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Figure 1: Our system rapidly acquires images under varying illumination in order to compute photometric normals from multiple viewpoints.
The normals are then used to reconstruct detailed mesh sequences of dynamic shapes such as human performers.

Abstract
We describe a system for high-resolution capture of moving 3D ge-
ometry, beginning with dynamic normal maps from multiple views.
The normal maps are captured using active shape-from-shading
(photometric stereo), with a large lighting dome providing a se-
ries of novel spherical lighting configurations. To compensate for
low-frequency deformation, we perform multi-view matching and
thin-plate spline deformation on the initial surfaces obtained by in-
tegrating the normal maps. Next, the corrected meshes are merged
into a single mesh using a volumetric method. The final output is
a set of meshes, which were impossible to produce with previous
methods. The meshes exhibit details on the order of a few mil-
limeters, and represent the performance over human-size working
volumes at a temporal resolution of 60Hz.

1 Introduction
In a variety of industries, ranging from entertainment to manu-
facturing to medicine, it is necessary to acquire representations of
human motion. Even coarse “motion capture,” in which only joint
angles are obtained, has improved the safety of our vehicles, en-
hanced our understanding of the human body, and hinted at new
forms of human-computer interaction. However, the detailed acqui-
sition of the moving geometry and appearance of people and their
clothes will revolutionize the entertainment industry, with digital
actors becoming a staple in video games and films.

Advances in moving-surface capture have been based on contin-
uous progress on several fronts, ranging from the development of
different algorithms to the design of more sophisticated hardware.
However, it remains an open challenge to capture and reproduce

detailed geometry (spatial resolution on the order of a few mil-
limeters) at video rates, for full-body performances seen from 360◦.
Existing techniques each address only a subset of the problems en-
countered in high-resolution dynamic geometry scanning and do
not scale well. On the hardware side, the challenge is to capture
enough well-lit data sufficiently fast and without blinding the actor.
The captured data streams can easily be on the order of several gi-
gabytes per second, posing a challenge to efficiently process it all at
high quality within an acceptable time-frame. For example, binoc-
ular and multi-view stereo offer convenience and dynamic capture,
although they provide detailed data only in high-texture regions.
Active 3D scanning based on structured light provides high-quality
static meshes, but does not scale well to moving scenes or large
working volumes. Photometric stereo (active shape from shading)
offers high-quality geometric detail in the form of normal maps,
but it remains difficult to combine the normal maps from multi-
ple views. Template-based regularization may be applied to any
of these methods, often with visually-compelling results, but the
ultimate quality depends on the similarity of the actual surface to
the template — it is difficult to obtain accurate templates for the
many degrees of freedom of clothing, for example.

In this work, we describe a practical system for capturing highly
detailed 3D geometry of an actor’s performance at sixty frames per
second. We begin by acquiring normal maps from a small number
of views (i.e., 8 or 9), using a novel variant of photometric stereo
based on a small set of view-independent time-multiplexed light
patterns produced by a large lighting dome (Section 3.1). In con-
trast to many existing systems, we use only four spherical lighting
patterns (Section 3.2) to obtain a frame of geometry, which offers
numerous practical advantages in acquiring detailed geometrry of
full-body performances. The spherical nature of the lighting pat-
terns ensures that each camera, irrespective of its relative location,
gains photometric information at each frame. This makes the pat-
terns particularly well-suited for capturing performances from all
viewpoints. Furthermore, the large extent of the lighting patterns
improves the robustness of the light/camera calibration, as well
as allowing the irradiance to be better distributed than with bright
point-light sources, and improving actor comfort.

Our reconstruction pipeline is split into several stages to make
the large amount of data more manageable. Our algorithm pro-
cesses the multi-view normal maps together with the correspond-
ing silhouettes to produce high-resolution meshes independently



for each time frame. We first integrate each normal map to ob-
tain an initial surface per view, and estimate the locations of depth
discontinuities (Section 4.1). The visual hull, obtained as the in-
tersection of silhouettes, provides constraints on the integration as
well as an initial rough estimate for depth discontinuities. Next, we
match the partial surfaces and deform them to improve their mutual
fit (Section 4.2). We evaluate several matching metrics, including
ones based on local shape rather than color. Finally, we use volu-
metric merging to combine the separate views into a single surface
(Section 4.3). We use this surface as an improved proxy replacing
the visual hull in a second pass. The final meshes are computed
independently between time frames, and recover the majority of a
dynamic shape with high quality at sixty frames per second.

Compared to existing systems, our work represents an advance in
the combination of high frame rate (60 Hz.), large working volume
(human-size), and high spatial resolution (millimeter-scale) neces-
sary for practical, high-quality performance capture. To achieve
this, we make contributions in both the capture and reconstruction
stages of our pipeline. First, we obtain high-quality high-frame rate
normal maps using photometric stereo with spherical lighting. This
photometric configuration is more comfortable to the subject, and is
easier to construct, calibrate, and time-multiplex than other active
illumination schemes. Second, we present a pipeline partitioned
into stages that avoids expensive data-intensive optimization strate-
gies on which some recent methods rely. This is more efficient
in storage and computation, is trivially parallelizable, and scales
well for large data volumes. Third, we demonstrate that matching
neighboring views using a surface-based metric yields better and
more robust correspondences than image-based approaches, for a
sparse view sampling with a wide baseline such as ours.

