
To appear in the ACM SIGGRAPH 2007 conference proceedings

A Hardware Architecture for Surface Splatting

Tim Weyrich∗†

Cyril Flaig∗
Simon Heinzle∗

Simon Mall∗
Timo Aila‡§

Kaspar Rohrer∗
Daniel B. Fasnacht∗

Norbert Felber∗
Stephan Oetiker∗

Hubert Kaeslin∗
Mario Botsch∗

Markus Gross∗

Abstract
We present a novel architecture for hardware-accelerated render-
ing of point primitives. Our pipeline implements a refined version
of EWA splatting, a high quality method for antialiased rendering
of point sampled representations. A central feature of our design
is the seamless integration of the architecture into conventional,
OpenGL-like graphics pipelines so as to complement triangle-based
rendering. The specific properties of the EWA algorithm required
a variety of novel design concepts including a ternary depth test
and using an on-chip pipelined heap data structure for making the
memory accesses of splat primitives more coherent. In addition,
we developed a computationally stable evaluation scheme for per-
spectively corrected splats. We implemented our architecture both
on reconfigurable FPGA boards and as an ASIC prototype, and we
integrated it into an OpenGL-like software implementation. Our
evaluation comprises a detailed performance analysis using scenes
of varying complexity.

CR Categories: I.3.1 [COMPUTER GRAPHICS]: Hardware Ar-
chitecture—Graphics Processors; I.3.3 [COMPUTER GRAPHICS]:
Picture/Image Generation—Display algorithms;

Keywords: 3D graphics hardware, point-based rendering, surface
splatting, rasterization, reordering, data structures

1 Introduction
In recent years, we have witnessed a dramatic increase in the poly-
gonal complexity of graphics models, and triangles project on av-
erage to fewer and fewer screen-space pixels. Many applications,
such as numerical simulation, surface scanning, or procedural ge-
ometry generation, produce millions of geometric primitives. A
significant issue arising from increasingly fine geometric detail is
that tiny triangles can fall between the sampling points and may
thus get completely lost in rasterization. This makes high-quality,
antialiased rendering very challenging. Additionally, triangles are
not a particularly memory-efficient representation for such detailed
objects. It has been suggested [Levoy and Whitted 1985] that point-
based representations are well suited for complex, organic shapes
with high geometric and appearance detail, whereas for flat sur-
faces, triangles undoubtedly outperform in memory footprint and
rendering performance.

∗ETH Zurich. Email: [sheinzle,botsch,grossm]@inf.ethz.ch,
[soetiker,felber,kaeslin]@iis.ee.ethz.ch,
[cflaig,krohrer,dfasnacht,small]@student.ethz.ch

†Princeton University. Email: [tweyrich]@cs.princeton.edu
‡Helsinki University of Technology
§NVIDIA Research. Email: [taila]@nvidia.com

Figure 1: Point rendering system featuring an ASIC implementa-
tion of our point rendering architecture. The system runs stand-
alone, independent from a host PC.

In point sample rendering the primitives typically carry all at-
tributes needed for display including geometry and appearance.
Early frameworks for point sample rendering [Grossman and Dally
1998; Pfister et al. 2000] suggested simple forward warping of
point samples into the frame buffer. In combination with precom-
puted texture attributes they kept the architecture simple by trans-
ferring parts of the rasterization and filtering to the preprocessing
stage. Besides increased memory bandwidth requirements, such
approaches cannot guarantee closed surfaces, and holes have to be
filled in a postprocessing stage. A significant step towards lim-
iting the transfer from off-chip memory to the graphics hardware
is the fully procedural graphics architecture proposed by Whitted
and Kajiya [2005]. They convert procedural descriptions of ge-
ometry and appearance directly into point samples through a pro-
grammable sample controller thus keeping external memory band-
width low. The direct conversion to unconnected points, instead
of going through triangles, simplifies the algorithms by eliminating
the need for tracking and producing connectivity information.

In this paper, we present a hardware architecture which com-
bines the advantages of triangles and point-based representations.
We designed a rendering pipeline based on an advanced variant of
so-called Elliptical Weighted Average (EWA) surface splatting, a
high-quality point rendering algorithm [Zwicker et al. 2001]. The
method renders point samples by superimposing band-limited re-
construction kernels, surface splats, in the image domain. It effi-
ciently suppresses aliasing artifacts, and it can guarantee hole-free
reconstructions even for moderate sampling densities and under
arbitrary transformations. While EWA splatting has been imple-
mented before on conventional GPUs [Ren et al. 2002; Zwicker
et al. 2004; Botsch et al. 2005], such architectures do not natively
support essential operations, leaving the rendering inefficient and
requiring multiple passes. As a recent exception, Zhang and Pa-
jarola [2006] present an implementation that renders all splats in a
single pass into multiple frame buffers, before compositing them to
a final image. However, their method requires a static presorting of
surface splats, which is prohibitive for dynamic scene content.

The design philosophy of the presented hardware architecture is
motivated by the desire to seamlessly integrate high quality point

1

To appear in the ACM SIGGRAPH 2007 conference proceedings

rendering into modern graphics architectures to complement their
strengths and features. The specific properties of EWA rendering
required a variety of novel concepts and make our design different
from conventional graphics architectures. For instance, multiple
splats have to be accumulated before the final surface can be dis-
played. Also, splats belonging to different surfaces have to be sep-
arated from each other. As we will show, our architecture addresses
these issues and renders splats efficiently in single pass. Further-
more, deferred shading of the splat surfaces allows us to apply vir-
tually any fragment shading program to the reconstructed surface.

The central features of our design include the use of a constant-
throughput pipelined heap for (re)ordering the memory accesses of
the splat primitives for improved cache coherence. In addition, we
have developed a ternary depth test unit for surface separation. We
also present a novel, perspectively corrected splat setup which is
faster than previous methods and has significantly improved nu-
merical stability.

We implemented two prototype versions of our architecture
on Field-Programmable Gate Arrays (FPGA) and Application-
Specific Integrated Circuit (ASIC), and we also designed a graph-
ics board for the latter, see Figure 1. Furthermore, we demonstrate
the integration into existing pipelines in Mesa 3D, an OpenGL-like
software implementation [Mes]. The analysis of our research proto-
types shows that the proposed architecture is well suited for integra-
tion into conventional GPUs, providing high efficiency, scalability,
and generality.

2 Related Work
Conventional Graphics Hardware Virtually all commercially
available graphics hardware is based on triangle rasterization. In
these architectures the transformed and optionally lit vertices are
first assembled to triangles [Clark 1982; Akeley 1993; Lindholm
et al. 2001]. The triangles are then (possibly) clipped to the view
frustum, and rasterization identifies the pixels each triangle over-
laps [Fuchs et al. 1985; Pineda 1988]. Finally the fragments are
shaded and various tests (e.g., scissor, alpha, stencil, and depth) are
performed before frame buffer blending.

As an optimization, the frustum clipping operations can be
mostly avoided by employing guard bands [Montrym et al. 1997],
or altogether removed by using homogeneous rasterization [Olano
and Greer 1997]. Modern hardware implementations [Morein
2000] avoid the execution of fragment shader programs for frag-
ments that would be discarded. The current APIs [OpenGL Archi-
tecture Review Board and Shreiner 2004; Microsoft 2002] allow
this as long as the early culling does not cause side effects.

Experimental Graphics Hardware A few architectures consist
of multiple rasterization nodes and create the final image by us-
ing composition [Fuchs et al. 1989; Molnar et al. 1992; Torborg
and Kajiya 1996]. While the scalability can be particularly good in
these architectures, certain newer features such as occlusion queries
are difficult to implement efficiently.

