
J. Parallel Distrib. Comput. 68 (2008) 1319–1328
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Advanced interactive medical visualization on the GPU
Natalya Tatarchuk a,∗, Jeremy Shopf a, Christopher DeCoro b

a Game Computing Applications Group, AMD GPG (O-CTO), United States
b Princeton University, United States

a r t i c l e i n f o

Article history:
Received 14 March 2008
Received in revised form
24 June 2008
Accepted 25 June 2008
Available online 28 June 2008

Keywords:
Isosurface extraction
Volume rendering
Real-time rendering
Medical visualization
Isosurface rendering
Programmable shaders
GPU
DirectX10
Geometry shaders
Stream-out
Marching cubes
Marching tetrahedra
Ray casting
Ray marching
Transfer function editing

a b s t r a c t

Interactive visual analysis of a patient’s anatomy by means of computer-generated 3D imagery is crucial
for diagnosis, pre-operative planning, and surgical training. The task of visualization is no longer limited
to producing images at interactive rates, but also includes the guided extraction of significant features
to assist the user in the data exploration process. An effective visualization module has to perform a
problem-specific abstraction of the dataset, leading to a more compact and hence more efficient visual
representation. Moreover, many medical applications, such as surgical training simulators and pre-
operative planning for plastic and reconstructive surgery, require the visualization of datasets that are
dynamically modified or even generated by a physics-based simulation engine.

In this paper we present a set of approaches that allow interactive exploration of medical datasets
in real time. Our method combines direct volume rendering via ray-casting with a novel approach for
isosurface extraction and re-use directly on graphics processing units (GPUs) in a single framework.
The isosurface extraction technique takes advantage of the recently introduced Microsoft DirectX r©10
pipeline for dynamic surface extraction in real time using geometry shaders. This surface is constructed
in polygonal form and can be directly used post-extraction for collision detection, rendering, and
optimization. The resulting polygonal surface can also be analyzed for geometric properties, such as
feature area, volume and size deviation, which is crucial for semi-automatic tumor analysis as used,
for example, in colonoscopy. Additionally, we have developed a technique for real-time volume data
analysis by providing an interactive user interface for designing material properties for organs in the
scanned volume. Combining isosurface with direct volume rendering allows visualization of the surface
properties aswell as the context of tissues surrounding the region and gives better context for navigation.
Our application can be used with CT and MRI scan data, or with a variety of other medical and scientific
applications. The techniqueswe present are general and intuitive to implement and can be used formany
other interactive environments and effects, separately or together.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Inmanymedical fields, the application of volume rendering and
isosurface extraction for rapid and meaningful visual representa-
tion of datasets such as CT, MRI and PET scans can make an im-
portant difference in the speed of surgical planning, diagnosis, and
treatment. It is also a useful tool in surgical simulation andmedical
education. Instead of training on real specimens, virtual endoscopy
provides a convenient and cheap alternative to practice the course
of the surgery and has the advantage of already providing a visual-
ization of the real data, which makes exact pre-operative planning
possible. This visualization is based on a 3D scan of the respective

∗ Corresponding author.
E-mail addresses: natalya.tatarchuk@amd.com, natashat@bu.edu

(N. Tatarchuk), jeremy.shopf@amd.com (J. Shopf), cdecoro@cs.princeton.edu
(C. DeCoro).

0743-7315/$ – see front matter© 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2008.06.011
body region, like a computed tomography (CT) or magnetic reso-
nance imagine (MRI) scan or a rotational angiography. The result-
ing data from one (or more) of these scans is visualized in a way
that allows interior views of the dataset, mimicking the real envi-
ronment as closely as possible.

Minimally invasive procedures have gained increasing impor-
tance in medical practice because of the – in many cases – faster
(and thus cheaper) process, the often easier and less painful way
in which inner organs can be reached and the faster recovery of
patients, which reduces the overall risk and helps to keep clini-
cal costs low. These procedures have proven particularly useful in
surgery, neurosurgery, radiology, and many other fields. In most
cases, these procedures are performed using an endoscope, a fiber
optic of small diameter that serves as a light source, with a small
camera and one or more additional tools attached to it.

Medical visualization for dataset analysis and applications such
as virtual endoscopy imposes stringent requirements for any

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:natalya.tatarchuk@amd.com
mailto:natashat@bu.edu
mailto:jeremy.shopf@amd.com
mailto:cdecoro@cs.princeton.edu
http://dx.doi.org/10.1016/j.jpdc.2008.06.011


1320 N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328
virtual system used in this domain. Such a systemmust exhibit the
following properties:

• High-quality rendering at interactive rates
• Ability to move the camera viewpoint into the dataset
• Strict on-demand extraction of isosurface for analysis and

interaction with the virtual surgery tools
• Delivery of a coherent context for the extracted surfaces

Interactive visual analysis of a patient’s anatomy by means
of computer-generated 3D imagery is crucial for diagnosis, pre-
operative planning, and surgical training. The task of visualization
is no longer limited to producing images interactive rates; it also
includes the guided extraction of significant features to assist the
user in the data exploration process. An effective visualization
module has to perform a problem-specific abstraction of the
dataset, leading to amore compact and hencemore efficient visual
representation. Moreover, many medical applications, such as
surgical training simulators and pre-operative planning for plastic
and reconstructive surgery, require the visualization of datasets
that are dynamically modified or even generated by a physics-
based simulation engine.

Previously existing systems either strive for interactive render-
ing of isosurfaces alone, generate images via volumetric render-
ing by itself, or produce high-quality renderings offline that can
later be viewed with no further possibility of interaction. Though
existing approaches can typically render isosurfaces directly on
GPU, they are not able to extract and re-use polygonal surfaces for
additional interaction (such as collision detection with the simu-
lated surgical tool) or analysis of surface features (tumor analy-
sis). Additionally, interactive direct volume representations would
be highly desirable due to additional expressiveness provided by
semi-transparent surfaces and the possibility of visualizing objects
of interest without prior segmentation of the dataset. To date, no
comprehensive framework has been presented that is capable of
delivering both isosurface extraction and volumetric rendering in
a single package with sufficient quality at truly interactive frame
rates.