We anticipate that data from our system will have immediate im-
pact on several problems within geometry processing and physical
animation. First, because of our high resolution and our ability to
capture surfaces without color detail, we obtain data suitable for
analyzing and validating physical simulation models for materials
such as cloth. Second, our data is ideally suited as input to algo-
rithms that perform temporal registration and merging of geometry,
which have recently received considerable interest in the geome-
try processing community [Wand et al. 2007; Huang et al. 2008;
Li et al. 2008; Sharf et al. 2008; Zhang et al. 2008; Wand et al.
2009]. Looking ahead, we believe that it will be the combination of
capture systems such as ours and temporal processing algorithms
that will enable detailed full-body performance capture, resulting
in even more believable virtual humans in movies and games.

2 Previous Work

Our methods are related to work from the following four research
areas: (1) multi-view stereo and volumetric carving, (2) real-time
structured light, (3) template-based approaches for performance
capture, and (4) multi-view photometric stereo. We will describe
the most relevant work in each of these categories.

Multi-view (Wide-baseline) Stereo and Volumetric Carving
Multi-view stereo and volumetric space carving approaches use
multiple, sparsely spaced cameras to observe a scene from dif-
ferent viewpoints. The color information is employed to carve
out the space until the scene is photo-consistent [Seitz and Dyer
1999] or the color information is matched along multiple epipolar
lines [Okutomi and Kanade 1993]. Recent approaches addition-
ally employ global optimization to take into account smoothness
constraints as well as the silhouettes of the object [Hernandez and
Schmitt 2004; Vogiatzis et al. 2005; Furukawa and Ponce 2006;
Hornung and Kobbelt 2006]. A comprehensive evaluation of many
approaches has been conducted by Seitz and colleagues [2006].

Several characteristics of these methods make it difficult to ap-
ply them to high-quality dynamic motion capture. In particular,

their performance is highest with dense texture and many camera
viewpoints. However, for dynamic capture the number of camera
locations is often limited (as opposed to static capture, for which a
single camera may be moved to many locations), and the viewpoints
must contain separate physical cameras (whose geometric and pho-
tometric properties must be calibrated). Although there have been
systems that use more than 50 cameras [Rander et al. 1997], typical
systems for dynamic scene acquisition [Starck and Hilton 2007]
might use only 8 cameras. As a result, reconstruction quality for
moving surfaces has typically been lower than for static objects.

Real-time Structured Light Several methods capture dynamic
facial performance geometry using structured illumination, usually
emitted from a video projector onto the subject, and observed from
a single viewpoint [Rusinkiewicz et al. 2002; Davis et al. 2005;
Zhang et al. 2004; Zhang and Huang 2006]. While these systems
can achieve impressive results for small (e.g., head size) working
volumes, extending them to the two-meter working volumes re-
quired for full-body performance capture and to multi-view point
capture is difficult due to numerous technical limitations of video
projectors, such as limited spatial resolution, limited depth of field,
and diminishing light levels with increasing working volume.

Template-based Approaches for Performance Capture Geo-
metric templates (3D models of the subjects) can be used to aid
in performance capture, for example by deforming them to match
(possibly sparse) multiview data, or using them for hole-filling and
parameterization. Caranza et al. [2003] use a generic template and
deform it using silhouette data from different view points. Theobalt
et al. [2007] further estimate surface reflectance and dynamic nor-
mal maps. Corazza et al. [2006] also use a generic template, but
deform it to the visual hull. Bradley et al. [2008] combine multi-
view stereo and a template to obtain moving garments. Starck
and Hilton [2003] employ silhouettes, stereo, and feature cues to
refine a generic humanoid model. Balan and colleagues [2007]
use silhouettes from multiple viewpoints to estimate parameters
of SCAPE [Anguelov et al. 2005]—a low-dimensional geometric
body model derived from a large collection of static 3D scans.
Zhang and colleagues [2004] capture facial performances using a
multi-camera and projector system. The resulting 3D geometry
is regularized with a 3D face template. Most recently, some ap-
proaches have used high-quality, person-specific static 3D scans as
templates [de Aguiar et al. 2007; Vlasic et al. 2008; de Aguiar et al.
2008]. These are deformed by tracking points on the surface of the
object or by using silhouettes and photometric constraints.

The main advantage of template-based methods is that the prior
model provides the correct connectivity and topology for the output
mesh sequence. This minimizes major artifacts, while also reducing
the search space and consequently running time. Furthermore, tem-
poral correspondence is automatically provided since the meshes
for all frames share the same parameterization. Therefore, missing
data can be interpolated from other frames. However, template-
based approaches have significant disadvantages. The quality of the
output is low when generic 3D templates are used. The templates
do not capture many person-specific details. Using high-quality,
person-specific templates requires using an additional 3D range
scanner (e.g., Cyberware). Furthermore, deformation details (such
as cloth folds) can be baked into the template, and it is difficult
to modify or remove them as the corresponding geometric features
appear and disappear during the performance. Finally, template-
based approaches cannot deal with atypical geometry and props
often used during performances.

Multi-view Photometric Stereo The work on multi-view photo-
metric stereo is the most similar to ours. Bernardini et al. [2002]
combine 3D range data with multiple normal maps acquired from
different viewpoints. These normal maps are used directly during
rendering and are not fused with the range data. Nehab and col-



leagues [2005] fuse range data with a single normal map obtained
using photometric stereo. The resulting geometry preserves high-
frequency details from the normal maps while taking on the overall
shape (i.e., low frequencies) of the range data. Nevertheless, this
method still requires initial 3D geometry of reasonable quality, and
does not address how to combine data from multiple normal maps.

Ahmed et al. [2008] use a template and silhouettes to estimate
the large-scale geometry of a performance. Geometric details are
added by estimating normals, simultaneously with reflectance prop-
erties. In contrast, we do not require geometric templates or re-
flectance estimation. Campbell et al. [2007] jointly incorporate data
captured from multiple views to reconstruct a single shape using a
volumetric approach. While elegant in theory, these approaches
scale poorly to larger datasets. For example, to obtain millimeter
precision in a two meter working volume requires a 20003 volu-
metric grid, which easily occupies several gigabytes of memory.
Furthermore, solving a large volumetric optimization rapidly be-
comes computationally intensive.