SaarCOR [Schmittler et al. 2002] uses triangles but employs ray
casting instead of rasterization. A more flexible, programmable ray
processing unit [Woop et al. 2005] enables the implementation of
advanced effects, such as soft shadows and even some global illu-
mination techniques.

A few experimental hardware architectures have been pro-
posed for the rendering of non-polygonal primitives. WarpEngine
[Popescu et al. 2000] uses depth images as its rendering primitive.
During the transformation and projection of point samples, addi-
tional samples are generated between the original ones in order to
avoid holes in the image reconstruction. Herout and Zemcik [2005]
describe a prototype architecture that uses circular constant-colored
splats as rendering primitives. Image quality, generality, and other
issues are not addressed in this architecture.

Whitted and Kajiya [2005] propose making the graphics pipeline
fully programmable so that a single processor array would handle
geometric as well as shading elements of a procedural description.
The processor array outputs point samples, typically without going
through triangles. Ideally the sampling density would be controlled
adaptively in order to guarantee hole-free reconstruction and avoid
superfluous sampling.

Stewart et al. [2004] describe a triangle rasterization-based archi-
tecture that maintains a view-independent rendering of the scene.
The output images for potentially large number of view points
are then reconstructed from the view-independent representation.
Meinds and Barenbrug [2002] explain a novel texture mapping ar-
chitecture that splats texture samples to the screen instead of resort-
ing to the typical filtered texture fetch approach. The authors show
high quality texture filtering at modest cost.

Point-Based Rendering The possibility of using points as a ren-
dering primitives was first suggested by Levoy and Whitted [1985].
Since then a large body of follow-up work has been published
[Kobbelt and Botsch 2004; Sainz and Pajarola 2004].

The reconstruction of continuous (i.e. hole-free) images from a
discrete set of surface samples can be done by image-space recon-
struction techniques [Grossman and Dally 1998; Pfister et al. 2000]
or by object-space resampling. The techniques from the latter cat-
egory dynamically adjust the sampling rate so that the density of
projected points meets the pixel resolution. Since this depends on
the current viewing parameters, the resampling has to be done dy-
namically for each frame. Examples are dynamic sampling of pro-
cedural geometries [Stamminger and Drettakis 2001], the random-
ized z-buffer [Wand et al. 2001], and the rendering of moving least
squares (MLS) surfaces [Alexa et al. 2001; Fleishman et al. 2003;
Adams et al. 2005].

3 Overview

3.1 EWA Surface Splatting
EWA splatting [Zwicker et al. 2001] was designed for high-quality
direct visualization of point-sampled surfaces. Rendering pure
point-samples of surface attributes, such as position c, normal vec-
tor n, and reflectance properties, by simple forward-projection in-
evitably causes holes in the resulting image in case of insufficient
sampling density. In contrast to this, the EWA splatting frame-
work assumes splats as input data, which additionally have two
tangent axes (u,v) and corresponding radii, such that they repre-
sent disks or ellipses in object space, and by this augment points
with a spatial extent. As a consequence, the mutual overlap of sur-
face splats in object space guarantees a watertight rendering with-
out holes or gaps in between samples. Starting with [Zwicker et al.
2004; Botsch et al. 2004], perspective accurate variants preserve
this property even under extreme projections.

To achieve high visual quality, EWA splatting assigns an ellip-
tical Gaussian reconstruction kernel to each splat, which results in
an elliptical footprint when projected into image space [Westover
1990]. Using these footprint kernels, the individual color contri-
butions of overlapping splats are weighted and accumulated, such
that a final per-fragment normalization, i.e., a division of each frag-
ment’s accumulated color by its sum of weights, results in a smooth
surface reconstruction in image space (see Figure 2).

Similarly to Heckbert’s texture filtering approach [1989], the
projected reconstruction filters are additionally convolved with a
band-limiting image-space pre-filter in order to avoid aliasing ar-
tifacts under minification. If the object-space reconstruction filter
as well as the image-space pre-filter are Gaussians, and if the splat
projection is approximated by an affine mapping, the convolution of
both filters again gives a Gaussian, which is then referred to as the
image-space EWA filter. Since its inception, various improvements

2

To appear in the ACM SIGGRAPH 2007 conference proceedings

Image space Tangent frame (u,v)

Reconstruction kernel
in object space

Reconstruction kernel
in image space

v
uc

u“
v“

Figure 2: Elliptical surface splats, defined by center c and tangen-
tial vectors u and v, sample surface attributes in object space. Their
elliptical projection is sampled and accumulated in image space to
reconstruct an image of the surface.

of the EWA splatting algorithm have been proposed [Räsänen 2002;
Botsch et al. 2005; Guennebaud et al. 2006].

While EWA splatting can be implemented on modern pro-
grammable GPUs, the result is a relatively inefficient multi-pass
algorithm. In particular, we have identified the following perfor-
mance issues:

• There is no dedicated rasterizer unit, which would efficiently
traverse the bounding rectangle of a splat and identify the pix-
els the splat overlaps. As a result, this stage has to be imple-
mented as a fragment shader program.

• Accurate accumulation and normalization of attributes cannot
be done in a single pass due to the lack of necessary blending
modes.

• The depth values must be accumulated and normalized ex-
actly like other attributes, and thus a normalizing depth test
hardware unit would be required for single-pass rendering.
Such a unit has to support the ternary depth test (pass, fail,
accumulate) of EWA splatting.

• The attribute accumulation imposes a heavy burden on frame
buffer caches due to the overlap of splat kernels, and current
caches may not be optimal for the task.

3.2 Design Overview
Our hardware architecture aims to complement the existing triangle
rendering functionality with EWA splats, and make maximum re-
use of existing hardware units of current GPUs.

The new algorithms used by our splat rasterization unit are de-
scribed in Sections 4.1 and 4.2. In order to provide maximum
performance and flexibility, we designed the pipeline to render
EWA splats in a single pass. For that, a ternary depth test (Sec-
tion 4.3) and extended blending functionality (Sections 4.4 and 4.5)
are needed.

In terms of integration into existing GPUs, a particular challenge
is that the execution model of splatting is different from triangle ras-
terization. While individual triangles represent pieces of surfaces,
in splatting a part of the surface is properly reconstructed only af-
ter all the contributing splats have been accumulated and the sum
has been normalized (this also concerns depth values). We achieve
this by routing the splats through a frame buffer-sized surface re-
construction buffer before proceeding with fragment shading, tests,
and frame buffer blending using the existing units. In effect, this ar-
chitectural detail implements deferred shading [Deering et al. 1988;
Botsch et al. 2005] for splats, and as a result any fragment shading
program can be used. Figure 3 illustrates the overall design, which
will be detailed in the following sections.

We chose to implement a custom reconstruction buffer due to
performance reasons. An efficient implementation needs double

Frame Buffer

splat

fragments

splattrigger
on

state
change

Modern GPU EWA Splatting Extension

Vertex Shader

Rasterization

Fragment Shader

Fragment Tests

Blending

For all dirty Pixels
Normalize

and
Clear

Accumulate or Replace

Conflict Check

Surface
Reconstruction

Buffer

Rasterization
Setup

Rasterization
Setup

Early
Fragment Tests

Ternary
Depth Test

Rasterization

triangle

Figure 3: The integration of EWA surface splatting into a conven-
tional graphics pipeline. The key element is the surface reconstruc-
tion buffer. On state changes, readily reconstructed fragments are
fed back into the traditional graphics pipeline.

buffering, fast clears, tracking of dirty pixels, and direct feeding of
normalized dirty fragments to the shader. Note that if our pipeline
was embedded into a GPU that already supported this functionality
for off-screen surfaces, those resources could be reused.