In this paper we present a set of approaches that allow
interactive exploration of medical datasets in real time. We
implement our methods using massively parallel architectures
available to average consumers — the latest commodity GPUs.
Recent generations of consumerGPUarchitectures are designed for
high efficiency and high computational load, along with effective
use of coherency and extensive memory bandwidth requirements.
Furthermore, with the advent of programmable GPU pipelines,
we can take advantage of the massive parallelism of GPUs,
rather than relying on significantly slower-scaling CPU multi-
core architecture. In this work, we take advantage of the huge
memory bandwidth available on the most recent generation of
consumer GPUs to process extensive datasets, such as the Visible
Human Project r© dataset (taking up more than 576 MB of video
memory) at extremely fast frame rates. We utilize efficient pixel
and geometry processing, taking advantage of dynamic load
balancing in the latest GPU architectures (such as ATI Radeon HD
2000 and beyond series), and build our system to fully utilize
Shader Model 4.0 capabilities available with the DirectX 10 GPU
pipeline.

Our system combines direct volume rendering via ray-casting
with isosurface extraction directly on the GPU. The volume
rendering approach is reformulated to take advantage of parallel
pixel processing of the GPU pipelines. The isosurface extraction
sub-system takes advantage of the novel DirectX 10 GPU pipeline
for dynamic surface extraction in real-time. This framework is able
to process individual voxel portions of the input dataset in parallel
using geometry shaders. Our approach will scale with the number
of parallel single instruction, multiple data (SIMD) and texture
units in a GPU generation.
We have developed a technique for real-time volume data
analysis by providing an interactive user interface for designing
material properties for organs in the scanned volume. We provide
an interactive user-driven material design system for quick and
intuitive organ classification based on material properties of the
dataset. Intelligently combining isosurface extraction with direct
volume rendering in a single system allows for surface properties
as well as for the context of tissues surrounding the region and
gives better context for navigation. Our application can be used
with CT and MRI scan data, or with variety of other medical
applications.

The pipeline for our medical visualization system presented in
this paper is as follows:

• We start by collecting the data. This is typically done by
performing a CT or MRI scan on a patient. In our case, we
simply used an existing data set from theVisibleHumanProject,
collected by the U.S. National Institutes of Health National
Library of Medicine.

• We then proceed to preprocess the data to compute gradients
that are used for rendering correct lighting information at run
time. This is done in an offline process.

• Once we have extracted and preprocessed the data, we can
proceed to render it, using our on-demand isosurface extraction
on the GPU and interactive volume rendering via ray-casting.

• At any point we can also interactively classify features by using
our material user interface, designed to interactively specify,
edit and save custom 2D transfer functions for each dataset.

2. Efficient isosurface extraction and rendering on GPU

An implicit surface representation, as opposed to explicit
representation with a polygon mesh or parametric surface, is
frequently the most convenient form of many modeling tasks. The
high computational expense of extracting explicit isosurfaces from
implicit functions, however, has made such operations a frequent
candidate for GPU acceleration. Now, with recent advances in
GPU architectures, we demonstrate the efficient implementation
of an intuitive extraction algorithm using a hybrid marching
cubes/marching tetrahedra approach. We are able to leverage the
strengths of each method as applied to the unique computational
environment of the GPU, and in doing so, achieve real-time
extraction of detailed isosurfaces from high-resolution volume
datasets. We are also able to perform adaptive surface refinement
directly on the GPU without lowering the parallelism of our
algorithm. In addition,we show that the complementary technique
of inverse quadratic interpolation significantly improves surface
quality.

Implicit functions are a powerful mechanism for modeling and
editing geometry. Rather than the geometry of a surface given
explicitly by a trianglemesh, parametric surface, or other boundary
representation, it is defined implicitly by an arbitrary continuous
function f (x), x ∈ R3. By defining an arbitrary constant c (referred
to as an isovalue, and frequently 0), we can define our surface as
the set of all points (isosurface) for which f (x) = c. For simplicity,
we will frequently make the substitution F(x) = f (x) − c = 0,
without loss of generality.

Apart from the area of medical visualization, deformable iso-
surfaces, implementedwith level-setmethods, have demonstrated
great potential in visualization for applications such as segmen-
tation, surface processing, and surface reconstruction. Specifically,
these hold immense importance in the area of fluid dynamics and
rendering applications ranging to simulating complex fluid flows
around objects to detailed fluid dynamics for liquids interacting
with objects. Isosurfaces are normally displayed using computer
graphics, and are used as data visualization methods in compu-
tational fluid dynamics, allowing engineers to study features of a



N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328 1321
fluid flow (gas or liquid) around objects, such as aircraft wings.
An isosurface may represent an individual shockwave in super-
sonic flight, or several isosurfaces may be generated showing a
sequence of pressure values in the air flowing around a wing. Iso-
surfaces tend to be a popular form of visualization for volume
datasets since they can be rendered by a simple polygonal model,
which can be drawn on the screen very quickly. Numerous other
disciplines that are interested in 3D data often use isosurfaces to
obtain information about pharmacology, chemistry, geophysics,
and meteorology.

The advantage of this representation is to allow arbitrary
definition of the underlying function – and, thus, the implied
surface – in a simple and direct manner. Such a representation
can easily have arbitrary and dynamic topology, modified using
Boolean and arithmetic operators, analyzed using traditional signal
processing techniques, and used with simulations of natural
phenomena. To perform these operations using traditional, explicit
modeling would be impractically complex.

The disadvantage, however, is that such representations pose
a challenge when rendering isosurfaces directly at real-time rates
— especially given the rasterization pipelines used in GPUs, which
are designed for triangle input data. Several classes of rendering
techniques exist, such as direct volume rendering (volumes and
implicit functions are synonymous in this context), which renders
the volume without an intermediate boundary representation.
Among such techniques, Westerman and Ertl [16] demonstrated a
method for texture-based rendering of volume datasets defined on
a uniform regular grid; later work proposed a generalized method
for rendering volumes defined over tetrahedral grids [13].