Lim et al. [2005] use a sparse set of 3D features to construct
a rough depth-map. Using this depth-map, normal directions are
computed for each depth-map location. While the quality of the
results is high, the method relies on the existence of detectable
features, which are not always readily available. Joshi and Krieg-
man [2007] employ a graph-cut method to find dense correspon-
dences based on a multi-view matching cost function that combines
multi-view and photometric stereo. A depth-map from these dense
correspondences is fused with photometric normals to yield a high
quality shape using a non-iterative method. Unlike the method pre-
sented here, this method requires having a large number of views
(at least 3) of each surface point, and is limited to 2.5D shapes.

The most similar methods to ours are those by Vogiatzis et
al. [2006], and Hernandez et al. [2008]. These methods combine
shading and silhouettes from different viewpoints, acquired with
a turntable, to derive a 3D geometric model. In contrast, our ap-
proach captures dynamic scenes and requires fewer views (8 to 9
as opposed to 36). The method of Vogiatzis et al. performs a local
search (essentially gradient descent) to establish correspondences
between views. While this is appropriate if adjacent viewpoints are
spatially nearby, it can fail to converge to the right correspondence
if cameras are 45 degrees apart, as in our system. Furthermore,
these methods rely on accurate silhouettes, which can be difficult
to obtain in multi-camera setups with active illumination. Finally,
our approach explicitly deals with surface discontinuities, which is
necessary to obtain correct surfaces for nontrivial performances.

Summary We argue that practical capture of dynamic geometry
requires a method that:
• reconstructs full 3D geometry (as compared to 2.5D depth

maps) using a small number of views.
• does not use templates, and can handle arbitrary topology.
• remains computationally tractable for high working-volume-to-

resolution ratios (several thousand to one) and high frame rates.
• handles fast and complex motion.

The tradeoffs and design decisions made in designing our system
are based specifically on satisfying all of these requirements.

3 Hardware System and Image Processing
In this section we will discuss our hardware system, and the nec-
essary image processing to compute high-quality normal maps for
multi-view dynamic performance capture. We start by describing
the hardware setup and calibration in Section 3.1. Next, in Sec-
tion 3.2 we introduce a novel photometric normal estimation al-
gorithm and its corresponding active illumination conditions. We
conclude this section by a detailed discussion of additional opti-
mization strategies and implementation details.

Figure 2: Our acquisition setup consists of 1200 individually con-
trollable light sources. Eight cameras (of which two are marked
in red) are placed around the setup aimed at the performance area
(marked in green). An additional ninth camera looks down from the
top of the dome onto the performance area.

3.1 Acquisition Setup and Calibration

Setup We employ a variant of photometric stereo to compute per-
camera and per-pixel normal information. This requires an active
illumination setup, for which we use the system built by Einars-
son and colleagues [2006]. This lighting device consists of the top
two-thirds of an 8-meter, 6th-frequency geodesic sphere with 1,200
regularly-spaced individually controllable light sources, of which
901 are on the sphere and the rest are placed on the floor. A central
area is reserved for the subject. We capture dynamic performances
at a 1024× 1024 resolution with eight Vision Research V5.1 cam-
eras. The cameras are placed on the sphere around the subject, at an
approximate height of 1.7 meters relative to the central performance
area. An optional ninth camera looks down onto the performer from
the top of the dome. The performances are captured at a constant
rate of 240fps, and the geometry is acquired at an effective rate of
60fps. Figure 2 shows our capture setup, with two selected cameras
marked in red and the performance area marked in green.

Calibration Our system requires geometric and photometric cal-
ibration of all cameras. We use the LED waving technique of Svo-
boda et al. [2005] in order to calibrate the intrinsic and extrinsic
camera parameters. We photometrically calibrate the cameras by
capturing a Macbeth Color Checker under uniform illumination and
then solve for the optimal color transfer matrix for each camera.

Silhouettes Our geometry processing algorithms require silhou-
ettes and corresponding visual hulls of the subject in order to pro-
vide an initial guess for the surface reconstruction. We use a com-
bination of background subtraction and chroma-keying to automat-
ically extract approximate silhouettes. Though higher quality could
be obtained with user assistance, this would be impractical (because
so many frames need to be processed) and also unnecessary, since
the resulting visual hulls are only used as a rough guide in the initial
phase of the geometry reconstruction. However, it is important that
the silhouettes not contain spurious holes, so small gaps in the fore-
ground are detected and filled by comparing color statistics (i.e.,
average and variance) inside and outside the hole.

3.2 Multi-view Photometric Normals

Illumination Design Simultaneously acquiring images for com-
puting photometric normals from multiple viewpoints imposes spe-
cific conditions on the design of active illumination patterns. First,
capturing data-streams from multiple cameras produces a huge
amount of data. Our main objective is to minimize the number



Figure 3: Captured frames under binary half-on illumination patterns. A complete set plus an additional full-on condition is shown. The
insets depict the illumination condition used in each frame. The red and blue arrows indicate the forward and backward motion compensation
respectively. High-quality geometry is reconstructed for every full-on tracking frame.

of required lighting conditions, and thus the number of captured
frames. This allows us to maximize an effective frame rate of our
capture system and enable using non-specialized (i.e., high-speed)
cameras at sufficiently high resolutions. Second, longer exposure
times cause motion blur which degrades the quality of the normal
estimation. Therefore, to minimize motion blur, we need to mini-
mize camera exposure, and consequently maximize the light levels
on the subject. Large area light sources make it easier to maintain a
high total light intensity, while remaining comfortable for the sub-
ject. Third, to obtain high quality normal estimates, we would like
to maximize the signal-to-noise ratio of our measurements.

