpolated across faces and compute the
appropriate quantities on the resulting rendered images. The eyes
and base attributes are computed in a similar way.

Table I shows the time required to precompute the 14 attributes for
a range of example models in our unoptimized implementation.

3.2 Collecting human preferences

Here we describe a study we performed in order to collect data
about the relative goodness of views according to human prefer-
ences. In the next section we will use this data to train a model for
view goodness that combines the attributes described above. It will
also allow us to remark on the relative importance of the individual
attributes in forming a combined measure of goodness. In order to
design a study to meet these goals, a number of issues need to be
addressed.

The first concern is what models to use for the study. Researchers
performing perceptual studies often resort to models of abstract
shapes like “blobbies” or geons. However, for several reasons we
prefer to use models that are more recognizable. First, the resulting
data will better characterize the kinds of models that we work with
in computer graphics. Second, it is easier for people to express
view preferences when they understand what they are seeing, so
we believe the data will be both more meaningful and less noisy.
Nevertheless, we would like the models to represent a broad range
of shapes and objects. We selected 16 models, some scanned from
real objects and some modeled via software, and they may be seen
in the upper four rows of Figure 6. Eight of the models will be
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Fig. 2: Distribution of the pairs of selected views for three objects used in our study (120 pairs per object). In the middle the pairs are
plotted in the θ × φ domain, and colored by the attribute in which they vary most. To illustrate typical image pairs, we highlight pairs that
were particularly dominant in a specific attribute—top-left: projected area, bottom-left: silhouette length, top-middle: silhouette curvature,
bottom-middle: above preference, top-right: eyes, bottom-right: max. depth. In each plot, the highlighted pair on the left side of the plot
corresponds to the image pair at the top, and the pair on the right corresponds to the image pair on the bottom.

familiar to graphics researchers (armadillo, dragon, etc.) and the
other eight are selected from separate categories in the Princeton
Shape Benchmark [Shilane et al. 2004]. All but one of the objects
are recognizable shapes even for people who have never seen them
before. The heptoroid model is more abstract but still easy to
understand from most or all views.

Our goal is to learn by asking people which views they prefer
and by how much. Unfortunately there is no absolute scale for
this kind of preference, since one person’s “pretty nice” is another
person’s “okay.” Moreover such judgements are not quantitative. A
standard strategy in such scenarios is to use the method of paired
comparisons [David 1963], which asks people a simpler question:
“Which of these two views do you prefer?”—a two-alternative
forced choice experiment (2AFC). In principle, by asking many
people this question for many pairs of views it will be possible to
establish an overall ranking for all views. Standard practice would
be to ask this question for either all pairs or many random pairs.
However, in designing our study we found it to be more effective
to ask the question only for pairs of nearby views. In particular
we found that an angular separation of π

8
radians provides a nice

balance in that the views are sufficiently far apart that the difference
between the images is obvious, and yet similar enough that it does
not feel like an “apples-to-oranges” comparison. We additionally
fix the orientation of any rendered view such that the up vector
of the model is aligned with the up vector in the image plane, so
nearby views typically have similar orientations.

Regardless of how similar or different the views are, the instruc-
tions given to the subjects are critical. We want people to consider
the shape of the object when choosing a view, but “shape” means
different things to different people, especially graphics non-experts.
Therefore, inspired by language in the study of Blanz et al. [1999],
we provide the following instructions to our subjects: Which of the

two views of the object shown below reveals its shape better? For
example, suppose that you had to choose one of these two pictures
to appear in a magazine or product advertisement. Do not worry if
neither of them is ideal. Just click on the one that you think is better.

The next issue to address is how to choose the particular pairs
of views to be used in the study. The natural goal is to choose
pairs randomly but roughly uniformly distributed over the sphere.
We use rejection sampling with a probability distribution that
includes a term that discourages choosing views that are close to
previously selected views. In addition, we include two more criteria
for rejection. First, in order to avoid pairs where the model appears
to have rotated substantially in image space, we include a term that
discourages pairs from varying much in the longitudinal direction
near the poles. This term falls off with latitude so that at the horizon
pairs vary equally in θ and φ, as can be seen for the sets of pairs
shown in Figure 2. Second, if we sample the sphere uniformly, it
is possible that many pairs will not exhibit strong differences in
the attributes and that for a particular attribute aj we may not get
a range of variation among the pairs. Therefore, we also include
a rejection policy that favors pairs of views in which attributes
are varying. Specifically we use the sum of absolute differences
in each attribute between the pairs, where each attribute is scaled in
terms of standard deviations (because they have different ranges of
values). Using this strategy we selected 120 pairs of views for each
of the 16 models (3,840 images in total). Figure 2 shows the pair
distributions for three models, colored by the attribute by which
each pair varies the most. Of course all attributes vary somewhat
for every pair, but it is easy to see that across all pairs every attribute
has substantial variation. (See Figure 3 for the color coding.)