While such techniques are limited to rendering applications,
an alternate class of methods extracts an intermediate explicit
isosurface (usually a triangle mesh) that can be used for further
processing and analysis in addition to rendering. Examples include
later use for collision detection, shadow casting, and animation.
The most commonly used algorithms for isosurface extraction
are derivatives of the marching cubes (MC) algorithm [9] and
the closely related marching tetrahedra (MT) algorithm [14]. The
algorithm we present is a hybrid of these two methods, such that
we leverage the strengths of each method as applicable to the
unique constraints and benefits of the GPU architecture.

Isosurface extraction is a compute-intensivemethod. Isosurface
extraction on the GPU has been a topic of extensive research
for the last several years. Much work has been done to generate
highly efficient renderings at high frame rates. Prior to the
DirectX10 generation of GPUs, the programming model lacked
support for programmable primitive processing and the ability to
output geometric quantities for later re-use. Thus, previous work
lacked the ability to generate a polygonal surface directly on the
GPU and re-use it for subsequent computation such as collision
detection or optimization of volumetric rendering for surrounding
organs. Much of the extraction work was redundantly performed
regardless of whether the isovalue was dynamically changing or
not, resulting in wasted computation. Nonetheless, a number of
researchers succeeded at fast, interactive isosurface rendering.

Pascucci [11] rendered tetrahedra to the GPU, using the
MT algorithm in the vertex shader to re-map vertices to
surface positions. Subsequently, Klein et al. [7] demonstrated a
similar tetrahedral method using pixel shaders, which at the
time provided greater throughput. Other researchers instead
implemented the marching cubes algorithm [3,6]. For an broad
overview of both direct rendering and extraction methods, see the
survey by Silva et al. [15].

All of these methods, however, were forced to use contrived
programming techniques to escape the limitations of the pre-
viously restrictive GPU architecture. Using the geometry shader
stage, executing on primitives post vertex shader and prior to ras-
terizer processing, we are able to generate and cull geometry di-
rectly on the GPU. This provides a more natural implementation of
marching methods. With our approach the isosurface is dynami-
cally extracted directly on the GPU and constructed in polygonal
form and can be directly used post-extraction for collision detec-
tion or rendering and optimization. The resulting polygonal surface
can also be analyzed for geometric properties, such as feature area,
volume and size deviation, which is crucial for semi-automatic tu-
mor analysis, for example, as used in colonoscopy. Our pipeline
provides a direct method to re-use the result of geometry process-
ing, in the form of a stream-out option, which stores output trian-
gles in a GPU buffer after the geometry shader stage. This buffer
may be re-used arbitrarily in later rendering stages, or even read
back to the host CPU.

In our work, we present a hybrid method that leverages
the strengths of both marching cubes and marching tetrahedra,
relative to the unique abilities and constraints of the latest
GPU architecture. In addition, we provide several complementary
techniques that enhance the quality of the extracted surface. The
contributions of our work are:

(1) Adaptive isosurface extraction optimized for the GPU pro-
grammable geometry pipeline;

(2) Improved resulting surface quality through quadratic root-
finding while maintaining lower extraction grids for memory
saving; and,

(3) Strict on-demand extraction of isosurface.

Our isosurface extraction pipeline (Fig. 2) starts by dynamically
generating the voxel grid to cover our entire volume or a section of
it. Using geometry shader and stream-out features, we tessellate
the volume into tetrahedra on-the-fly. This allows us to adaptively
generate and sample the grid based on the demands of the
application. Each input voxel position is dynamically computed
in the vertex shader. The geometry shader then computes six
tetrahedra spanning the voxel cube. As an optimization, we only
generate tetrahedra for voxels containing the isosurface, providing
memory savings. Once we have the tetrahedra, we then use the
marching tetrahedra algorithm to dynamically extract polygonal
surface from our scalar volume consisting of material densities.
In both passes for tetrahedral mesh generation and isosurface
extraction, we use the geometry amplification feature of the
geometry shader stage directly on the GPU.

We utilize the efficiency of parallel processing units on the
GPU more effectively by separating isosurface extraction into
two passes. Given a set of input vertices, a geometry shader
program will execute in parallel on each vertex. Given that each
individual instance of this program is, in fact, serial on a given SIMD
unit, we maximize each effective SIMD utilization by separating
extraction into two phases — fast cube tetrahedralization and
a marching tetrahedra pass — reducing serialization of each
individual geometry shader instance. Thus, we first execute on
all vertices in our grid in parallel, generating tetrahedra, and
then execute on each tetrahedra in parallel, generating polygons.
This also allows the optimal balance between parallelization of
polygonal surface extraction with efficient memory bandwidth
utilization (the tetrahedra, exported by the first pass, consist of just
three four-component floating point values).

2.1. Isosurface extraction using marching methods

Our method is based on both the marching cubes and the
marching tetrahedra algorithms for isosurface extraction. The
domain in R3 over which F is defined is tessellated into a grid
at an arbitrary sampling density. In both methods, for each edge
e = (x0, x1) in the tessellation, we will evaluate F(x0) and F(x1);



1322 N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328
by the intermediate value theorem, if the signs of F(x0) and F(x1)
differ, a isosurface vertex must intersect e. Considering all edges,
we can connect vertices to form triangles.

Each possible assignment of signs to grid cells can be assigned
a unique number. This is subsequently used to index into a
lookup table, which will indicate the number and connectivity of
isosurface triangles contained in the cell. In the marching cubes
method, each cell has either vertices, and therefore there exist
28 possible assignments of the sign of F(x). Each cube typically
produces up to 6 triangles (as described in [9]). Therefore a
straightforward lookup table holds 28

· 6 · 3 = 4, 608 entries.
The size of this table presents an important consideration for
parallel implementations on the GPU. The edge lookup tables are
typically stored in SIMD-specificmemory for efficient and coherent
access by each shader program instance. However, constructing
large tables may result in additional register pressure. This would
significantly reduce the number of parallel threads simultaneously
running on the GPU. Smaller lookup tables ensure higher order
of parallelization because the GPUs are able to schedule a higher
number of threads due to a higher number of available registers.
Furthermore, Ning and Bloomenthal [10] have demonstrated that
MC can generate incorrect connectivity (even if the inherent
ambiguities are avoided by careful table construction). Therefore,
straight marching cubes polygonization would need to handle the
undesirable topology in a special-case manner for each geometry
shader invocation, increasing serialization for each instance of the
program and significantly impairing performance of the resulting
algorithm.