In order to significantly improve the caching efficiency over typ-
ical frame buffer caches, we propose a novel reordering stage in
Section 5.2. This is a crucial improvement because the accesses to
the surface reconstruction buffer may require a substantial memory
bandwidth if the on-chip caches are not working well.

The rest of this paper is organized as follows. Our algorithms
and hardware architecture are described in Sections 4 and 5, re-
spectively. The characteristics of our FPGA, ASIC, and Mesa im-
plementations are outlined (Section 6), and the seamless integration
of the new functionality into existing APIs is covered in Section 6.3.
Finally, Section 7 provides test results, and Section 8 discusses the
limitations and weaknesses of the current design and lists potential
future work.

4 Rendering Pipeline

We propose an EWA surface splatting pipeline that has been opti-
mized for hardware implementations.

A splat is defined by its center c, and two tangential vectors u and
v, as illustrated in Figure 2. The tangential vectors span the splat’s
local coordinate system that carries a Gaussian reconstruction ker-
nel. u and v may be skewed to allow for the direct deformation
of splat geometry [Pauly et al. 2003]. In addition, each splat has a
variable-length attribute vector a that contains surface attributes to
be used by vertex and fragment shading units.

The splat transform and lighting computations are similar to ver-
tex processing, and thus the existing vertex shader units can be re-
used. Table 1 lists the computations required in various stages of
our EWA surface splatting pipeline. The corresponding triangle
pipeline operations are shown for comparison purposes only, and
may not exactly match any particular GPU. Both the triangle and
splat codes could be somewhat simplified, but are shown in this
form for notational convenience.

The remainder of this section describes the rest of the proposed
EWA splatting pipeline in detail.

3

To appear in the ACM SIGGRAPH 2007 conference proceedings

Symbols
c,n,u,v Center, normal, and two tangent vectors
c′,n′,u′,v′ Transformed to camera space
c′′ Center projected to screen space
as,v, f Splat, vertex, and fragment attribute vectors
M,P Model-view matrix, projection matrix
T Transformation from clip space to canonical splat
Ti i-th column of T
>,−> Transpose, inverse transpose
k(),w f Reconstruction kernel function, k() at a fragment
ρ Distance from splat’s origin in object space
A Area of a triangle
〈〉,×,? Dot, cross, and component-wise product

Transform and lighting (using vertex shader)
EWA Surface Splat Triangle (for each vertex)
c′′ = PMc
c′ = Mc
u′ = Mu
v′ = Mv
ñ′ = u′× v′
〈c′, ñ′〉> 0 ? ⇒ backface,kill
n′ = ñ′/‖ñ′‖
as = lighting(a,c′,n′)

c′′ = PMc
c′ = Mc

ñ′ = M−>n

n′ = ñ′/‖ñ′‖
av = lighting(a,c′,n′)

Rasterization setup (fixed function)
EWA Surface Splat, i ∈ [1 . . .3] Triangle, i ∈ [1 . . .3]

T =
(

u′v′c′
0 0 1

)>
P> ∈ IR3×4

d = 〈(1,1,−1),(T4 ?T4)〉
f = 1

d (1,1,−1)

Center of projected splat:
pi = 〈f ,(Ti ?T4)〉

Half extents of bounds:

hi =
√

p2
i −〈f ,(Ti ?Ti)〉

pi = (c′′ix ,c
′′
iy)

A = [(p3−p1)× (p2−p1)]z
A < 0 ? ⇒ backface,kill

Edge functions:
N1 = (p1y

−p2y
,p2x

−p1x
)

N2 = (p2y
−p3y

,p3x
−p2x

)
N3 = (p3y

−p1y
,p1x

−p3x
)

ei = (Ni,−〈Ni,p1〉) ∈ IR1×3

Bounding rectangle:
brmin = min(pi)
brmax = max(pi)

Rasterization (fixed function)
EWA Surface Splat
∀(x,y) ∈ [c′′x ±hx,c′′y ±hy]

Triangle
∀(x,y) ∈ br, i ∈ [1 . . .3]

k =−T1 + xT4
l =−T2 + yT4
s = l4(k1,k2)− k4(l1, l2)

Distance to splat’s origin:
ρ2 = 〈s,s〉/(k1l2− k2l1)2

ρ2 > cutoff2 ? ⇒ outside,kill
w f = k(ρ2)

Barycentric coordinates:
bi = 〈ei,(x,y,1)〉/A
bi < 0 ? ⇒ outside,kill

Perspective correction:
ci = biw1w2w3/wi
r = ∑ci
b′i = ci/r
a f = ∑b′iavi

Table 1: Left: Our splat rendering pipeline. Right: The correspond-
ing triangle pipeline operations are shown for comparison purposes.
The computation of per-fragment attributes a f for EWA splats is
described in Sections 4.3–4.5.

4.1 Rasterization Setup

The rasterization setup computes per-splat variables for the subse-
quent rasterization unit, which then identifies the pixels overlapped
by a projected splat. The triangle pipeline includes specialized units
that perform the same tasks for triangles, although the exact compu-
tations are quite different. For the splat rasterization to be efficient,
the setup unit needs to provide a tight axis-aligned bounding rect-

y1

y2
x1 x2

x1h

y1h

x1h
y1h

w v
u

)c)b)a

Figure 4: Splat bounding box computation. The screen-space
bounding rectangle (a) corresponds to the splat’s bounding frustum
in camera space (b). Transformation into local splat coordinates
maps the frustum planes to tangential planes of the unit sphere (c).

angle for the projected splat. Additionally, our ternary depth test
needs to know the splat’s depth range.

Previous bounding rectangle computations for perspective accu-
rate splats have used either a centralized conic representation of
the splat [Zwicker et al. 2004] or relied on fairly conservative ap-
proximations. According to our simulations, the method of Botsch
et al. [2004] overestimates the bounding rectangle by an average
factor of four, as it is limited to square bounding boxes leading to
inefficient rasterization. Gumhold’s [2003] computation does not
provide axis-aligned bounding boxes, which would result in setup
costs similar to triangle rasterization. The conic-based approach
suffers from severe numerical instabilities near object silhouettes,
and its setup cost is also rather high. When the rendering primitives
are tiny, it is beneficial to reduce the setup cost at the expense of
increased per-fragment cost [Montrym et al. 1997].

We developed a new algorithm for computing tight bounds with-
out the need for matrix inversions and a conic centralization, i.e.,
without the operations that make the conic-based approach unsta-
ble. Moreover, unlike some of the previous approaches, our tech-
nique remains stable also for near-degenerate splats.

Our approach works on c′, u′, and v′ in camera space and com-
putes the axis-aligned bounding rectangle under projective trans-
form P. The key idea is to treat the splat as a degenerate ellipsoid.
Points on the splat correspond to the set of points within the unit
sphere in the local splat coordinate system spanned by u′, v′, and
w′, where w′ is reduced to zero length. The splat in clip space is
built by this unit sphere under the projective mapping PS with

S =
(

u′ v′ 0 c′
0 0 0 1

)
. (1)

Finding the bounding rectangle coordinates x1, x2, y1, and y2 (see
Figure 4a), corresponds to finding planes hx = (−1,0,0,x)> and
hy = (0,−1,0,y)>, x∈{x1,x2} and y∈{y1,y2}, that are adjacent to
the splat in clip space (Figure 4b). Mapping these planes to the local
splat coordinate system by (PS)−1 yields h̄c = (PS)>hc, c ∈ {x,y},
which are tangential planes to the unit sphere in (u′,v′,w′) (see Fig-
ure 4c). Hence, the splat’s bounding rectangle can be determined
by solving for x and y, so that h̄x and h̄y have unit-distances to the
origin. Analogously, the depth extent of the splat can be computed
starting from hz = (0,0,−1,z)>. Note how sending homogeneous
planes through the inverse transpose of (PS)−1 avoids explicit in-
version of S (and P). This is the reason for stability in degenerate
cases. This computation can be considered a special case of the
quadric bounding box computation by Sigg et al. [2006].