We ran our study on the Amazon Mechanical Turk (AMT), a
service that allows researchers (and others) to provide small jobs
for anonymous workers over the Internet for a small amount of
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money. The use of AMT is increasing in computer graphics and
human-computer interaction research, see, for example, [Heer and
Bostock 2010], [Downs et al. 2010] and [Cole et al. 2009]. In our
study, each job (“HIT” in Mechanical Turk terminology) was to
make a choice for each of 30 images. For each person, the pairs
were presented in random order, and for each pair the two images
were randomly shuffled left-right. To filter out careless subjects,
we resort to the strategy of Cole et al. [2009] in which every pair
is shown to the worker twice (show 30 pairs, shuffle, then repeat)
and we only retain the data from HITs where the two answers were
reasonably consistent. Specifically, we require that 22 or more of
the 30 answers were answered the same way the second time. This
affords us reasonable confidence (p > 0.99) that the worker was
not picking randomly, and also keeps data where the user could not
make up their mind a substantial fraction of the time.

After discarding the inconsistent data we have between 30 and 40
people expressing a choice in each pair, for a total of 2,119 HIT
assignments and 127,140 choices overall. This data was collected
from 524 unique workers. Many subjects did multiple HITs, but
they were never presented the same pair in more than one HIT. The
most active subject worked on 51 HITs, and the histogram falls off
roughly with a power law shape where most workers did just one
HIT.

3.3 Modeling Viewpoint Preferences

The study produces a set of data that we can now use to evaluate
predictive models of viewpoint preference, and to fit models of
viewpoint goodness. The data is as follows: each pair i was shown
twice to ni/2 people, meaning there were ni opportunities to pick
one image or the other. Let’s say that view v0i was picked ki times,
and v1i was chosen ni − ki times. If we have a probabilistic model
that predicts how often a user would choose v0 over v1, call it
P (v0, v1) ≡ P (v), then we can compute the likelihood that such a
model explains our observed data.

3.3.1 Likelihood of observing our data. Out of the ni people who
see pair i, the probability that exactly ki will choose view v0i is
given by the binomial distribution:(

ni
ki

)
P (v)ki(1− P (v))ni−ki

Thus, the likelihood L of seeing these observations, over all M
pairs is:

L [P (v)] =

M∏
i

(
ni
ki

)
P (v)ki(1− P (v))ni−ki .

As usual when dealing with probabilities, the log-likelihood form
is more convenient:

L∗ [P (v)] =

M∑
i

ln

(
ni
ki

)
+ ln(P (v)ki) + ln((1− P (v))ni−ki)

= c+

M∑
i

ki lnP (v) + (ni − ki) ln(1− P (v))

3.3.2 Interpreting likelihood values. To gain some intuition
about the range of likelihood values, we can compute the likeli-
hood of two basic predictive models: a naı̈ve model that randomly
guesses and an oracle that has perfect knowledge. Consider first

the naı̈ve model that predicts either image with equal likelihood;
Pnaı̈ve = 1/2 and its value of L∗naı̈ve is −33203. On the other end
of the spectrum, we can consider an oracle with complete knowl-
edge of the users’ selections. When the subjects select view v0 over
v1 k out of n times, the oracle predicts a probability of k/n for
that selection; Poracle = k/n and L∗oracle is −3688 on our data. The
naı̈ve predictor and the oracle provide a convenient frame of refer-
ence for any model’s performance: we express the model fitness as
F [P ] = (L∗ [P ] − L∗naı̈ve)/(L∗oracle − L∗naı̈ve). The closer a model’s
fitness approaches unity, the better it predicts the response of our
users.