While conventional photometric stereo [Woodham 1978] is able
to estimate normals in a wide range of applications, it has the disad-
vantage that it only uses a single light source at a time to illuminate
the subject. This can result in a low signal-to-noise ratio (i.e., many
pixels with low intensity values). Furthermore, a significant number
of light sources needs to be placed around the subject in order to
obtain a sufficient number of unoccluded directional samples for
each pixel in each camera. Recently, Ma et al. [2007] proposed
to use spherical gradient illumination to compute per-pixel normal
information. The spherical gradient patterns cover the full sphere of
incident lighting directions. They are well suited for multi-camera
systems and result in a better signal-to-noise ratio. However, these
patterns require careful calibration of the emitted illumination con-
ditions such that they exactly conform to the theoretical gradients
(both geometrically and radiometrically).

Inspired by [Ma et al. 2007], we propose a novel set of binary
half-on illumination patterns that cover half of the sphere of inci-
dent directions. They are tailored to efficiently compute photomet-
ric normals for multi-view performance captures. Specifically, we
employ two sets of 3 illumination patterns. The first set consists of
three patterns X, Y, and Z defined by

X(x, y, z) =
{

1, if x > 0,
0, otherwise, (1)

with x2 + y2 + z2 = 1. Y and Z are similarly defined. The sec-
ond set consists of the complements X̄, Ȳ, and Z̄ of the first set,
i.e. X̄(x, y, z) = 1−X(x, y, z). We also add a full-on tracking frame
F once every fourth frame in order to improve the temporal align-
ment and to compensate for motion over the multiple lighting con-
ditions. To summarize, we illuminate the subject repeatedly with
the following eight illumination patterns: [X, Y, Z, F, X̄, Ȳ, Z̄, F].
Figure 3 shows a subject under these illumination conditions.

Normal Estimation Let us initially assume that there is no sub-
ject motion during eight consecutive frames; furthermore, let’s as-
sume that all surfaces are diffuse. We can reconstruct a normal
for each surface point based on the observed radiance under eight
lighting conditions. This requires solving a system with three un-
knowns: the normal direction (2 unknowns), and surface albedo (1
unknown). While it is possible to compute an analytical solution for
this system, the solution will be dependent on how accurately the
physically emitted illumination conditions match the assumptions
(in intensity and geometrical configuration).

Instead, we use a data-driven approach that improves robust-
ness and facilitates calibration. By capturing a known shape with
a known BRDF during a calibration step, we can establish a re-
lationship between the observed radiance and normal direction.
In our case we use a grey diffuse sphere, and treat the con-
version from observed radiance to normal direction as a multi-
dimensional lookup problem where the key is defined as k

||k|| , with
k = [IX − IX̄, IY − IȲ, IZ − IZ̄], and Ip is the observed radiance under
illumination p ∈ {X, X̄, Y, Ȳ, Z, Z̄}. Normalizing the lookup key
removes any dependence of surface albedo from the key.

During calibration we capture a grey diffuse sphere under the
binary half-on illumination conditions. For each camera view we
extract the sphere’s pixels, and create a vector similar to k. We
then store these vectors in a kD-tree together with their respective
normals. When estimating the normals of a performance frame, we
create a similar normalized vector for each camera pixel, search for
the best match in the kD-tree, and retrieve the associated normal.
In order to further improve the quality and minimize the effects
of measurement noise during calibration, we search for the N best
matches, and compute the output normal n as the weighted sum:

n =
N

∑
i

(
max
j≤N
||k− k j|| − ||k− ki||

)
ni, (2)

and renormalize it.
Our normal estimation algorithm has a number of advantages.

First, the illumination conditions are binary and therefore they are
easier to create in practice. Second, the number and positioning
of the cameras is independent of the number and orientation of the
lighting conditions. For any possible camera location, all lighting
conditions yield sufficient information to compute photometric nor-
mals. Finally, this procedure requires very little calibration: a sin-
gle photograph per camera, per lighting condition of a calibration
object with known geometry. The calibration and normal compu-
tation is robust to modest variations in light source intensities and
light source distribution. Furthermore, the computed photometric
normals are in camera space, and thus independent of any (multi-
view) camera calibration, further improving the robustness of the
calibration. In light of the necessary complexity of our setup, this
data-driven approach with easily calibratable sub-parts makes the
whole acquisition process better manageable.

The presented data-driven method shares some similarities
with [Hertzmann and Seitz 2005], where an object of known ge-
ometry is used to assist in determining photometric normals. The
main difference is that they assume a known (point source) lighting
configuration and unknown BRDF, while we assume a Lambertian
BRDF and an unknown lighting configuration.

3.3 Implementation

In this section we discuss additional implementation details that are
necessary in order to compute high-quality normal maps.

Multiple Calibration Spheres In the previous section, we have
assumed that the incident illumination generated by a given illu-
mination pattern is the same in the whole performance area (i.e.,
the lights sources are at infinity). However, in the current system



this assumption does not hold. For example, the lower third of
the light-sphere is placed much closer to the subject. This creates
a significantly different illumination depending on the distance to
the floor. In order to compensate for this effect, we use multiple
normal lookup tables, which depend on the position in the perfor-
mance volume. We capture images of the grey spheres at 7 different
heights. During normal estimation, we compute an output normal
by linearly interpolating between normals computed from the two
closest in height calibration spheres.