The marching tetrahedra method, by its use of a simpler cell
primitive, avoids these problems. There exist only 16 possible
combinations, emitting at most two triangles, and no ambiguous
cases exist. This tiny lookup table allows effective use of the
fast access SIMD registers and results in much higher utilization
of the parallel units on the GPU. One additional consideration
for the related class of applications is that the cube is more
intuitive for grid representation and adaptive sampling, with
stronger correspondence to the original sampling. We note
that the tetrahedron is an irregular shape and does not share
these advantages. Straightforward tetrahedralization of a cube
requires between 4 and 6 tetrahedra per cube, thereby requiring
a corresponding factor of increase in the number of function
evaluations required for the resulting mesh, if no sharing is done
between primitives. To deal with this consideration, we introduce
our hybrid method.

2.2. Hybrid cubes-tetrahedra extraction

The GPU architecture excels at large-scale parallelism; how-
ever, we must remember that the programmable units perform
in lock-step, so we must carefully parallelize our computations for
maximum performance.

The general strategy is to use marching cubes to exploit the
additional information present in cubes, as opposed to tetrahedra.
As we mentioned earlier, straightforward tetrahedralization is
a relatively complex program in GPU terms, and would reduce
thread parallelization. Rather than perform triangulation directly,
it is preferable to adaptively tetrahedralize the input cubes. We
perform final triangulation of the output surface using the simpler
extraction operation on the tetrahedral grid. Our method uses the
following steps:
Pass 1: Domain voxelization

(1) Dynamically voxelize the domain
(2) Tessellate cubes into tetrahedra near the surface
(3) Output tetrahedra as points to stream-out buffer
Pass 2: Marching tetrahedra

(1) Perform marching tetrahedra on generated tetrahedra
(2) Identify edges intersecting surface
(3) Fit a parabola on the edge and find root, by either:

(a) Performing third function evaluation along edge
(b) Using function gradients to estimate a parabola

(4) Output each isosurface triangle to a stream-out buffer for later
re-use and rendering or straight to rasterization for immediate
results

Voxelize input domain. In many cases (for example with
volumetric data generated with medical imaging tools or physical
simulations) the input data itself is specified on a regular
(cubic) grid. Therefore, from the perspective of reducing function
evaluations (corresponding to texture reads on the GPU) it is most
practical to evaluate the function exactly at those points, and
generate output triangles accordingly.

Although tetrahedral meshes provide a straightforward and
efficient method for generating watertight isosurfaces, most
preprocessing pipelines do not include support for directly
generating tetrahedral meshes. Furthermore, we would like to
support isosurface extraction on dynamicmeshes and thuswish to
generate tetrahedra directly on the GPU (for example, for particle
or fluid simulations).

We start by rendering a vertex buffer containing n3 vertices,
where n is the grid size. Using automatically provided primitive ID,
we generate voxel corner locations directly in the vertex shader.
Subsequent geometry shader computes the locations of the voxel
cube corners.We can then evaluate isosurface at each voxel corner.
Cube tetrahedralization. In the first pass’ geometry shader we
tessellate each cube voxel containing the surface into at most
six tetrahedra. We can either re-use already computed isosurface
values, or, to reduce stream-out memory footprint, simply repeat
evaluation of tetrahedra corners in the next pass. Prior to
tetrahedralization we compare the signs of the voxel corners to
determinewhether a given voxel contains the isosurface. Using the
geometry shader’s amplification feature, we dynamically generate
tetrahedra for only those voxels that contain the isosurface. We
output tetrahedra as point primitives into stream-out buffers,
typically storing only the (x, y, z) components of tetrahedra corner
vertices for efficient use of stream-out functionality.
Adaptive isosurface refinement. We have a number of options
for adaptive polygonization of the input domain. We can perform
an adaptive subdivision of the input grid, during the first pass of
domain voxelization.While sampling the isosurface,we can choose
to further subdivide the voxel, refining the sampling grid in order
to detect new isosurface parts that were missed by the original
sampling grid. This uses straightforward octree subdivision of the
input 3D grid and will generate smaller-scale tetrahedra for the
new grid cells on the finer scale if the original voxel missed the
isosurface.

We can additionally add adaptive tetrahedra refinement in the
subsequent pass during cube tetrahedralization at very little cost.
This allows us to generate new sampling points inside the existing
grid cells in which the isosurface has already been detected by
the previous pass. In the six-tetrahedra tessellation used, each
tetrahedron shares a common longest edge along the diagonal
of the cube. At the cost of one function evaluation at the edge
midpoint, we can perform a longest-edge subdivision for each
of the six tetrahedra. We emit only those of the resulting 12
tetrahedra that contain the surface, which are a subset of those
previously discarded whose signs differ from the sign of the center
point. By performing one additional evaluation and at most six
comparisons, we can perform a two-level adaptive simplification.
Note also that as the subdivision is always to the center shared



N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328 1323
edge, the tetrahedra of this cell will be consistent with those of
neighboring cells and avoid cracks in the output surface.
Marching tetrahedra.Using theDrawAuto functionality of DirectX
10, we render the stream-out buffer as point primitives in the next
pass, performing the MT algorithm in the geometry shader stage.
We identify the edges of the current tetrahedron that contain the
output surface. As stated,MT is preferable for GPU implementation
due to the significantly reduced lookup table sizes and output
complexity. However, by the use of our hybrid method, which
re-uses function evaluations from the initial cube grid, we can
avoid redundancy; also, our adaptive subdivision step significantly
reduces the number of primitives generated. Thus, our hybrid
method is able to utilize the strengths of both methods as adapted
to the GPU pipeline.
Fit a parabola along edges. While the MT rules identify the edges
that will result in an output vertex, they do not specifywhere along
that edge the vertex will lie.