3.3.3 Goodness functions for single viewpoints. The preceding
discussion focussed on models that operate on pairs of viewpoints;
while this matches our collected data, for practical applications
we would prefer a model that predicts the goodness of a single
viewpoint. Given goodness values for single viewpoints G0 ≡
G(v0) and G1 ≡ G(v1), we need a prediction of how often a user
would choose v0 over v1. There are many possible models for this
response and, generally, this method of paired comparison has been
an active area of research since the 1920’s [David 1963]. The well-
studied Bradley-Terry model [1952] characterizes the probabilityP
that a person will choose v0 over v1 as the sigmoid-shaped logistic
function of the difference in their inherent goodnesses: 1

P (G0, G1) =
1

1 + e−σ(G0−G1)

Examining Figure 3, note that many of the attributes already have
sigmoid-like shapes, indicating some weak explanatory power,
even individually.

Given a particular model of viewpoint goodness G such as a single
attribute, or a weighted combination of various attributes, we can
compute the probability P (G0, G1) that a user would select the
first view, then evaluate the likelihood L∗ [P (G0, G1)] that this
model explains our data, and finally assign a fitness value F [G]
relative to the performance of the oracular and naı̈ve models.
Schematically, we have:

G
B-T model−−−−−→ P

user data−−−−→ L∗ oracle & naı̈ve−−−−−−−→ F

We now explore various models of viewpoint goodness, with
the intent of discovering important attributes and providing the
practitioner with practical models.

3.3.4 Single-attribute models of goodness. As described in Sec-
tion 3, each viewpoint is associated with N = 14 attributes. Fig-
ure 3 shows raw fitnesses of the individual attributes. We first ex-
plore the simplest models of viewpoint goodness: goodness is given
by a single weighted attribute: Gi = ai. We can fit the value of σ
in the Bradley-Terry model to the data by any convenient 1D opti-
mization procedure. To avoid over-fitting the data we use 100 trials
of random sub-sampling validation: in each trial the weights were
trained on a random subset of half of the objects and tested against
the other half. The final weights are the means of the 100 trials, and
are shown in Table II. We can see that surface visibility plays the
single strongest predictive role; on the other hand, silhouette cur-
vature does not appear to do as well on its own. However, when

1Though we refer the reader to [Bradley and Terry 1952] for the details,
the Bradley-Terry model follows from the intuitive idea that if view 0 has
goodness G0 and view 1 has goodness G1, then the probability that v0 is
picked over v1 is G0/(G0 +G1).
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Fig. 3: Plots of the difference in each attribute value in a viewpoint pair versus the user’s preference for the first image in the pair. The
horizontal axes are in units of standard deviations of the differences in attribute value across all pairs of images. The matrix in the lower-
right shows the linear correlation coefficients between pairs of attributes, with the values of highly-significant correlations marked. Note the
three strong clusters: area attributes (projected area, surface visibility, viewpoint entropy and mesh saliency), silhouette curvature attributes
(silhouette curvature and silhouette curvature extrema), and surface curvature attributes (Gaussian curvature and mean curvature).

Table II. : Fits of individual attributes to our study data. Fitnesses that
are listed as exactly zero are statistically indistinguishable from zero at a
significance level of p = 0.05, the rest are all significant.

Model F σ(F )

Oracle 1 0

Surface visibility 0.38 0.072
Viewpoint entropy 0.37 0.092
Projected area 0.28 0.110
Mesh saliency 0.26 0.100
Sil length 0.20 0.120
Above 0.16 0.064
Base 0.13 0.087
Eyes 0.09 0.033
Sil curvature 0.01 0.040
Sil curvature extrema 0 0.032
Depth distribution 0 0.020
Max depth -0.02 0.021
Abs mean curvature -0.15 0.260
Abs Gaussian curvature -0.15 0.180

Naı̈ve 0 0

combined with other attributes, it may perform quite differently:
see Section 3.3.5.

3.3.5 Linear models of goodness. The natural extension to the
single-attribute models are the linear-K models that combine K
attributes to form a goodness value:

G(v) =
∑
j∈S

wjaj

where v is a viewpoint and S is the set of indices of attributes
used in the particular model (|S| = K). Since σ in the Bradley-
Terry model is made redundant by w1, we fix it to be one. We

can then optimize the values of the weights by maximizing the
value of F [Gi], which is nonlinear in the unknown weights wi
and the known attributes ai of the views. However, the function
is quite smooth and the downhill simplex method of Nelder and
Mead [1965] find the optimal weights consistently and quickly
for our data. There are

(
14
2

)
= 91 linear-2 models,

(
14
3

)
= 364

linear-3 models, etc., for a total of 16383 possible linear mod-
els. We separately trained and tested all 16383 models using, as
before, 100 trials of repeated random sub-sampling. The result is
a distribution of fitnesses for each potential linear model, sam-
pled 100 times. Given the statistical nature of the sampling, it
is inappropriate to, say, simply select the model with the high-
est mean energy for some particular K: another run of 100 trials
of training and testing might result in a slightly different ranking.