Motion Compensation In the previous section we have also as-
sumed that the subject does not move during the capture of eight
illumination conditions required to compute normal maps. In prac-
tice, this assumption also does not hold. In order to compensate
for subject motion, we compute both forward and backward optical
flow between consecutive tracking frames. By assuming a linear
motion between full-on tracking frames, we flow the intermedi-
ate images under the binary illumination conditions to the central
tracking frame. A normal map is then computed for every tracking
frame. In our implementation we use the variational approach by
Brox et al. [2004] to compute the optical flow. We show the di-
rection of the optical flow to a single key frame in Figure 3. The
forward and backward flows are illustrated using the red and blue
arrows, respectively. Note that because we have a tracking frame
every 4 frames, and the two sets of illumination conditions are com-
plementary to each other, we can compute 2 sets of normal maps per
8 frame cycle.

Optical flow is able to correct for most of the subject’s motions.
However, flow computation can fail near or at occlusion boundaries.
Therefore, we estimate the confidence for both forward and back-
ward flow. The flow confidence is computed for each pixel as the L2

error of the difference between the tracking frame and the flowed
neighboring tracking frame. If this error is below some threshold,
we compute the normal as detailed before. Otherwise, the normal is
not computed and marked as invalid. When reconstructing the final
geometry, we rely on normal estimates from different viewpoints
and hole filling to correct for invalid marked normals.

Impact of Low Albedo Another factor that can negatively impact
the quality of the estimated photometric normals is the low albedo
of the surface points. In particular, camera noise dominates when
imaging surface points with low albedo. In this case, the estimated
photometric normals become noisy. Similarly, oversaturated pixels
lead to incorrectly computed normals. Therefore, we only estimate
normals for pixels that have normalized intensities between 0.03
and 0.97. Since albedo is a view-independent quantity, we rely on
hole filling to deal with surface points with low albedo.

4 Reconstruction

The multi-view normal maps reproduce the high-resolution geo-
metric detail present in the surface. We combine the information
from the normal maps to reconstruct a complete 3D mesh in a three-
stage process. First, for each view separately, we integrate a surface
from the normal map. During this process, the visual hull acts as
a “proxy”: it provides rough constraints for the overall position of
the integrated surface. Second, we use a similarity metric based
on illumination, reconstructed local surface shape, or both to match
neighboring views and smoothly deform the integrated surfaces in
order to improve their fit. Again, we use the visual hull as a proxy,
this time to constrain the possible matches. Finally, we merge the
matched surfaces into a single mesh and optionally fill in the holes.
The resulting closed mesh is now an excellent approximation to the
true shape of the surface, and in particular is a better surface proxy
than the visual hull. Therefore, we may repeat all three stages of
our reconstruction algorithm, using the new proxy mesh instead of
the visual hull wherever needed. The output of the second pass of

(a) (b) (c) (d) (e)

Figure 4: For a particular view (a), we use the normal map (b)
in order to integrate the initial surface (c). Better quality surfaces
are obtained when we detect large depth discontinuities (d). The
normal maps after surface reconstruction are smoother than the
original normal maps, but remove the initial bias, which can be
seen in the legs (e).

our algorithm is the final mesh, as we have observed little quality
improvement from further passes.

4.1 Single-View Surface Reconstruction

We begin by integrating individual normal maps into partial surface
meshes. We represent the surface as a depth image, centered at
the corresponding camera viewpoint (i.e., the value at each pixel
determines how far along the camera ray the surface point lies).

We pose the integration problem as an optimization process, in
which the depth values are the unknowns and the observed normals
provide constraints. In particular, we enforce that the 3D vector
between two neighboring depth samples i and j be perpendicular
to the average of the measured normals at those pixels. With only
the normals as constraints, the reconstruction problem would be ill-
posed: it would be possible to move the surface forward or back
while still satisfying the constraints. Therefore, we use the visual
hull or the proxy mesh to provide (soft) depth constraints on the
reconstruction. The optimization is formulated as a linear system:

arg min
z ∑

i, j

(
(ni + n j)>(rizi − r jz j)

)2
+ α ∑

i
(zi − z̄i)2, (3)

where for a pixel i: zi is the distance to the surface along the cor-
responding ray direction ri, ni is the measured normal, and z̄i is
a possible depth constraint at that pixel — the depth of the visual
hull or the proxy, if available. The parameter α determines the
relative strengths of the normal and depth constraints. We set it
to be low (10−6), corresponding approximately to the inverse of the
number of our surface points. In the second pass, we expect the
proxy mesh to be more accurate, so we increase the weight on the
depth constraints by setting α to 10−5.

The optimization process that computes surfaces according to
Equation 3 does not intrinsically take into account depth disconti-
nuities. However, integrating normals across depth discontinuities
may cause significant distortions, as is evident in Figure 4c, where
the legs are connected to the rim of the dress. In order to avoid
this issue, we must remove the pixels straddling the depth discon-
tinuities from the linear system (Equation 3). However, detecting
depth discontinuities is a difficult problem. We have experimented
with a variety of heuristics (e.g., maxima of color and normal gradi-
ents, local integrability measures), and have found that the follow-
ing two simple strategies produce good results. First, large visual
hull discontinuities are usually located near the true discontinuities.
Removing pixels along them helps keep the surface free of large
distortions. In addition to the large visual hull depth discontinuities,
our matching algorithm (described in the next section) identifies
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Figure 5: Results (surfaces and normals) of several matching strategies on two data sets. Our surface-based metric yields the overall best
results, especially in regions that lack texture or are shadowed. This is visible in the first row by comparing the reconstructed legs. In the
second row, only the surface-based metric does not push the waist inward.

more precise discontinuities, defined as locations at which the sur-
face jumps by more than 1 cm per pixel. Together, these heuristics
alleviate depth discontinuity issues and allow the legs to integrate
closer to the center of the skirt in our example (Figure 4d). In the
second pass, all the detected discontinuities are closer to their true
locations, making the integrated mesh even more precise.