For an edge e = (x1, x2), the vertex ve will fall along the line
segment x1 + (x2 − x1)t , t ∈ [0, 1], and ideally, the choice of t is
such that F(v(t)) ≈ 0, so as to best approximate the isosurface.We
can therefore consider finding the optimal vertex as a root-finding
problem over t . The traditional approach uses the (linear) secant
method,

t =
−F(x1)

F(x2) − F(x1)
. (1)

We have found, however, that significantly better visual quality
results from using the inverse quadratic interpolation method
(more familiar as a step of Brent’s method [12]). This method fits
a parabola to the function, and estimates the root by solving a
quadratic equation. We illustrate the difference between the two
methods in Fig. 3. Our quadratic root-finding method performs
faster than applying an additional level of subdivision; in fact, it
frequently produces better results than a corresponding increase
in the sampling density. We provide two methods to fit such a
parabola, according to the demands of the particular application.
Option 1: Perform a third evaluation per edge. The simplest way
to fit a parabola along the edge is to perform a third function
evaluation F(x3). The three points will then uniquely define the
parabola. For a first approximation, we use the result of the secant
method for x3. Solving the quadratic defined by the points, we
have:

v =
F(x2)F(x3)

(F(x1) − F(x2))(F(x1) − F(x3))
x1

+
F(x1)F(x3)

(F(x2) − F(x1))(F(x2) − F(x3))
x2

+
F(x1)F(x2)

(F(x3) − F(x1))(F(x3) − F(x2))
x3.

Because this additional evaluation is only performed along
edges that are known to output a vertex, we are able to selectively
restrict these additional evaluations to locations in which they are
useful rather than simply increasing the function grid size, which
would lead to superfluous evaluations.

As we optimize the grid tessellation in previous phases, an
additional evaluation is not a bottleneck in our implementation,
and thus provides additional quality with no performance penalty.
Should this be a limitation for certain applications, we propose an
alternate method that avoids additional evaluations.
Option 2: Estimate parabola with gradients. Frequently, the
function gradient ∇F(x) is either known, or can be computed
easily along with F(x). With static volume textures, ∇F is often
computed beforehand, and stored with F in a single RGBA texture.
Similarly, with common implicit functions, such as metaballs, the
additional work required to compute the gradient is minimal.
Finally, many applications will already be required to evaluate the
gradient for use as a shading normal. In all such cases, we can use
the gradients to estimate a parabola, obviating the need for the
additional function evaluation.

We seek a parabola that interpolates both endpoints, andmakes
the best least-squares approximation to the gradients at each
endpoint. We can restrict the problem the to line v(t) = x1 +

(x2 −x1)t , defining F ′(x) as the directional derivative Dx2−x1F(x) =

∇F(x) · (x2 −x1). The class of parabola interpolating the endpoints,
and its derivative, is:

F(t) = F(x1) + (F(x2) − F(x1) − b)t + bt2 (2)

F ′(t) = F(x2) − F(x1) − b + 2bt. (3)

We seek a choice of b that minimizes the least-squares error
between the function derivatives relative to the actual derivatives,
where the relationship is given by the following system of
equations:

F ′(x1) ≈ F(x2) − F(x1) − b (4)

F ′(x2) ≈ F(x1) − F(x2) + b. (5)

The least squares solution is the average of both solutions, or
b = 0.5(F ′(x2) − F ′(x1)). We can now solve Eq. (2) directly using
the quadratic equation, which is guaranteed to have exactly one
root in the interval. Note that if F ′(x1) = F ′(x2), this is equivalent
to performing the linear secant method.
Storing extraction results for subsequent re-use. We can
intelligently generate isosurface on demand, either as a function of
the implicit domain changes or when the user modifies isovalue,
using our material editor interface. After computing MT, we can
output isosurface triangles into a GPU stream-out buffer for re-
use in the later passes or even storage on disk. This capability
is a critical feature of our method that is enabled by the latest
GPU pipeline. While the extraction already runs at real-time rates,
the actual frame rate perceived by the user will be dramatically
faster, as most frames are able to re-use the geometry from the
stream-out buffer. This frees up GPU resources for additional
computation, such as, for example, combining high-quality direct
volume rendering with isosurface rendering for better context
guidance during medical training simulations (as seen in Fig. 1).
Furthermore,weutilize the extracted polygonal surface to improve
the rendering speed of our volumetric renderer. We render the
isosurface faces as the starting positions for ray-casting in the
direct volume rendering algorithm (as an optimization for ray-
casting). The isosurface can also be rendered directly into a shadow
buffer for shadow generation on the surrounding organs.

3. Direct volume rendering

To provide context to our isosurface visualization, we render
the surrounding data directly. This is achieved by casting rays from
the viewer, through each pixel of the screen, and sampling the
volume data at a constant rate. We refer the reader to the seminal
direct volume rendering papers by Drebin et al. [1] and Levoy [8]
for more in-depth discussion.

Our implementation of direct volume rendering is a GPU ray-
castingmethod based on thework of Krueger andWestermann [4].
The algorithm begins by calculating ray directions in normalized
texture coordinate space. This is performed by rendering the
bounding box with a per-vertex color equal to the texture
coordinate at that corner. First, the back faces of the bounding box
are rendered to a screen sized texture to determine the exit point
Coordback of the ray for each pixel. Subsequently, the front faces of
the bounding box are rendered to texture to determine the entry



1324 N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328
Fig. 1. We show the result of extracting a series of highly detailed isosurfaces at interactive rates. Our system implements a hybrid cube-tetrahedramethod, which leverages
the strengths of each as applicable to the unique architecture of the GPU. The left pair of images (wireframe and shaded, using a base cube grid of 643) show only an extracted
isosurface, while the right pair displays an alternate isosurface overlaid with a volume rendering.
Fig. 2. Isosurface extraction pipeline.
point Coordfront (See Fig. 4 for an example of these textures). The
ray direction in texture coordinate space for each pixel can then be
calculated as Coordback- Coordfront . Ray marching is then performed
in a pixel shader by marching a ray from Cooordfront , advancing by
a fixed step size, for n steps. n is the number of steps required to
advance to the exit point (length(Coordback- Coordfront ) / step_size).