Table 1 shows the resulting computation for the rasterizer setup,
providing x1,x2 = p1±h1, and y1,y2 = p2±h2. The third, degen-
erate column of S has been removed as an optimization.

4.2 Rasterization
Our rasterization unit traverses all sample positions within the
bounding box, for each sample computing the intersection point
s of the corresponding viewing ray and the object-space plane de-
fined by the splat. The sample lies inside the splat if the distance ρ

4

To appear in the ACM SIGGRAPH 2007 conference proceedings

from s to the splat’s center is within a specified cutoff radius. For
samples inside the splat, ρ is used to compute the fragment weight
w f = k(ρ2), with k the reconstruction kernel function.

A conic-based rasterization [Zwicker et al. 2004] was not used
due to its high setup cost and numerical instabilities. Botsch et
al. [2004] project each pixel to the splat’s tangential frame. In order
to be fast, the splats are defined by orthogonal tangential vectors
that are scaled inversely to the splat extent. However, the reciprocal
scaling leads to instabilities for near-degenerate splats, and orthog-
onality is a pre-condition that cannot be guaranteed in our case.

Table 1 shows how the ray-splat intersection is efficiently com-
puted. The viewing ray through the sample position (x,y) is
represented as an intersection of two planes (−1,0,0,x)> and
(0,−1,0,y)> in clip space. The planes are transformed into the
splat’s coordinate system using the matrix T, as computed by the
rasterization setup. s follows by intersecting the projected planes
k and l with the splat plane. Due to the degeneracy of the splat’s
coordinate system, the computation of s and ρ2 requires very few
operations.

We use the EWA screen-space filter approximation by Botsch
et al. [2005]. This filter can easily be applied by clamping ρ2 to
min{ρ2,‖(x,y)− (c′′x ,c′′y)‖2}, and by limiting the bounding box ex-
tents hi to a lower bound of one.

4.3 Ternary Depth Test
EWA surface splatting requires a ternary z-test during surface re-
construction. Rather than the two events z-pass and z-fail, it has to
support three conditions z-fail, zd < zs− ε

z-pass, zd > zs + ε

z-blend, otherwise
. (2)

The additional case z-blend triggers the accumulation of overlap-
ping splats. An ε-band around incoming splat fragments defines
whether a fragment is blended to the surface reconstruction buffer.
The size of the ε is computed from the splat’s depth range hz as
ε := hz · ε∆z + εbias , in which the following two parameters offer
further flexibility and control:

ε∆z Scales the depth extents of the splat, usually set to 1.0.

εbias Accounts for numerical inaccuracies, comparable to glPoly-
gonOffset’s parameter unit.

The ternary depth test is used only for surface reconstruction and
does not make the regular depth test obsolete. The integration into
a triangle pipeline still requires the traditional depth test.

It remains to be mentioned that the software implementations de-
scribed by Pfister et al. [2000] and Räsänen [2002] use deep depth
buffers to store additional information for the blending criterion.
However, in our tests the benefits did not justify the additional stor-
age costs and complexity of a deep depth buffer.

4.4 Attribute Accumulation
Our pipeline supports two kinds of splat attributes: typical continu-
ous attributes can be blended, whereas cardinal ones (e.g., material
identifiers) cannot. Unless the ternary depth test fails, all continu-
ous attributes in as are weighted by the local kernel value w f . If the
test resulted in z-pass, weight wd and attributes ad currently stored
in the reconstruction buffer are replaced by

(wd ,ad) :=
{

(w f ,w f ·as), for continuous attributes
(w f ,as), for cardinal attributes .(3)

On z-blend, continuous attributes are blended to the reconstruction
buffer:

(wd ,ad) := (wd +w f ,ad +w f ·as) . (4)

Cardinal attributes cannot be blended. Instead, the destination value
depends on whether the incoming or stored weight is greater:

(wd ,ad) :=
{

(w f ,as), wd < w f
(wd ,ad), wd ≥ w f

. (5)

As a result of the maximum function, a splat’s cardinal attributes
are written to its screen-space Voronoi cell with respect to the sur-
rounding splats. (See also Hoff III et al. [1999].)

4.5 Normalization
Once the accumulation is complete, all continuous attributes must
be normalized (a f = ad/wd) before sending the fragments to the
fragment shader units.

A crucial point in our design is deciding when the accumulation
is complete, and the fragment has to be released from the surface
reconstruction buffer. This is trivially the case when triangle data
follows splats. However, detecting the separation between two splat
surfaces is more involved. The accumulated splats define a surface
only after all affecting splats have been processed, and thus the
completion of a surface cannot be reliably deduced from individ-
ual splats or the accumulated values. Therefore our design needs
to utilize higher-level signals. We currently consider the end of
glDrawElements() and glDrawArrays(), and the glEnd() after ren-
dering individual splats to indicate the completion of a surface.

4.6 Fragment Shading and Tests
Once the normalized fragments emerge from the reconstruction
buffer, they are fed to fragment shader units. Basically this im-
plements deferred shading for splat surfaces, and fragment shading
programs can be executed exactly like they would be for fragments
resulting from triangles. As a result the performance, applicability,
and generality of splatting are significantly improved.

As a final step, the fragment tests and frame buffer blending are
executed using existing units. As an optimization, similarly to cur-
rent GPUs (see Section 2), some of the fragment tests can be exe-
cuted already at the time of splat rasterization.

5 Hardware Architecture
This section describes the impact of the proposed pipeline on the
hardware architecture. While parts of the operations, such as the
transform and lighting stage, can be mapped to existing hardware
components of a GPU, some of the concepts introduced require ad-
ditional hardware units. Figure 5 provides an overview over the
proposed hardware extension. The remainder discusses the exten-
sions in more detail.

5.1 Rasterization Setup and Splat Splitting
Rasterization setup was implemented as a fully pipelined fixed-
function design, which computes the bounding rectangle of a splat
along with the depth extents. In order to simplify cache manage-
ment, we further subdivide the bounding rectangle of a splat ac-
cording to 8× 8 pixel tile boundaries. This decision is consistent
with modern frame buffer caches that work using M×M pixel tiles
[Morein 2000], and thus allows us to maintain a direct mapping
of rasterizers to cached tiles. Our tile-based reconstruction buffer
cache shares the infrastructure of existing frame buffer caches. The
splat splitter unit clips the bounding rectangles against the bound-
aries of the 8×8 pixel tiles of the reconstruction buffer. This results
in potentially multiple copies of a splat so that the copies differ only
in their bounding rectangle parameters. Due to the small size of
splats, the amount of additional data is generally not significant.

5.2 Splat Reordering
Motivation The small size of EWA splats along with the rela-
tively high overdraw during accumulation put an exceptionally high

5

To appear in the ACM SIGGRAPH 2007 conference proceedings

T&L Rast. Setup Splat Splitter

Normalization

Surface
Reconstruction

Buffer
(DRAM)

Rast. 1

Rast. 2

Rast. n

F. Tests

F. Tests

F. Tests

SRAM

Fragment Ops

Conventional
Rasterizer Acc 1

Acc m
...

.

.

.

n-smallest

Reordering
Stage

Cache
Tile 2

Cache
Tile n

Cache
Tile 1

Acc 1

Acc m
...

Acc 1

Acc m
...