Overall our method is fairly robust with respect to the quality of
the visual hull. The accuracy of the visual hull mainly plays a role
in determining the depth discontinuities. The closer the visual hull
is to the true surface, the more complete our reconstruction will be.
If the visual hull’s depth discontinuities are far from the true depth
discontinuities, then the pixels that are mistakenly connected to a
wrong part of the performer (e.g., the leg connected to skirt) will be
disregarded (and thus lost from the reconstruction) by the matching
phase described below.

4.2 Pairwise Matching

Individual integrated surfaces contain the high-frequency details
that are present in the normal maps. However, these surfaces rarely
match exactly because of the bias in the normals (due to self-
occlusion for example), and so cannot yet be merged into a single
model. To correct for this distortion, we warp the surface based on
matches computed between pairs of neighboring views.

Metrics for Matching We have experimented with a number of
matching metrics to perform the correspondences, two based on
images alone and two that rely on the integrated surfaces. Our first
image-based metric uses only pixel windows under the spherical
full-on illumination condition, and therefore reduces to traditional
stereo matching. Our second metric is based on comparing an “im-
age stack” of the six illumination conditions. We have found that
this increases robustness in many areas that have little color texture,
but significant geometric variation.

In practice, the performance of both image-based metrics is
limited by different amounts of foreshortening between different
views: different views of a region on a surface will not, in gen-
eral, appear the same from different cameras. Therefore, we have
also compared metrics that match the integrated surfaces. Since the
distortion is low-frequency, we can assume that a small 3D surface
patch in one view and the corresponding patch in the neighboring
view will differ only by a rigid transformation. Therefore, we can
compare small surface patches (e.g., 5 × 5 pixels) by computing

the mean surface-to-surface distance under the optimal rigid-body
alignment. Specifically, given a pair of surfaces (“left” and “right”),
we compute the matching error between a point on the left surface
and a point on the right surface as follows. First, we find a window
of depth samples around the left point. Then, we render the right
surface from the left camera’s point of view, and find a window of
depth samples around the projection of the right point. We assume
that the two windows of points correspond, solve for the optimal
rigid-body alignment, and compute the mean distance between the
pairs of points in the windows. Then, to obtain a symmetric match-
ing score, we repeat the computation with the roles of left and right
reversed (i.e., rendering the left mesh into the right camera and find-
ing the windows of samples there). We take the maximum of the
two mean distances as the matching error.

Our final matching metric also relies on aligning surface patches,
but takes the matching error to be the difference between image
stacks (under different illumination) projected onto the surface. In
areas of significant color detail, this improves discriminability over
surface-distance-based matching, while retaining the advantage of
compensating for foreshortening. However, we have found that in
areas of little texture the surface-distance-based metric is superior.

We have compared these four metrics on a variety of datasets, as
illustrated in Figure 5. As expected, the illumination-stack metric
yields better surfaces than simple image-based matching, but, due
to the wide baseline, still produces wrong matches. The projected-
illumination metric further improves the reconstruction, but ex-
hibits artifacts in shadowed regions. On the whole, we have found
that the surface-based metric usually yields the least noisy surfaces.

Global Correspondence To find the best match for a point in
the left view, we only need to explore the points in the right view
that project to the corresponding epipolar line. Therefore, a simple
matching strategy would be to simply take the point with minimum
matching error as the correspondence. A more robust approach that
takes into account surface continuity considers a whole epipolar
plane (e.g., a plane passing through a point in the left view and
both of the camera centers) at the same time. We sample this plane
by stepping one pixel at a time in each view. We evaluate our
matching error on the resulting grid and find the lowest-cost path
from one corner to the opposite corner (Figure 6). In particular,
we use the 4-step method described by Criminisi et al. [2007] to
perform the search. In addition to finding the best matches, this
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Figure 6: We match the surfaces in neighboring views one epipolar
plane at a time (a). Each plane defines a grid of matching errors,
where the lowest cost path yields the surface matches (b,c). The
green portions of this path denote good matches, while red lines de-
note depth discontinuities. In the second pass (c), we use the proxy
mesh (blue line) to guide this search and only evaluate the nearby
matching errors. Light blue denotes points outside the visual hull,
while points in pink are not considered in the second pass.

algorithm detects depth discontinuities, which we then use during
surface integration in the next pass. Note that we do not enforce
smoothness across the sampled planes directly. However, some
smoothness is indirectly incorporated because each surface patch
spans several epipolar planes.

Good surface matches define absolute depth constraints at cer-
tain pixels in each of the views. After computing these matches for
all views, we deform the integrated surface to fit these constraints
while preserving its high-frequency detail. We achieve this with a
thin-plate offset:

arg min
d ∑

i
∑

j
(di − d j)2 + β ∑

i
(di − d̄i)2, (4)

where the depth offset di of each pixel i should be equal to the
offset d̄i obtained from the matching. These offsets are smoothly
interpolated by pulling di toward the centroid of its neighboring
offsets d j. Because the thin-plate offset may introduce significant
deformations in parts of the mesh that are far from the constraints,
we discard these regions (using a threshold on distance to the near-
est constraint point).

Applying the depth offsets obtained from Equation 4 aligns all
surfaces much closer (Figure 7). The surfaces are still not perfectly
aligned, since the matches are computed on a pixel grid. We address
the remaining misalignment errors in the surface merging stage.

2.5
cm

0.0
cm

Figure 7: The integrated surfaces before matching (left) are far
from each other, while the deformed surfaces after matching (right)
are much closer to each other. Within each pair, the leftmost vi-
sualization shows the two meshes (in different colors) overlaid on
each other, while the rightmost visualization is a color-coding of
mesh-to-mesh distance.