At each ray marching step, the absorption of color by the
material at the current volume location of the ray must be
accounted for. The color of the current location in the volume is
modulated by the accumulated opacity of the ray and the opacity
of the location. The result is added to the accumulated color. The
following equations model describe this operation:

Ca = Ca + (1.0 − αa)α(x)C(x)
αa = αa + (1.0 − αa)α(x),

where C(x) and α(x) are the color and opacity at volume location
x, and Ca and αa are the accumulated color and opacity for the ray.
Themapping of scalar volumedata to color and opacity is described
in Section 3.2.

3.1. Lighting model

The simplest volume rendering model assumes an emission-
absorptionmodel. Emission-absorptionmodels ignore effects such
as shadowing and multiple scattering. It is possible to use only an
albedo value for emission, but we chose to model emission with a
local lightingmodel (C(x) below) to highlight surfaces and features
present in the data.

C(x) = kaA(x) + kd((1.0 − G)A(x)
+G(1.0 − ka)(N(x) · L ∗ .5 + .5)) + ks(N(x) · H)nG

A(x) = albedo
N(x) = gradient of scalar at x
H = halfway vector between view and light directions
ka = ambient reflection coefficient
kd = diffuse reflection coefficient
ks = specular reflection coefficient
n = specular exponent
G = normalized gradient magnitude [0.0, 1.0].
We chose a warped Lambertian diffuse lighting model. This
warped diffuse term scales and biases the dot product of the
gradient and the lighting direction to 0.0 to 1.0 instead of −1
to 1. This allows all regions to be visible regardless of current
lighting direction. We also add a specular term that is weighted
by the gradient magnitude. We only want specular contributions
in areas of high gradient. Additionally, we linearly interpolate
between the albedo and diffuse color based on the gradient
magnitude, as described by [5]. This places less visual importance
on homogeneous regions and more on features identified by
varying gradient magnitude.

3.2. Transfer function specification

To allow the user to interactively classify data, we provide
an intuitive interface to map scalar volumetric data to color and
opacity values. This mapping is referred to as a transfer function.
An interactive and intuitive transfer function editor is an important
part of the classification process.

All transfer functions must have at least one dimension, usually
density. We have chosen a 2D transfer function based on density
and gradient magnitude. Gradient magnitude can be thought of as
the measure of ‘‘surfaceness’’ of a location. This extra dimension
allows for more flexibility. For example, brain matter may have
the same density as the outer dermis, but the gradient magnitude
allows the user to assign different colors and opacities to regions
with these properties.

Our user interface (shown in Fig. 5 consists of several scalable
and translatable boxwidgets overlaid on a histogramof the volume
data. The box widgets correspond to a distribution function and
have an associated opacity and color that is defined by user
selection. At each frame of rendering, the distribution function
of each widget is multiplied by the associated color and opacity
and rendered into a 2D lookup texture. This 2D texture (Fig. 6)
defines the transfer function. At each volume sample taken while
raymarching, this texture is indexed tomap density values to color
and opacity.

3.3. Aliasing reduction

According to the Nyquist theorem, our sampling rate must be
twice the highest frequency in the data to reconstruct the original



N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328 1325
Fig. 3. Linear vs. Quadratic Root-finding. The traditional approach to finding the intersection point of the isosurface is to linearize the implicit function, and solve for the
root (left). By taking an additional sample, so as to fit a parabola and find its root (right), we can make a better approximation of the actual zero-crossing.
Fig. 4. Ray directions are calculated in texture coordinate space from the texture
coordinates of the front and back faces of bounding geometry.

signal. It would be sufficient to sample the data at twice the span
of a voxel. However, the transfer function and lighting calculations
introduce additional high frequencies.

Pre-integrated volume rendering approaches such as that
presented by Engel [2] provide solutions for correctly integrating
these additional frequencies. However, the original pre-integrated
volume rendering approach handles only a one dimensional
transfer function and no lighting. There is no efficient way to
pre-integrate the additional dimensionality of a 2D transfer
function and a lighting function.

To reduce the visual impact of the aliasing that arises due to
under-sampling, we introduce a stochastic sampling technique to
our ray-caster. By offsetting the start location of each ray by a small
random amount, we substitute banding artifacts for less visually
distracting high-frequency noise. Note that this high-frequency
signal is noticeable only during extreme close-ups. Fig. 7 illustrates
the visual benefit of jittering rays.

3.4. Incorporating isosurface for ray-casting optimization

The purpose of volume rendering the data surrounding the
extracted isosurface is to provide context. In our application,
we treat the extracted surfaces as opaque. Thus, we can safely
terminate our rays at the isosurface. This is achieved by rendering
the extracted isosurface’s 3D texture coordinates into the exit
point texture Coordback. An example exit point texture is provided
in Fig. 8.

This straight-forward integration of the extracted polygonal
surface as the ray exit points results in unpleasant aliasing artifacts
for the volume rendering. This is caused by the fact that during the
Fig. 5. Our transfer function editing interface.
Fig. 6. Left: Transfer function color look-up texture. Right: Opacity look-up texture.



1326 N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328
Table 1
Timing results for continuous isosurface extraction including CPU and GPU timing comparisons

Dataset Grid Time (ms) Faces FPS Face/sec GPU:CPU

Head 643 GPU 6.3 122 K 158 fps 19.2 M 9.9:1
(c = 0.47) CPU 66.8 130 K 15 fps 1.95 M

323 GPU 2 26 K 489 fps 13 M 4.5:1
CPU 9.3 27 K 107 fps 2.91 M

Thorax 643 GPU 8.07 192 K 124 fps 24 M 9.9:1
(c = 0.3) CPU 81 197 K 12.4 fps 2.43 M

323 GPU 2.5 40 K 400 fps 16 M 5.3:1
CPU 12.3 37.2 K 81.5 fps 3.04 M

Abdomen 643 GPU 8.5 192 K 116 fps 22.3 M 9.4:1
(c = 0.3) CPU 79.9 189 K 12.52 fps 2.37 M

323 GPU 3 42 K 337 fps 14.1 M 4.3:1
CPU 12.4 40.1 K 81 fps 3.27 M

See the supplementary video (http://ati.amd.com/developer/gdc/2007/MedViz-SiggraphMovie-H.264.mov) for more results.
Fig. 7. Jittering ray starting positions reduces the visual impact of aliasing.
Fig. 8. Incorporating the isosurface into the volume rendering is achieved by
rendering the isosurface into the exit point texture, as described in Section 3.