Figure 5: Hardware architecture of the EWA surface splatting extension.

burden on the reconstruction buffer cache. A careful ordering of
the splats during a preprocess helps only to certain extent, and does
not apply to procedural geometry or other dynamically constructed
splats. When investigating the reconstruction buffer cache hit rates,
we concluded that significant improvements can be achieved by in-
troducing a new pre-rasterization cache that stores splats. The splats
are then drawn from the cache so that all splats inside a particular
tile are rasterized consecutively. We refer to this process as “splat
reordering”. In our tests the reordering reduced the reconstruction
buffer bandwidth requirements considerably (Section 7).

What we want to maintain is a list of splats for each reconstruc-
tion buffer tile, and then select one tile at a time and rasterize all
the splats inside that tile as a batch. A seemingly straightforward
method for achieving this is to use N linked lists on chip. How-
ever, in order to support large output resolutions, there cannot be
a separate list for each reconstruction buffer tile. As a result, the
approach is highly vulnerable when more than N concurrent lists
would be needed. After initial experiments with these data struc-
tures, we switched to a another solution.

Processing Order of Tiles Ideally the tiles should be processed
in an order that maximizes the hit rate of the reconstruction buffer
cache. According to our tests, one of the most efficient orders is
the simplest one: visiting all non-empty tiles in a scan-line order
(and rasterizing all the splats inside the current tile). This round
robin strategy is competitive against more involved methods that
are based on either timestamps or the number of cached splats per
tile. One reason for this behavior is that in the scan-line order each
tile is left a reasonable amount of time to collect incoming splats.
The other strategies are more likely to process a tile prematurely,
and therefore suffer in cases when more splats follow after the tile
has already been evicted from the reconstruction buffer cache.

We decided to implement the scan-line order using a priority
queue that sorts the incoming splats by their tile index. As will
be shown, our implementation executes several operations in paral-
lel and provides constant-time insertions and deletions to the queue.
To ensure a cyclic processing order of tiles, the typically used less
than (<) ordering criterion of the priority queue has to be modified.
Assuming that the currently processed tile index (the front element
of the queue) is Ic, we define the new ordering criterion of the pri-
ority queue i ≺ j as false, i < Ic ≤ j

true, j < Ic ≤ i
i < j, otherwise

(6)

It can be shown that introducing this variable relation into any sort-
ing data structure, its internal structure stays consistent as long as
Ic is adjusted to I′c only if there is no remaining element i with
Ic ≤ i < I′c (interpreted cyclically) in the data structure.

5

2

4 4

6

3
1

5

1

3

sift-up
I.

II.

sift-down
I.

II.

sift-down*

I.

II.

2

7

3

55

3

25

2

1

(a) (b) (c)

Figure 6: Heap operations. Roman numbers refer to two indepen-
dent examples of each operation. Dashed arrows denote required
comparisons, solid arrows move operations, and bold boxes the new
element. (a) In SIFT-UP ON INSERTION the new element is inserted
to the last leaf node, ascending in the hierarchy until the local heap
condition is met. (b) In SIFT-DOWN ON DELETION the root node is
replaced with the last leaf, descending until the heap condition is re-
established. (c) In modified SIFT-DOWN* ON INSERTION, auxiliary
registers between heap levels allow to propagate inserted elements
downward. The path for this operation is known in advance (in red).

Pipelined Heap A heap is a completely balanced binary tree that
is linearly stored in breadth-first order, and can be used to imple-
ment a priority queue. It is well suited for hardware implementa-
tions, as it has no storage overhead and the child and parent nodes
of a given node index can be found using simple shift and increment
operations on the indices.

Unfortunately, a heap is not ideal when high throughput is re-
quired. Insertion and removal of heap elements require O(logn)
operations, where n is the number of elements in the heap. Figure 6
(a) and (b) show that the two basic heap operations, SIFT-UP and
SIFT-DOWN, traverse the tree levels in opposite directions. How-
ever, if it were possible to reverse the traversal direction for one of
the two operations, they could be parallelized to propagate through
the levels without collision [Rao and Kumar 1988].

This can be achieved by adding auxiliary buffers between the
heap levels that can hold one element each, see Figure 6 (c). For
SIFT-DOWN∗, the path that the operation takes through the heap tree
is known in advance: the propagation is going to traverse all heap
levels before finally an element is stored at the first free leaf, that is,
at the end of the linearized heap. Consequently, this target address
is passed to SIFT-DOWN∗ with every element that is inserted, tying
the execution to that path. Figure 7 shows the resulting comparison
operations along the propagation path of an inserted element.

SIFT-DOWN ON DELETION usually requires the last element of
the heap to be moved to the root node before it sifts down the hi-
erarchy. This procedure has to be adapted if non-empty auxiliary
buffers exist. In this case, the element with the highest target ad-

6

To appear in the ACM SIGGRAPH 2007 conference proceedings

Figure 7: The path an insertion process takes on SIFT-DOWN∗ is
known in advance. Elements are propagated using a chain of auxil-
iary buffers. Dashed arrows denote element comparisons.

dress is removed from its auxiliary buffer and put at the root node
instead. It is then sifting down again until the heap condition is met.

Our implementation resembles the design Ioannou and Kateve-
nis [2001] proposed for network switches. Each heap level is ac-
companied by a controlling hardware unit that holds the auxiliary
buffer. The controller receives insertion and deletion requests from
the preceding level, updates a memory location in the current level,
and propagates the operation to the successive heap level. Each
heap level is stored in a separate memory bank and is exclusively
accessed by the controller unit. The controller units work indepen-
dently and share no global state. This makes the design easily scal-
able. The only global structure is a chain that connects all auxiliary
buffers to remove an advancing element for root replacement.

Using this design, insertion and removal have constant through-
put (two cycles in our FPGA implementation), independent of the
heap size. The improvement offered by the reordering stage over
conventional caches will be investigated in Section 7.

5.3 Rasterization and Early Tests
Rasterization was implemented as a fully pipelined fixed-function
design. Each splat sample is evaluated independently, allowing for
a moderate degree of parallelization within the rasterizer. However,
as splats are expected to cover very few pixels, a more efficient
parallelization can be obtained by using multiple rasterizers that
work on different splats in parallel.

As described in Section 5.1, it makes sense to map each ras-
terizer exclusively to a single cache tile. Let n rasterizers process
tile indices I1 . . . In. The reordering stage then needs to issue en-
tries of these n keys in parallel. This can be achieved by wrapping
the reordering stage by a unit that maintains n FIFOs that feed the
rasterizers. The new stage receives splats from the reordering stage
until an (n+1)st key In+1 �{I1 . . . In} occurs. This key is held until
one of the rasterizer FIFOs is empty and ready to process key In+1.
A useful property is that In+1 is a look-ahead on the next tile to
be processed. Consequently, it can be used to trigger a reconstruc-
tion buffer cache prefetch, further reducing the memory bottleneck.
Retrieving n keys in parallel, however, requires intercepting keys
I1 . . . In before the reordering stage and by-passing them directly to
the respective FIFOs.

After the rasterization, side-effect free, early fragment tests are
performed.

5.4 Accumulation and Reconstruction Buffer
The splat fragments are dispatched to the accumulation units in a
round robin fashion, and each unit receives a full attribute vector
for accumulation into the reconstruction buffer. The accumulators
were implemented as scalar units in order to ensure good hardware
utilization for any number of attributes. As the accumulators can
work on different splats at a time, the design remains efficient even
for very small splats.

The surface reconstruction buffer needs to provide space for all
attributes at a precision that exceeds 8 bits per channel. Hence, it
usually requires more space than the frame buffer and needs to be
allocated in external memory. Its caching requirements are similar
to those of the frame buffer, and therefore the caching architecture
can be shared with the frame buffer.