Pass 1 Pass 2

Figure 8: From left: false-color visualization of eight meshes after
integration, matching, and deformation; result of initial volumetric
merging; result of hole-filling; similar visualizations after second-
pass matching.

4.3 Multi-view Surface Reconstruction

After the integration, matching, and deformation stages are per-
formed on all views, we must merge the aligned, yet still logically
separate surfaces, into a single mesh. In addition, we must account
for the regions in which no data is available by performing hole-
filling.

Merging We merge the eight aligned surfaces using the Volumet-
ric Range Image Processing (VRIP) algorithm [Curless and Levoy
1996]. This is a volumetric method that allows for some residual
misalignment between scans by averaging signed-distance ramps
along the line-of-sight of each mesh. We set the ramp-length to
6 cm. to allow for worst-case misalignment, and reconstruct using
a 2 mm. voxel size, which approximately matches the average res-
olution of our raw data. We also modify the weight computation of
VRIP: in addition to weighting each point dependent on its distance
to the nearest mesh boundary (to provide for smooth blending) and
the cosine of its normal with the view direction (to downweight
foreshortened data), we also include a term inversely proportional
to the distance between the sample and its camera. The latter down-
weights regions of sparsely-sampled data, and is of greater benefit
in our setup (in which the distance to the camera can vary signifi-
cantly) than in typical 3D scanners. A sample result of the merging
step is shown in Figure 8. In the first column, we show the meshes
that are inputs to the merging, with the output of VRIP in the second
column.

Hole Filling As can be seen, the merged mesh contains regions
in which there is no surface, typically due to occlusion. Several
approaches have been proposed to fill such holes, using techniques
such as space carving [Curless and Levoy 1996] and volumetric
diffusion [Davis et al. 2002]. In our case, we wish to combine
information similar to that used in the two above techniques: we
would like to fill small holes smoothly, yet for larger holes we wish
to use the information present in the visual hull.

Our hole-filling approach uses the Poisson Surface Reconstruc-
tion algorithm of Kazhdan et al. [2006]. As input, we provide
oriented point samples taken from both the VRIP reconstruction
and the visual hull, giving significantly lower weight (0.01) to the
latter. We have found that this produces smooth fills, and draws the
final surface towards the visual hull in regions of significant miss-
ing data. Moreover, the method guarantees a watertight manifold
output, as shown in the result in Figure 8, third column. This mesh
may now be used as the proxy mesh, instead of the visual hull, in the
second pass of matching. The result of this second pass, together
with the merged meshes, are shown in the right half of Figure 8.

We have also experimented with using Poisson Surface Recon-
struction for both merging and hole-filling simultaneously (by using
samples from the original meshes rather than the VRIP reconstruc-



tion). However, we have found that in regions of significant resid-
ual misalignment this results in more smoothing. This is because
the Poisson problem inherently treats the influence of each point
as isotropic, and hence does not preserve detail as well as VRIP’s
oriented signed-distance ramps when the merged surface is far from
the original samples. We therefore believe that the combination of
the two algorithms produces better results than either alone.

Using the visual hull for hole filling is noisy and can yield incor-
rect topology. This is why we only use it in the first pass, to produce
a watertight proxy surface for the second pass. Our final meshes
are suitable for filling using more sophisticated approaches, which
exploit temporal coherence to aggregate information from multiple
frames. This is an active area of research [Wand et al. 2007; Huang
et al. 2008; Li et al. 2008; Sharf et al. 2008; Zhang et al. 2008;
Wand et al. 2009], and lies outside the scope of this paper.

5 Results
We have acquired and processed five different sequences, includ-
ing people wearing loose clothing, long skirts, and even a sub-
ject covered with a linen sheet. The reconstructions are presented
throughout this paper and in Figures 1 and 9, which show a num-
ber of individual frames from our sequences. Note that the nor-
mals used for rendering are the geometrical (computed) normals,
not the (measured) normals from the normals maps. Reproject-
ing and embossing photometrically measured normals would yield
even better results, but would not represent the true quality of the
reconstructeed geometry. Additional results, including complete
animations, are presented in the supplementary video.

These sequences demonstrate that our system can correctly han-
dle characters performing fast motions, as well as non-articulated
characters for which template-based approaches fail. Many of our
sequences have few or no textured areas, making them challenging
for any type of stereo matching algorithm. In contrast, the analo-
gous difficult situation for our algorithm is surfaces that lack geo-
metric detail. However, in these regions, the smoothing performed
by our algorithms is the correct action.

Computation Time We typically run the software on a 2.4 GHz
PC with at least 2GB of RAM. The total computation time to obtain
one final mesh is about an hour, and no user assistance is required.
However, most parts of our code have not been optimized or paral-
lelized, which leads us to believe that this time can be significantly
reduced. In the current implementation, typical running times of
the parts of the pipeline are: normal map computation with motion
compensation: 50 min; first pass: 8 min; second pass: 5 min; and
merging: 2 min. Normal map computation is dominated by the
optical flow (two per camera), while the reconstruction spends most
of its time computing the surface matches. While the total process-
ing time is an hour per frame, it should be noted that this includes
processing of the raw 240Hz video streams using non-optimized
optical flow code. Using a GPU based optical implementation, or a
less accurate but more efficient algorithm, could greatly reduce this
pre-processing time. The actual processing time starting from the
normal maps is only 10 to 15 minutes per frame.

Discussion In this work we have made the deliberate choice of
not integrating multiple steps together to obtain a potentially more
unified or optimized pipeline. Capturing and processing high qual-
ity detailed performance geometry is a complex task that requires
significant amounts of hardware, calibration and processing, and
rapidly produces huge amounts of data. We therefore try to keep
our system as modular as possible. This greatly improves the ro-
bustness of the calibration, eases data management, and increases
the amount of parallelism in the processing.