Fig. 9. Using a fixed sampling rate requires the last sample to be weighted by the
fraction of the last step that is outside of the isosurface.

ray-casting computation, while computing each ray intersection
for a given marching step, the new exit point may simply be
missed. The isosurface coordinates may not lie exactly on the
sample point of a marching ray. This will cause banding artifacts
along the interface between volume rendering and isosurface
rendering. To counteract the last incorrect sample, which will be
inside the surface, we weight it by the fraction of the step that is
outside of the surface (Fig. 9).
4. Results and conclusions

We collected results for continuous isosurface extraction and
volume rendering for all seven sections of the Visible Human
Project dataset (as shown in Table 1). Each section contains
2563 samples on a regular grid. Storing the density and gradient
information for each dataset portion results in a 576 MB memory
footprint of 3D textures. This dataset can be rendered in its entirety
on the GPU. However, due to input data resolution discrepancy, we
chose to render the subsets as separate datasets. We used several
high-resolution off-screen buffers for rendering raymarching front
and exit points as well as some intermediate information, taking
up 120 MB of V-RAM. The stream-out buffer used for storing the
polygonal surface for the extracted isosurface is 85 MB.

4.1. Isosurface extraction results and analysis

Previous methods for GPU-based isosurface extraction have
been forced to use contrived implementations to escape the
limitations of the earlier programmable graphics pipelines. Such
methods, while often performant, are complex to re-implement
andmodify and typically do not support re-use without significant
effort.

We have shown that, with the availability of the latest-
generation GPU architectures, it is possible to take advantage of
the massive parallelism available on the GPU by implementing
flexible and reasonable implementations of marching methods,
while maintaining optimal performance characteristics. We found
that our hybrid method of dynamic domain voxelization followed
by a tetrahedralization pass results in high-performance and high-
quality results (another example in Fig. 11). In our development
of this system, we have explored various types of methods,
including using standard marching cubes or marching tetrahedra
directly. We settled on the final hybrid algorithm presented here
after extensive testing and analysis of performance bottlenecks.
The direct implementation of marching tetrahedra requires

http://ati.amd.com/developer/gdc/2007/MedViz-SiggraphMovie-H.264.mov


N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328 1327
Fig. 10. Results comparison of root-findingmethods. Linear secant method (left) results in surface missing important fine-grain detail (shown by the rough silhouettes of
the smooth input metaballs). Quadratic root finding (right) results in a significantly higher-detail (and, thus, in this case, smoother) surface as compared to the linear secant
method.
Fig. 11. Isosurface extraction on the Visible Human project dataset. These images show examples of isosurface extraction on two volumetric datasets from the Visible
Human Project, each containing 2563 slices of density data, extracted on a 643 grid.
large amounts of redundant isofunction computations, reducing
parallelization. The marching cubes performance was strongly
reduced by the large look-up tables sizes, as well as extraneous
computations for incorrect topology fix-up. Therefore, this hybrid
approach proved to be an excellent tradeoff between the two.

An earlier implementation performed the tetrahedral tessella-
tion and surface extraction in a single pass. However, this severely
limited parallelism. The difference in running time between a cube
that is culled, and one that is both tetrahedralized and used for
isosurface extraction in a single pass, creates a significant bottle-
neck for GPU resources. Instead, by moving the marching tetra-
hedra computation into another pass, we fully utilize GPU pro-
grammable units parallelization for voxelizing the domain and
generating tetrahedra near the surface. Similarly, the marching
tetrahedra pass exhibits the same advantages.

All timing results include resulting polygonal surface rendering
cost and were collected on a Microsoft(R) Windows(R) Vista SP1
PC with AMD Athlon (TM) 64 X2 Dual-Core processor running at
2.4 GHz with 2 GB RAM and an ATI Radeon (TM) HD 4870 graphics
card.

While a common approach to smoothing extracted isosurfaces
is to use linear root-finding, our quadratic root-finding approach



1328 N. Tatarchuk et al. / J. Parallel Distrib. Comput. 68 (2008) 1319–1328
produces significantly higher quality visual results (Fig. 10). In our
example surface detail quality is measured by surface smoothness.
However, for different datasets, using this approach results in
higher quantity of surface details recovered (thus, not necessarily a
smoother surface). This additional computation has very minimal
overhead, requiring less than 30 additional scalar ALU operations
in the marching tetrahedra extraction shader, and an additional
texture fetch, and, as such, having a very slight impact on
performance. Note that the quality of quadratic root-finding for
recursion depth d = 8 exceeds that for linear root-finding for
several additional levels of subdivision (d = 10).

4.2. Volumetric rendering via ray-casting results

Our ray-caster is implemented utilizing Shader Model 3.0
functionality. We dynamically compute per-step lighting results,
integrating the resulting illumination using on the order of 600 ray
marching steps for each ray. We found that the limiting factors
for the ray-caster performance are the application resolution
(resulting in higher fill rates for higher resolution) and the number
of steps taken for each ray computation. Integrating isosurface
mesh as our ray exit points allows us significantly accelerate the
resulting rendering, often by an order of magnitude in speed for
given viewpoints.

4.3. Conclusions and future work

We have presented a set of approaches that allows interactive
exploration of medical datasets in real-time. Our technique is
based on combining direct volume rendering via ray-casting with
isosurface extraction on the GPU. The latter takes advantage of the
programmable DirectX 10 pipeline for dynamic surface extraction
in real-time using geometry shaders. We have optimized our
algorithm to take advantage of the massively parallel GPU
architecture, while tuning it to the strengths and constraints of this
model. Additionally we have developed a technique for real-time
volume data analysis by providing an interactive user interface for
designing material properties for organs in the scanned volume.
Combining isosurface with direct volume rendering allows for
visualization of surface properties enhanced by the context of
tissues surrounding the region and gives better context for
navigation. Our resulting application is both easy to use and results
in high frame rates. We hope to see these techniques propagate in
standard applications for dataset analysis for patients and surgery
planning.