6 Implementations
We evaluated the proposed rendering architecture using three pro-
totype implementations.

6.1 VLSI Prototype
An early experiment uses an Application-Specific Integrated Cir-
cuit (ASIC) implementation of parts of our architecture to show
that the heap data structure efficiently reduces bandwidth require-
ments and allows high-quality EWA surface splatting at moderate
memory bandwidth.

We built a custom chip that contains a splat splitter, a reordering
stage that holds up to 1024 surface splats, a rasterizer, and a blend-
ing stage that supports three color channels, depth, and weight. All
computations and the reconstruction buffer use fixed-point repre-
sentations. A small on-chip cache provides enough space to store a
single reconstruction buffer tile. Due to limited die area, transform
and lighting and rasterization setup are implemented on two paral-
lel DSP boards, each of them featuring two DSPs that transmit the
rasterizer input to the memory-mapped ASIC. This implementation
still uses a splat setup according to [Zwicker et al. 2004].

The ASIC has been manufactured in a 0.25 µm process using
25 mm2 die area, and runs at 196 MHz. A custom-built printed cir-
cuit board (PCB) inter-connects the DSP and the ASIC, holds the
reconstruction buffer memory, and provides a USB2.0 communica-
tion channel to a PC. The PCB finally displays the normalized re-
construction buffer via DVI output. Two joysticks directly attached
to the DSP boards allow to optionally control the configuration in-
dependent from a PC. Figure 8 shows the final system.

Figure 8: Our prototype board with an ASIC implementation of
the EWA splatting rasterizer.

6.2 FPGA Implementation
In order to further investigate our architecture, we aimed at a com-
plete implementation of the proposed architecture, based on Field-
Programmable Gate Arrays (FPGA). We again partitioned the de-
sign into two major blocks, Setup and Rasterization, distributed
over two FPGAs. T&L and the rasterization setup are performed
on a Virtex 2 Pro 2VP70-5 board with 128 MB DDR DRAM and
8 MB DDR2 SRAM. A Virtex 2 Pro VP100-6 board with 256 MB
DDR DRAM and 16 MB DDR2 SRAM holds the reordering stage
and the rasterization pipeline. The two boards are inter-connected
using a 2 GB/s LVDS communication. See Figure 9 for a schematic.
Our design runs at an internal clock of 70 MHz. The DRAM trans-
fers up to 1.1 GB/s, while the SRAM, running at 125 MHz, provides
a bandwidth of 4 GB/s.

Surface splats are uploaded to the first FPGA over the PCI bus.
It is possible to define simple display lists to render scenes from
within the FPGA’s local memory. After the setup stage, the ras-
terization input is transferred to the second FPGA. There the re-

7

To appear in the ACM SIGGRAPH 2007 conference proceedings

Reordering

Recon. Buffer

Rasterizers

Inter-C
hip-C

om
 TX

Reorder Mem

Acc

Cache

PCI Output

Splat Mem

Control

PCI Input

T&L

In
te

r-
C

hi
p-

C
om

 T
X

2VP70-5 2VP100-6

64
DDR DRAM

128
DDR SRAM

64
DDR DRAM

Setup Rasterizer

Rast.
Setup

Figure 9: Two FPGAs, coupled to implement a fixed-function T&L
stage followed by the proposed rasterization architecture.

ordering stage can store tile indices and 16-bit pointers for 4095
splats in 12 heap levels on chip. All the attributes and other per-
splat data are stored temporarily in external SRAM, and have to be
retrieved when the respective splat exits the reordering stage again.
This requires a small memory management unit. The attributes are
represented and manipulated as 16-bit floating-point numbers.

Our prototype features two parallel rasterizers that process the
same splat at a time, using pixel-interleaving. Each rasterizer is
accompanied by four accumulation units. For splats with up to
4 surface attributes, this allows blending two fragments every cy-
cle, leading to a theoretical peak performance of 140 M blended
fragments/s. Additionally, FLIPQUAD sampling [Akenine-Möller
and Ström 2003] is supported for improved silhouette antialiasing.
Larger attribute vectors lead to a decreased pixel output. Our design
currently supports up to 14 attributes per splat.

In order to simulate the embedding of our extension into an ex-
isting GPU, we pass the normalized output from the second FPGA
to an NVidia GeForce 6800 GT as one or multiple textures. Ren-
dering a screen-sized quad with this texture effectively passes the
normalized fragments from our reconstruction buffer to the frag-
ment stage of the graphics card. This allows to apply additional
operations, such as a fragment program.

6.3 OpenGL Integration
Although the proposed extension is not specific to a particular
graphics API, we demonstrate its integration into OpenGL. The in-
tegration was tested by embedding an additional rasterization mod-
ule into Mesa [Mes], an OpenGL-like software rendering library.
The module contains a software simulation of the splat splitter, a
reordering stage, and the splat rasterization pipeline. Apart from
this, the only required extensions to Mesa were the API additions
and a hook to detect state changes that trigger a release of surface
fragments. All relevant parameters, such as the current attribute
selection could naturally be retrieved from the OpenGL context.

On the API side, EWA surface splats were seamlessly integrated
with other rendering primitives, hiding most of the specifics of the
new primitive from the user. For instance, the newly introduced
reconstruction buffer is hidden from the user. All API extensions
were built as a regular OpenGL extension, which enables the ren-
dering of individual as well as arrays of splats. For example, one
can render splats similarly to GL_POINTS:

glBegin(GL_SPLATS_EXT);

glColor3f(1, 1, 1);

glTangentOne3fEXT(1, 0, 0);

glTangentTwo3fEXT(0, 1, 0);

glVertex3f(0, 0, 0);

glEnd();

Analogously, vertex arrays can be used as with any other rendering
primitive.

We evaluated the use of EWA surface splats within an OpenGL
application using this extension. As an example of a fairly complex
OpenGL application, we chose the game Quake 2. We replaced

Figure 10: The integration of splat objects into a complex OpenGL
application did not require any changes of the surrounding GL code.

some models in the game by point-sampled objects. Apart from
the respective calls to the splat extension, no further changes to the
code were required. Figure 10 shows two screenshots.

7 Results
Table 2 shows statistics of three representative scenes that cover
a range of typical splatting scenarios. The scenes vary in screen
coverage, average splat size, and average overdraw. Scene 1 fea-
tures mostly splat radii that are larger than a pixel, while Scene 2
shows a minification situation. See the magnified inset in Scene 2
to judge the antialiasing quality. Scene 3 combines a wide range of
splat sizes in a single view, see Figure 11. The displayed statistics
were obtained in 512× 512 resolution with FLIPQUAD supersam-
pling enabled. The screen-shots partly show deferred shading as
described in Section 6.2.

7.1 Performance Measurements
The theoretical peak performance of our ASIC prototype is 200 M
fragments per second. Artificial test vectors were capable of repro-
ducing this value, and measurements at a 512× 512 resolution re-
sulted in a peak performance of 3 M splats per second (10 M splats/s
at 128× 128). With realistic scenes, the design’s throughput is

Scene 1 Scene 2 Scene 3
Splat count 101 685 101 685 465 878
Coverage 31.2% 1.3% 43.5%
Overdraw 6.8 27.7 17.6
Samples / splat 19.36 3.5 12.6
Shading deferred T&L deferred
Attributes 14 3 6

Table 2: Test scenes used for evaluation, rendered using the FPGA.

Figure 11: ASIC rendering of an irregularly sampled surface. On
the right, the splats have been artificially shrunk to illustrate the
sample distribution. Images show photographs taken off a screen.