1 5 14
0

0.5

1
Instead, we use Tukey’s “honestly
significant difference” (HSD) method,
a multiple-comparison procedure [Hsu
1996], to identify the pool of models that
perform statistically indistinguishably
from the top-performing model. Shown
on the right is the mean and standard
deviations of the fitnesses of the pool of
top-performing models for K = 1 . . . 14. Note that using more
than five attributes does not improve the performance of the linear
models.

Given that there are several top-performing linear models with K
attributes, we recommend the following single-attribute, linear-3
and linear-5 models, spanning the useful range of K (Table III).
In each class K, these recommended models are in the pool of
highest-performing models, and are chosen with an eye towards
computational simplicity of the component attributes. The simplest
model is simply a2, surface visibility, and if more computational
resources are possible, then we add a12 and a4, the above prefer-
ence and silhouette length, respectively. Still better performance is
possible by adding a1 and a7, projected area and max. depth. If
it is possible to include marked features such as eyes or base, we
also suggest an alternative model, linear-5b, which swaps a7 for
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Table III. : Weights of viewpoint attributes for our recommended models of
viewpoint goodness. Note that, since each attribute is scaled differently, the
absolute values of weights are meaningless and comparing weights across
attributes is not possible.

a2 a12 a4 a1 a7 a13

Single 23
Linear-3 18 2.8 0.51
Linear-5 14 2.7 0.46 14 2.5
Linear-5b 15 2.6 0.42 13 670

−5 0 5
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0.4

0.6

0.8

1

a

b 
c

f

e

d

Fig. 4: Fit of differences in goodness values in the linear-5b model to
observed user selections for 1920 pairs of viewpoints across 16 models.
G(v) is a linear combination of viewpoint measures fit to the probability
model of Section 3.3. The points highlighted in green are particularly
well-predicted by the model, while the points in red are not; the labels
correspond to viewpoints in Figure 5.

a13, the eyes attribute. Table IV lists the performance of our rec-
ommended models. We use the linear-5b model for the rest of the
discussion that follows and in Figures 4, 6, 7, 8 and 9.

Figure 4 shows how the optimized weights of the linear-5b model
fit the user’s preference data. Overall, the sigmoid shape of the
logistic curve appears to fit the shape of the data well. While the
“slope” of the curve appears to be slightly shallower than that of
the data, this can be explained by the nature of the probabilities

Table IV. : Performance of predictive models. All models were tested using
100 trials of random sub-sampling validation: in each trial the models were
trained on a random subset of half of the objects and tested against the
other half. The resulting mean and standard deviation of test fitnesses are
reported.

Model 〈F 〉 σ(F )

Oracle 1 0

10-NN 0.77 0.020

Quadratic 0.63 0.090

Linear-5b 0.58 0.060
Linear-5 0.58 0.060
Linear-3 0.55 0.062
Single 0.38 0.072

Naı̈ve 0 0

associated with the binomial distribution—that “errors” near ∆ =
0 are more easily explained, in a probabilistic sense, than those out
in the tails of the curve. Examples of successes and failures of the
model are marked in Figure 4 and the corresponding images are
shown in Figure 5.

3.3.6 Quadratic models of goodness. We note that there is an
obvious gap between the performance of our linear-5b model and
that of the oracle. It is natural to wonder whether some other model
might perform better. Perhaps the oracle is unapproachable—after
all, it is unrealistic because by definition the oracle knows the
answer for any user preference! One strategy would be to consider
attributes other than the 14 that we have evaluated for the views
used in our dataset, which we leave for future work. However, we
can ask if there are other models that would use our attributes
to better fit the data. A potential concern of a linear model is
that it cannot characterize correlations between the attributes (see
Figure 3 for evidence of their correlations). Therefore we consider
a quadratic model as follows:

G(vmi ) =

N∑
j

wja
m
ij +

N∑
jk

wjka
m
ija

m
ik

This model has 14 + 105 = 119 weights, and, when fit using
the same procedure as before, has a mean fitness of F = 0.63
(Table IV), a moderate improvement over the various linear models.