Acknowledgments

We thank Daniel Szecket for his work on the user interface used
for our system. We also extend special thanks to Dan Abrahams-
Gessel and the Game Computing Applications group, as well as the
anonymous reviewers for their help, suggestions and review of this
work.

References

[1] L.C.R.A. Drebin, P. Hanrahan, Volume rendering, Computer Graphics 22 (4)
(1988) 65–74.

[2] K. Engel, M. Kraus, T. Ertl, High-quality pre-integrated volume rendering using
hardware accelerated pixel shading, in: Workshop on Graphics Hardware.

[3] F. Goetz, T. Junklewitz, G. Domik, Real-time marching cubes on the vertex
shader, in: Proceedings of Eurographics 2005, 2005.

[4] R.W. Jens Krueger, Acceleration techniques for GPU-based volume rendering,
IEEE Visualization (2003) 287–292.
[5] C.H.P.S. Joe Kniss, Simon Premoze, A. McPherson, A model for volume lighting
andmodeling, IEEE Transactions on Visualization and Computer Graphics 9 (2)
(2003) 150–162.

[6] G. Johansson, H. Carr, Accelerating marching cubes with graphics hardware,
in: CASCON ’06: Proceedings of the 2006 Conference of the Center for
Advanced Studies on Collaborative Research, ACM Press, New York, NY, USA,
2006, p. 39.

[7] T. Klein, S. Stegmaier, T. Ertl, Hardware-accelerated reconstruction of
polygonal isosurface representations on unstructured grids, pg 00 (2004)
186–195.

[8] M. Levoy, Display of surfaces from volume data, IEEE Computer Graphics and
Applications 8 (3) (1988) 29–37.

[9] W.E. Lorensen, H.E. Cline, Marching cubes: A high resolution 3D surface
construction algorithm, in: Computer Graphics (Proceedings of SIGGRAPH 87),
vol. 21, Anaheim, California, 1987, pp. 163–169.

[10] P. Ning, J. Bloomenthal, An evaluation of implicit surface tilers, IEEE Computer
Graphics and Applications 13 (6) (1993) 33–41.

[11] V. Pascucci, Isosurface computation made simple: Hardware acceleration,
adaptive refinement and tetrahedral stripping, in: Proceedings of VisSym
2004, 2004.

[12] W.H. Press, S.A. Teukolsky, W.A. Vetterling, B.P. Flannery, Numerical Recipies
in C++, Cambridge University Press, 2002.

[13] S. Rottger, M. Kraus, T. Ertl, Hardware-accelerated volume and isosurface
rendering based on cell-projection, in: VIS ’00: Proceedings of the Conference
on Visualization ’00, IEEE Computer Society Press, Los Alamitos, CA, USA, 2000,
pp. 109–116.

[14] P. Shirley, A. Tuchman, A polygonal approximation to direct scalar volume
rendering, SIGGRAPH Comput. Graph. 24 (5) (1990) 63–70.

[15] C. Silva, J. Comba, S. Callahan, F. Bernardon, A survey of GPU-based volume
rendering of unstructured grids, in: 17th Brazilian Symposium on Computer
Graphics and Image Processing.

[16] R. Westermann, T. Ertl, Efficiently using graphics hardware in volume
rendering applications, in: SIGGRAPH ’98: Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, ACM Press,
New York, NY, USA, 1998, pp. 169–177.

Natalya Tatarchuk is a graphics software architect and a
project lead in the Game Computing Application Group
at AMD Graphics Products Group Office of the CTO. Her
passion lays in pushing hardware boundaries investigating
innovative graphics techniques and creating striking
interactive renderings. She works closely with AMD’s
hardware architects as well as leading developers in the
graphics community. In the past she has also been the
lead for the tools group at ATI Research. Prior to that
Natalya worked on 3D modeling software, and scientific
visualization, among other projects. She has published

papers in various computer graphics conferences and articles in technical book
series such as ShaderX and Game Programming Gems, and has presented talks
at SIGGRAPH and at Game Developers Conferences worldwide. Natalya holds BAs
in Computers Science and Mathematics from Boston University and an M.S. in
Computer Science from Harvard University.

Jeremy Shopf is a senior software engineer in the Game
Computing Application Group at AMD Graphics Products
Group (O-CTO) where he works on graphics demos and
novel rendering techniques as part of the demo team.
Prior to working at AMD, Jeremy was a graduate student
researching perceptually driven rendering techniques as a
member of the VANGOGH research lab at the University of
Maryland Baltimore County.

Christopher DeCoro is a Ph.D. candidate in Computer Sci-
ence at Princeton University. His current work focuses on
control and approximation of rendering algorithms; al-
lowing creative and artistic flexibility over both appear-
ance and rendering detail. He also investigates techniques
in geometry approximation, material representation, and
applications of data-driven classification algorithms, in-
cluding problems of computer vision and music informa-
tion retrieval. Christopher was awarded the ATI Research
Fellowship in 2007–2008; he also interned at the 3D Ap-
plications Research Group of ATI Research, where he ex-

plored novel applications of emerging GPU architectures. He obtained his Master’s
degree in Computer Science from Princeton University in 2004, subsequent to earn-
ing his Bachelor’s degree from the University of California, Irvine, in 2002.


	Advanced interactive medical visualization on the GPU
	Introduction
	Efficient isosurface extraction and rendering on GPU
	Isosurface extraction using marching methods
	Hybrid cubes-tetrahedra extraction

	Direct volume rendering
	Lighting model
	Transfer function specification
	Aliasing reduction
	Incorporating isosurface for ray-casting optimization

	Results and conclusions
	Isosurface extraction results and analysis
	Volumetric rendering via ray-casting results
	Conclusions and future work

	Acknowledgments
	References