8

To appear in the ACM SIGGRAPH 2007 conference proceedings

050

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Heap Memory Fraction

B
an

dw
id

th
 R

eq
ui

re
m

en
ts

 [M
B

it/
s]

16 kB
64 kB
256 kB

Graph 1: Bandwidth simulation of Scene 1, showing the effect
for varying heap / cache memory ratio, for a total of 16, 64, and
256 kB on-chip memory each. Shown: bandwidth requirements to
reconstruction buffer with respect to the fraction of heap memory.

limited by the DSP performance. The four parallel DSPs process
2.5 M splats/s, of which typically 1 to 1.25 M splats/s reach the
ASIC after backface culling, driving the ASIC close to its maxi-
mum fill rate. The system is presented in the accompanying video.

The theoretical peak performance of our FPGA is 17.5 M splats
and 140 M fragments per second. The setup chip is capable of
processing 26.7 M splats/s. The pipelined heap, which operates at
35 MHz, allows for a maximum throughput of 17.5 M splats/s. Ras-
terizers and accumulators run at 70 MHz, issuing two fragments per
cycle for up to four attributes per fragment. With data from our rep-
resentative test scenes, each of the FPGA’s units reaches its nominal
throughput. As expected, the fragment throughput scales linearly
with the number of attributes exceeding four, which means that the
attribute accumulators are kept busy at all times.

Due to space restrictions, the rasterizer FPGA contains cache
logic for only a single cache tile. This becomes manifest in reduced
performance when measuring the fully integrated graphics pipeline.
For average scenes, the splat throughput ranges from only 0.7 to
2 M splats/s, with peak performances of up to 4 M splats/s. The
single-tile reconstruction buffer cache disallows prefetching, which
stalls the pipeline whenever a new cache tile is being accessed. Al-
though the current logic utilization of the rasterizer FPGA is only
82% (64% flip-flops, 82% LUTs), routing and timing restrictions
make it very difficult to add the required additional cache logic.
Hence, we are planing an upgrade to a next-generation FPGA for
further investigation.

In order to evaluate the efficiency of the proposed reordering ar-
chitecture, we simulate its performance in comparison to a classi-
cal caching architecture. Our measurements assume, rather opti-
mistically, that the classical tile cache is fully associative and uses
a least-recently used (LRU) policy. The tile size is set to 8×8 pix-
els. Assuming that a certain die area allowing for a fixed amount
of on-chip memory is given, we simulate different partitionings be-
tween the pipelined heap and the LRU cache. Beginning with a
pure LRU cache, we continually reduce the number of cache tiles,
down to two remaining tiles, filling the remaining on-chip mem-
ory with a pipelined heap. Graph 1 shows the resulting bandwidth
requirements for different memory fractions occupied by the heap,
assuming a budget of 16, 64, and 256 kB on-chip memory, respec-
tively. As can be seen, trading cache memory for a reordering stage
improves the external memory bandwidth requirements.

7.2 Scalability
Our FPGA’s theoretical peak performance of up to 17.5 M splats
per second is comparable to a splat rasterizer running on the latest

GPUs. The Nvidia 7800GTX runs at 550 MHz and has external
memory bandwidth of 55.4 Gb/s, while ATI Radeon X1800 XT of-
fers 625 Mhz and 48 Gb/s. Judging from our ASIC design that runs
196 MHz on a fairly low-end manufacturing process (0.25µ), scal-
ing to ≥500 MHz seems plausible using a modern (≤ 0.11µ) pro-
cess. That transition alone would give ∼200 M splats per second.

Most of the functional units (splat splitter, rasterization, frag-
ment tests, accumulation, and normalization) in Figure 5 are
pipelined fixed function designs that can process one splat or
fragment per cycle. Further parallelization of these units can be
achieved by duplication, and the relative number of rasterizers or
accumulators can be trivially modified. The current implementation
of the reordering stage has a throughput of two cycles per splat. The
throughput is limited by the heap deletion operation, but it should
be possible to optimize that into a single cycle by further engineer-
ing. Further parallelism could also be achieved by duplication and
then assigning a subset of frame buffer tiles to each unit. In terms of
gate count our design is very small compared to modern GPUs, and
thus duplication of the necessary units seems realistic for getting
impressive, say half a billion splats per second, performance.

8 Conclusions and Future Work

We have described and analyzed our EWA splatting hardware de-
sign, and listed the limitations and open issues on the way to a full-
scale EWA splatting system. We have also proposed a method for
embedding the splatting functionality into OpenGL. We believe that
efficient support for splatting would be a valuable addition, also be-
cause splats have other uses beside surface representation, e.g., vi-
sualization of indirect illumination [Gautron et al. 2005] that has
been decoupled from the (possibly polygonal) scene geometry.

We designed the entire splatting pipeline as dedicated hardware
units in order to freely study what kind of architecture would be
most suitable for the operations required by splatting. Some of the
deviations from current GPU architectures could in fact be benefi-
cial for triangle rendering as well. For example, it would be possi-
ble to use the pipelined heap for improving the coherence of texture
fetches and frame buffer accesses in triangle rendering.

Cache size and the amount of parallelism in our current research
prototypes are still modest due to the limited capacity of our FP-
GAs. The latest generation FPGAs would offer much higher ca-
pacity, but unfortunately we were unable to obtain samples in time,
being forced to use older and smaller chips. In the future, we plan
to exploit the parallelism further, carry out more detailed perfor-
mance and scalability analysis, and also use a wider range of test
scenes and applications. Additionally we are investigating the use
of geometry shaders to dynamically sample higher-order surfaces
into surface splats.

As the proposed EWA splatting pipeline does not utilize deep
buffers, it can reconstruct only one layer (e.g. the closest one) of a
splat surface for each pixel. An additional depth test would have to
be included to the splatting pipeline in order to avoid reconstruct-
ing occluded surfaces and to support, for example, depth peeling
for order-independent transparency [Everitt 2001]. Shadow map
lookups, on the other hand, can be implemented in the fragment
shader and require no additional units.

Acknowledgments

Many thanks go to Matthias Brändli for the back-end design of the
ASIC and to Hanspeter Mathys for his support with the ASIC board
production. Tomas Akenine-Möller for helpful suggestions with the
text. This research has partly been supported by a grant from the
Department of Computer Science, ETH Zurich. FPU IP cores were
donated by Arithmatica Inc.

9

To appear in the ACM SIGGRAPH 2007 conference proceedings

References
ADAMS, B., KEISER, R., PAULY, M., GUIBAS, L., GROSS, M.,

AND DUTRÉ, P. 2005. Efficient raytracing of deforming point-
sampled surfaces. Computer Graphics Forum 24, 3.

AKELEY, K. 1993. RealityEngine graphics. In Computer Graphics
(Proc. ACM SIGGRAPH ’93), 109–116.

AKENINE-MÖLLER, T., AND STRÖM, J. 2003. Graphics for the
masses: a hardware rasterization architecture for mobile phones.
ACM Transactions on Graphics (Proc. SIGGRAPH ’03) 22, 3,
801–808.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. 2001. Point set surfaces. In Proc. IEEE
Visualization, 21–28.

BOTSCH, M., SPERNAT, M., AND KOBBELT, L. 2004. Phong
splatting. In Proc. Eurographics Symposium on Point-Based
Graphics 2004, 25–32.

BOTSCH, M., HORNUNG, A., ZWICKER, M., AND KOBBELT, L.
2005. High-quality surface splatting on today’s GPUs. In Proc.
Eurographics Symposium on Point-Based Graphics 2005, 17–
24.