3.3.7 Non-parametric models of preference. We also experi-
mented with non-parametric fitting of the viewpoint preference
data. In particular, we applied the K-nearest-neighbors model for
various values of K [Fix and Hodges 1951]. We again randomly
split the data into a training set and a test set by partitioning the
data associated with a random subset of half the models. To find the
likelihood of each viewpoint in the testing set, we first computed
the attribute deltas for all 14 attributes, converted to units of stan-
dard deviations, then found the K-nearest neighbors in the train-
ing set using Euclidean distance. Once theK-nearest neighbors are
found, the likelihood is computed in the same way as with the or-
acle, but averaged over the K-nearest neighbors. The performance
of this model is shown for K = 10 in Table IV, averaged over 100
trials (similarly to the linear-K models, values of K greater than
10 did not improve performance). While the performance of this
model is better than the linear or quadratic models, it is onerous
to compute: to predict the preference for one view in a viewpoint
pair, all 14 attributes must be computed for the two viewpoints and
the minimum distance must be computed to the training set of 960
viewpoint pairs. In addition, the K-nearest-neighbors model does
not directly provide the goodness for a single viewpoint, only the
preference in a viewpoint pair.

Of course, any number of other models from machine learning
might perform even better, but at the expense of both computational
complexity and loss of intuition. Thus, for applications and results
described in the remainder of the paper, we employ the linear-5b
model. For example, based on this goodness model we show in
Figure 6 the best view for each of the 16 shapes used in our study,
and for 4 shapes not used in our study.

4. APPLICATIONS

In lieu of virtual hands and clay, most complex tasks in three
dimensions, such as shape modeling or camera navigation, are

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Perceptual Models of Viewpoint Preference • 9

a) b)

d) e) f)

c)

Fig. 5: Selected viewpoint pairs corresponding to the labelled points in Figure 4. In cases a) and f), the users expressed no clear preference,
while in the other cases they preferred the right image. The upper row (a, b, c) shows example pairs of images that are well-predicted by our
model, ordered by increasing values of predicted and actual goodness. The lower row shows pairs of images that are not well-predicted by
our model. Our model predicts that users will select the left-most image of pair d) less than 20% of the time, but it was actually selected in
over 80% of the trials; an anti-correlation. Our model predicts no preference for either view of pair e), yet users nearly always selected the
left view. Finally, pair f) is overwhelming predicted to choose the left-most image, but users chose both images equally. The right-most image
allows the second child’s head to be more clearly seen, a quality that our attributes do not capture.

Fig. 6: The best view according to the six attribute model for each of the 16
training models (rows 1–4) and four additional model (last row).

generally performed in two dimensions when using contemporary
computer hardware. True 3D input devices [Zhai 1998] are not
widely deployed, perhaps because of the simplicity and commercial
success of commodity 2D input devices such as the mouse or, more
recently, multi-touch panels. At the same time, the complexity of
3D modeling packages [Maya 2010; 3ds Max 2010] has grown to
a point where one requires significant training and practice to carry
out even the most mundane tasks.

In the following, we propose several applications that use our
goodness measure (or any other) to assist a user in finding good
views and navigating around a 3D model.

4.1 Finding the N -best views

A straightforward application that uses our goodness measure is
finding theN -best views of a model, as proposed and demonstrated
in [Polonsky et al. 2005; Yamauchi et al. 2006; Vieira et al. 2009].
Instead of picking a fixed number of best views, we have decided to
find those views that are most representative, and therefore employ
mean-shift clustering [Comaniciu and Meer 2002] to find the
dominant peaks in our goodness function. As a result, depending on
the model chosen, we obtain varying numbers of best views. As can
be seen in the distribution of good views over the viewing sphere,
low frequency goodness functions result in only few representative
views (Figure 7), whereas high frequency functions require a larger
number of views to reveal all important features of the shape.

4.2 Periodic orbits and scrubbing

Closed-loop viewpaths provide a convenient 1D user interface
to viewing the salient features of a 3D model, removing the
complexities of the standard trackball interface. The user can scrub
the viewpoint along the viewpath by means of a standard scroll bar
widget or by linear mouse drags. This simplified 1D interface is
appropriate for applications where the user might want to quickly
preview the features of a model, for example, when browsing a
large database of 3D models. In this scenario, models are often
explored simply by rotating around the equator [Google 2010].