Our pipeline currently does not enforce temporal correspon-
dences nor apply temporal filtering. However, we have observed
only minor flickering in the matched regions of our meshes. This

suggests that our reconstructions are quite close to the true surfaces.
While temporal filtering could potentially be used to further smooth
the results, it would also remove desirable details of mesh anima-
tions. Temporal registration of the acquired mesh sequences could
improve the surface coverage by accumulating information through
time. However, this is still a very active area of research [Mitra
et al. 2007; Sagawa et al. 2007; Pekelny and Gotsman 2008; Chang
and Zwicker 2008]. The choice and evaluation of a particular algo-
rithm, or design of a new algorithm, falls outside the scope of this
work. Nevertheless, we designed our acquisition and data process-
ing pipeline so that these algorithms can operate as a post-process
on our data.

Even though we do not perform any temporal processing, there
is little flickering noticable when playing back the processed ge-
ometries of a performance. There is some flicker visible near the
boundaries of each single-view surface, because data is increasingly
bad there, and because the decision of whether to mark a pixel as
a discontinuity is binary and independent per frame. Away from
the boundary, however, the flicker is very low, showing that we
are getting close to the true geometry. Since our resolution is very
high (1,000,000 triangles, or 1 triangle per pixel), differences in
triangulation do not produce noticeable artifacts either. Finally, the
temporal coherence of the computed normals maps is very good to
begin with, which reduces the need for temporal regularization.

A second type of coherence not currently exploited by our
method is inter-scanline continuity. This could be enforced by using
a Markov-Random Field formulation and employing an optimiza-
tion method such as Belief Propagation or min-cut. However, this
would require large amounts of memory and computational power.

Limitations The computed normal maps show significant high
frequency detail. However, these normal maps also have a signif-
icant bias. This bias is different than the bias observed in tradi-
tional photometric stereo (i.e., point light sources versus area light
sources), and is especially present in the concavities, since in these
regions a smaller-than-expected portion of the sphere of lights il-
luminates the surface. Furthermore, the normals are typically in-
correct in the hair region (due to the complex scattering in the hair
volume, which is not consistent with the Lambertian assumption
made by photometric stereo), and the generally low albedo of hair.
The normal maps are also noisy in areas of low albedo and in ar-
eas that were not properly aligned during the motion compensation
stage. Figure 4e compares the acquired input normals from one
of the viewpoints and the corresponding normal map of the final
model. Observe the differences in the left leg, where the captured
normals were corrupted by the shadow cast by the dress. This figure
also demonstrates that our reconstruction pipeline introduces some
smoothing of fine details: the original normal map is sharper than
the reconstruction. This smoothing is introduced at several stages
during the pipeline, including the surface integration, matching, and
scan merging. Most of the original detail, however, is retained.

The current hardware setup is fairly complex, but it should be
noted that the setup described is designed as a research prototype,
not specialized to the task at hand, and can be refined to reduce
complexity and cost. First, not every light source needs to be indi-
vidually controllable. Only eight distinct groups require individual
control, corresponding to the eight quadrants of the sphere of inci-
dent directions. Each illumination pattern would then light half of
the groups at the same time. Second, using only 10% (i.e., 120)
of the number of light sources is sufficient to accurately infer pho-
tometric normals from diffuse reflections. Both observations allow
us to greatly simplify the hardware setup. Furthermore, we care-
fully designed the illumination conditions to require only a modest
level of control and accuracy. Individual light source intensities do
not need to match due to our data-driven scheme to infer normals.
The only hard requirement is the ability to quickly toggle lights on
and off, which is automatically achieved by using LEDs. Never-



Figure 9: Each row shows an original image, the corresponding normal map, the reconstructed surface, the hole-filled surface, as well as a
novel view of the reconstructed and hole-filled surface for a captured performance. Note that hole-filling was not applied to the versions of
these results shown in the accompanying video.



theless, we expect our processing pipeline to work with alternative
setups equally well. For example, six individually triggered flash
lights aimed away from the subject at the surrounding walls could
achieve similar illumination conditions as used in this paper, and
could be directly used to estimate normals, because of the data-
driven nature of our normal estimation algorithm. Finally, even
though we employ high-speed cameras, our method is specifically
designed to work at moderate frame rates that fall in the range
of what is possible with readily-available hardware such as Point
Grey’s Grasshopper, which can capture at 200Hz with a 640x480
resolution.

6 Conclusions and Future Work
Though 3D capture of dynamic performances remains a challeng-
ing problem, this paper makes progress towards acquiring high-
quality mesh animations of real-life performances. Our system
uses novel hardware and image processing algorithms to obtain
high-quality normal maps and silhouettes from multiple viewpoints
at video rates. The surface reconstruction algorithms process this
data to derive high-quality mesh sequences. The resulting mesh
sequences can be used in biomechanics to analyze complex mo-
tions, in computer games to create next-generation characters, and
in movies to create digital doubles.

We take advantage of the high-frequency geometric information
present in photometric-stereo normal maps; therefore, our method
significantly outperforms multi-view stereo techniques that produce
overly smooth surfaces due to lack of texture or photometric cali-
bration errors. Furthermore, our method does not require geometric
templates as input and thus it is not restricted by their limitations.

The data produced by the system will stimulate more work in the
geometry processing community, whose research endeavors take
a sequence of incomplete moving surfaces and produce the best-
fitting, congruent, water-tight moving mesh. Further processing
of these mesh sequences will prove challenging due to the shear
amount of data our system is producing (each mesh contains more
than 500,000 vertices).
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