The method presented by Barral et al. [2000] computes a greedy
path that suffers from visibly jaggy motion. Saleem et al. [2007]
correct this by smoothly connecting stable and salient viewpoints.
We go a step further, and compute a path such that the integral of
goodness along the path is maximized. Similar to [Saleem et al.
2007], we initialize a closed loop such that it passes through re-
gions of high goodness using our N -best views algorithm de-
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Fig. 7: The seven best views of the Lucy model, selected using the mean shift algorithm on the linear-5b model. Using the mean shift algorithm
on the viewing sphere, the number of views do not need to be pre-selected. The goodness value of each view is displayed on the left: note the
clear distinction between the various types of views.

Fig. 8: A closed, periodic camera orbit passing through the best views of
the rocker arm object.

scribed above. The path optimization then proceeds by optimizing
a snake [Kass et al. 1988] on the view sphere, guided by the gra-
dient of our goodness measure. To ensure that the path is of con-
trollable length and smoothness, we use the common energy terms
for stretch and bending. The result is a closed, periodic loop that
passes through all good views, and can either be animated, or ex-
plored with a 1D scrub bar (Figure 8).

4.3 Trackball extensions

Note to the reviewer: the trackball and orbit interfaces are
available for direct evaluation in the accompanying executable.

Finally, we can further enhance the traditional trackball interface
with a goodness-based force model that gently guides the user
towards good viewpoints and tries to keep them away from bad
viewpoints. We term the two modes of the trackball grab, which is
the mode of holding the mouse button down and moving the model,
and throw, which is the animation path the model camera describes
after the mouse has been released. These two modes of interaction
are treated separately: while strong guidance can be perceived as
a significant disturbance during the grab operation, the throw path
can be adjusted with a larger force.

Grab As the user rotates the trackball, we apply a nudge force
in the direction of and proportional to the gradient of the goodness
function, but only use the component which is orthogonal to the
current direction of motion. The summed force is scaled down
to ensure that the nudged camera travels the same distance than
the original camera would without the nudge. This adds a small
resistance to motions that would travel to bad viewpoints and eases

Fig. 9: Top: the trackball gentle nudges the viewpoint towards better views
while the user is dragging with the mouse. Bottom: if the user “throws” the
trackball, the path is attracted by nearby high-quality viewpoints. The black
line shows the original path without nudging, while the pink path shows the
nudged viewpoint path experienced by the user.

motions towards good viewpoints. The nudge force is small in all
cases, but increases with the speed of the user’s input, similar to
how mouse acceleration depends on input speed in current desktop
systems. The expectation is that when a user applies large, fast,
coarse motions, they will end up at a good viewpoint more often
than not. The results of this guidance force can be seen in Figure 9
(top). Note that the adjustments are locally subtle, but add up to
large displacements in the direction of good viewpoints.

Throw In the standard trackball interface, once the mouse but-
ton is released, the animation around the model proceeds linearly,
with the last rotation speed applied during grabbing. By adding our
nudge force described previously, we can guide the animations to-
wards better views. We furthermore add in some friction force that
is inversely proportional to the goodness of the current viewpoint,
so as to slow down near good viewpoints. To avoid overshooting
good viewpoints, we pre-compute the entire animation path directly
after switching from grab to throw, and search for the first point
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along that path where the camera would turn π away from the ini-
tial throw direction (the turn-around point). From there we perform
gradient descent to find the nearest off-path local maximum of our
goodness function, and warp the path, from the turn-around point
to the end, such that it ends in the best view. The adjustment to the
animation path is more pronounced when compared to the modi-
fication during grabbing (Figure 9, bottom), but we can guarantee
that the animation comes to a stop in good views. We expect that
this will especially beneficial for model exploration on devices with
constrained touch input, such as Apple’s iPhone or iPad devices.

5. VALIDATION

Section 3 reports on the effectiveness of several trained goodness
models at predicting people’s viewpoint preferences. Those exper-
iments used cross-validation, meaning the training was performed
on different set of models than were used for testing. Nevertheless,
to further validate the method, we compared our derived goodness
model linear-5b (Section 3.3.5) aginst human preferences for views
on an independent set of models than had been used for previous
evaluation, and using a different procedure described here.

For each of the four 3D models shown at the bottom of Figure 6,
we generated 100 random viewpoints on the viewing sphere, using
a rejection sampling procedure similar to that of Section 3.2 (except
that each view is independently chosen, rather than in pairs).

In a new Mechanical Turk study similar to that of Section 3.2, we
showed subjects random pairs of views of the same model (rather
than pairs separated by a specific angle). In each HIT, the worker
was shown 30 randomly chosen pairs, shuffled and repeated for
consistency as before. After filtering out inconsistent HITs, data
were gathered from a total of 1075 HITs performed by 233 subjects.
Each of 400 viewpoints was shown between 234 and 370 times.

Since each viewpoint was compared against a random set of other
views (as opposed to a single nearby view) we can use the fraction
of the time each view was picked as a simple approximation of the
“true goodness” of the viewpoint – good views are picked often,
and bad views rarely. For comparison, this value is plotted (vertical
axis) against the linear-5b goodness measure (horizontal axis) for
two of the four models in Figure 10. Of the four models, the bunny
model (left) exhibits the strongest correlation, while the city model
(right) has the weakest correlation. Also shown is a best-fit logistic
regression curve and its deviation from the data.

Table V reports the coefficients of the linear-5b term in the logistic
regression for all four models, along with the standard errors and
the t-values associated with these coefficients (df = 98). The t-
values are extremely large (p < 10−65) in all cases, indicating that
linear-5b is a highly significant predictor of the kinds of views that
our subjects preferred in this experiment. We believe that the reason
the city model offers the weakest correlation is that it exhibits a
number of qualitative differences from the other models in Figure 6,
including an overall “boxiness” and a planar arrangemement of
multiple connected components.

6. CONCLUSIONS, LIMITATIONS AND FUTURE
WORK

We have presented a perceptual model of viewpoint preference, and
while our model performs well for the task carried out in our user
study, we see this as the starting point for a much larger research
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Fig. 10: Comparison of the linear-5b model against human preferences for
views of the bunny (left) and the city (right). Each data point represents a
single viewpoint; the curve shows the best fit logistic regression.

Table V. : Logistic regression for validation study. Coefficients of the
linear-5b term in the logistic regression, and the standard errors and t-
values associated with these coefficients (df = 98).

Model Logistic S.E. t-value
Bunny 0.699 0.0099 70.6
David 0.822 0.0135 60.9
Buddha 0.481 0.0084 57.5
City 0.684 0.0152 45.0

effort. The method as proposed does have some limitations, and
these generally identify interesting areas for future work.

We can only make quantitative claims about the 16 models for
which we have collected data. While we picked models that have
a range of visual features and qualities, there are certainly more
classes of models to be explored. Furthermore, we are only search-
ing over two camera parameters, which surely benefits the opti-
mization procedure of Section 3.3. So, in addition to evaluating
over a larger set of models, we also hope to search over more cam-
era parameters, such as field-of-view, up vector, velocity, and the
camera position in complex scenes [Christie et al. 2008].

There are many potential attributes of viewpoint goodness de-
scribed in the literature, and we did not include every such at-
tribute. In ongoing work, we hope to include broader classes of
attributes. For example, Podolak et al. [2006] observe object sym-
metries can play an important role in selecting viewpoints. But also
attributes such as lighting variation, occluding contours, texture and
others could be included. It is important to note though, that the fact
that silhouette curvature is surprisingly unimportant after model fit-
ting, and that surface visibility is by far the most influential metric,
points to some significant redundancies in any combined measure
of viewpoint goodness. As a result, we eventually discarded some
measures that initially appeared promising, such as “number of dis-
connected silhouette loops” which are heavily correlated with mea-
sures such as silhouette length. Thus, a more robust methodology
for investigating of the correlations between various attributes is
merited.

And finally, while our fitted model appears to be reasonable, it is
error-prone and we have identified some of the most egregious error
modes in Figures 4 and 5. This does point to the possibility that
special-case combinations of measures will create better combined
goodness measures for classes of models.

REFERENCES

3DS MAX. 2010. Autodesk, http://www.autodesk.com/

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



12 • Secord et al.

3dsmax.
ATTNEAVE, F. 1954. Some informational aspects of visual perception.

Psychological Review 61, 3, 183–193.
BARRAL, P., DORME, G., AND PLEMENOS, D. 2000. Visual understand-

ing of a scene by automatic movement of a camera, short paper. Proc.
Eurographics 2000.

BIEDERMAN, I. 1987. Recognition-by-components: A theory of human
image understanding. Psychological Review 94, 115–147.

BLANZ, V., VETTER, T., BÜLTHOFF, H., AND TARR, M. 1999. What
object attributes determine canonical views? Perception 24, 575–599.

BRADLEY, R. AND TERRY, M. 1952. Rank analysis of incomplete block
designs, i. the method of paired comparisons. Biometrika 39, 324–345.

BYERS, Z., DIXON, M., GOODIER, K., GRIMM, C., AND SMART, W.
2003. An autonomous robot photographer. Intelligent Robots and
Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on 3, 2636–2641 vol. 3.

CHRISTIE, M., OLIVIER, P., AND NORMAND, J.-M. 2008. Camera
control in computer graphics. Computer Graphics Forum 27, 8, 2197–
2218.

COLE, F., SANIK, K., DECARLO, D., FINKELSTEIN, A., FUNKHOUSER,
T., RUSINKIEWICZ, S., AND SINGH, M. 2009. How well do line
drawings depict shape? In ACM Transactions on Graphics (Proc.
SIGGRAPH). Vol. 28.

COMANICIU, D. AND MEER, P. 2002. Mean shift: a robust approach
toward feature space analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24, 5, 603–619.

DAVID, H. A. 1963. The Method of Paired Comparison. Hafner Publishing.
DOWNS, J. S., HOLBROOK, M. B., SHENG, S., AND CRANOR, L. F.

2010. Are your participants gaming the system?: screening mechanical
turk workers. CHI ’10: Proceedings of the 28th international conference
on Human factors in computing systems, 2399–2402.

DRUCKER, S. AND ZELTZER, D. 1995. Camdroid: A system for imple-
menting intelligent camera control. Proceedings of the 1995 symposium
on Interactive 3D graphics, 139–144.

FIX, E. AND HODGES, J. 1951. Discriminatory analysis, nonparametric
discrimination: Consistency properties. Tech. Rep. 4, USAF School of
Aviation Medicine, Randolph Field, Texas. Unpublished technical report;
see [Silverman and Jones 1989] for a re-printed version with commentary.

FLEISHMAN, S., COHEN-OR, D., AND LISCHINSKI, D. 1999. Automatic
camera placement for image-based modeling. Computer Graphics Fo-
rum 19, 12–20.

FU, H., COHEN-OR, D., DROR, G., AND SHEFFER, A. 2008. Upright
orientation of man-made objects. ACM Transactions on Graphics 27, 3
(Aug.), 42:1–42:7.

GOOCH, B., REINHARD, E., MOULDING, C., AND SHIRLEY, P. 2001.
Artistic composition for image creation. Eurographics Workshop on
Rendering, 83–88.

GOOGLE. 2010. Google 3D warehouse and SketchUp,
http://sketchup.google.com/3dwarehouse/.

HEER, J. AND BOSTOCK, M. 2010. Crowdsourcing graphical perception:
Using mechanical turk to assess visualization design. Proceedings of
Computer Human Interaction (CHI 2010). ACM CHI 2010 Best Paper
Nominee.

HOFFMAN, D. D. AND SINGH, M. 1997. Salience of visual parts. In
Cognition. Vol. 63(1). 29–78.

HSU, J. 1996. Multiple Comparisons: Theory and Methods. Chapman and
Hall/CRC.

KAMADA, T. AND KAWAI, S. 1988. A simple method for computing
general position in displaying three-dimensional objects. Comput. Vision
Graph. Image Process. 41, 1, 43–56.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1988. Snakes: Active
contour models. International Journal of Computer Vision 1, 4, 321–331.

KOENDERINK, J. AND DOORN, A. V. 1979. The internal representation of
solid shape with respect to vision. Biol. Cybern. 32, 211–216.

KWON, J. AND LEE, I. 2008. Determination of camera parameters for
character motions using motion area. The Visual Computer 24, 7 (July),
475–483.

LAGA, H. AND NAKAJIMA, M. 2008. Supervised learning of salient 2D
views of 3D models. The Journal of the Society for Art and Science 7, 4,
124–131.

LEE, C. H., VARSHNEY, A., AND JACOBS, D. W. 2005. Mesh saliency. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers. 659–666.

MAYA. 2010. Autodesk, http://www.autodesk.com/maya.
MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. 2002.
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