CLARK, J. 1982. The geometry engine: A VLSI geometry system
for graphics. In Computer Graphics (Proc. ACM SIGGRAPH
’82), ACM, vol. 16, 127–133.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND
HUNT, N. 1988. The triangle processor and normal vector
shader: a VLSI system for high performance graphics. In Com-
puter Graphics (ACM SIGGRAPH ’88), ACM, vol. 22, 21–30.

EVERITT, C. 2001. Interactive order-independent transparency.
Tech. rep., Nvidia.

FLEISHMAN, S., COHEN-OR, D., ALEXA, M., AND SILVA, C. T.
2003. Progressive point set surfaces. ACM Transactions on
Graphics 22, 4.

FUCHS, H., GOLDFEATHER, J., HULTQUIST, J., SPACH, S.,
AUSTIN, J., BROOKS, F., EYLES, J., AND POULTON, J. 1985.
Fast spheres, shadows, textures, transparencies, and imgage en-
hancements in pixel-planes. In Computer Graphics (Proc. ACM
SIGGRAPH ’85), ACM, vol. 19, 111–120.

FUCHS, H., POULTON, J., EYLES, J., GREER, T., GOLD-
FEATHER, J., ELLSWORTH, D., MOLNAR, S., TURK, G.,
TEBBS, B., AND ISRAEL, L. 1989. Pixel-planes 5: a heteroge-
neous multiprocessor graphics system using processor-enhanced
memories. In Computer Graphics (Proc. ACM SIGGRAPH ’89),
ACM, vol. 23, 79–88.

GAUTRON, P., KRIVÁNEK, J., BOUATOUCH, K., AND PAT-
TANAIK, S. 2005. Radiance cache splatting: A GPU-friendly
global illumination algorithm. In Proc. Eurographics Sympo-
sium on Rendering, 55–64.

GROSSMAN, J. P., AND DALLY, W. 1998. Point sample rendering.
In Rendering Techniques ’98, Springer, 181–192.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2006.
Splat/mesh blending, perspective rasterization and transparency
for point-based rendering. In Proc. Eurographics Symposium on
Point-Based Graphics 2006.

GUMHOLD, S. 2003. Splatting illuminated ellipsoids with depth
correction. In Proc. 8th International Fall Workshop on Vision,
Modelling and Visualization 2003, 245–252.

HECKBERT, P. 1989. Fundamentals of Texture Mapping and Image
Warping. Master’s thesis, University of California at Berkeley,
Department of Electrical Engineering and Computer Science.

HEROUT, A., AND ZEMCIK, P. 2005. Hardware pipeline for ren-
dering clouds of circular points. In Proc. WSCG 2005, 17–22.

HOFF III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND
CULVER, T. 1999. Fast computation of generalized Voronoi
diagrams using graphics hardware. In Computer Graphics (Proc.
ACM SIGGRAPH 99), 277–286.

IOANNOU, A., AND KATEVENIS, M. 2001. Pipelined heap (pri-
ority queue) management for advanced scheduling in high speed
networks. In Proc. IEEE Int. Conf. on Communications.

KOBBELT, L., AND BOTSCH, M. 2004. A survey of point-based
techniques in computer graphics. Computers & Graphics 28,
801–814.

LEVOY, M., AND WHITTED, T. 1985. The use of points as dis-
play primitives. Tech. Rep. TR 85-022, The University of North
Carolina at Chapel Hill, Department of Computer Science.

LINDHOLM, E., KLIGARD, M. J., AND MORETON, H. 2001. A
user-programmable vertex engine. In Computer Graphics (Proc.
ACM SIGGRAPH ’01), 149–158.

MEINDS, K., AND BARENBRUG, B. 2002. Resample hardware for
3D graphics. In Proc. ACM SIGGRAPH/Eurographics Workshop
on Graphics Hardware, 17–26.

MESA. The Mesa 3D graphics library. http://www.mesa3d.org/.

MICROSOFT, 2002. Direct3D 9.0. http://microsoft.com/directx/.

MOLNAR, S., EYLES, J., AND POULTON, J. 1992. PixelFlow:
high-speed rendering using image composition. In Computer
Graphics (Proc. ACM SIGGRAPH ’92), ACM, vol. 26, 231–240.

MONTRYM, J. S., BAUM, D. R., DIGNAM, D. L., AND MIGDAL,
C. J. 1997. InfiniteReality: a real-time graphics system. In
Computer Graphics (Proc. ACM SIGGRAPH ’97), ACM Press,
293–302.

MOREIN, S., 2000. ATI Radeon – HyperZ Technology. ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
Hot3D session.

OLANO, M., AND GREER, T. 1997. Triangle scan conver-
sion using 2d homogeneous coordinates. In Proc. ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, 89–95.

OPENGL ARCHITECTURE REVIEW BOARD, AND SHREINER, D.
2004. OpenGL Reference Manual: The Official Reference Doc-
ument to OpenGL, Version 1.4. Addison Wesley.

PAULY, M., KEISER, R., KOBBELT, L., AND GROSS, M. 2003.
Shape modeling with point-sampled geometry. ACM Transac-
tions on Graphics (Proc. SIGGRAPH ’03) 22, 3, 641–650.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
2000. Surfels: Surface elements as rendering primitives. In
Computer Graphics (Proc. ACM SIGGRAPH ’00), 335–342.

PINEDA, J. 1988. A parallel algorithm for polygon rasterization.
In Computer Graphics (Proc. ACM SIGGRAPH ’88), ACM,
vol. 22, 17–20.

POPESCU, V., EYLES, J., LASTRA, A., STEINHURST, J., ENG-
LAND, N., AND NYLAND, L. 2000. The WarpEngine: An

10

To appear in the ACM SIGGRAPH 2007 conference proceedings

architecture for the post-polygonal age. In Computer Graphics
(Proc. ACM SIGGRAPH ’00), 433–442.

RAO, V. N., AND KUMAR, V. 1988. Concurrent access of priority
queues. IEEE Trans. Comput. 37, 12, 1657–1665.

RÄSÄNEN, J. 2002. Surface Splatting: Theory, Extensions and
Implementation. Master’s thesis, Helsinki University of Tech-
nology.

REN, L., PFISTER, H., AND ZWICKER, M. 2002. Object-space
EWA surface splatting: A hardware accelerated approach to high
quality point rendering. Computer Graphics Forum 21, 3, 461–
470.

SAINZ, M., AND PAJAROLA, R. 2004. Point-based rendering
techniques. Computers & Graphics 28, 869–879.

SCHMITTLER, J., WALD, I., AND SLUSALLEK, P. 2002. Saar-
COR: A hardware achitecture for ray tracing. In Proc. Workshop
on Graphics Hardware 2002, 27–36.

SIGG, C., WEYRICH, T., BOTSCH, M., AND GROSS, M. 2006.
Gpu-based ray-casting of quadratic surfaces. In Proc. Euro-
graphics Symposium on Point-Based Graphics 2006, 59–65.

STAMMINGER, M., AND DRETTAKIS, G. 2001. Interactive sam-
pling and rendering for complex and procedural geometry. In
Proc. 12th Eurographics Workshop on Rendering, 151–162.

STEWART, J., BENNETT, E., AND MCMILLAN, L. 2004. Pix-
elview: A view-independent graphics rendering architecture. In
Proc. ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, 75–84.

TORBORG, J., AND KAJIYA, J. T. 1996. Talisman: commodity
realtime 3D graphics for the PC. In Computer Graphics (Proc.
ACM SIGGRAPH ’96), 353–363.

WAND, M., FISCHER, M., PETER, I., MEYER AUF DER HEIDE,
F., AND STRASSER, W. 2001. The randomized z-buffer algo-
rithm: interactive rendering of highly complex scenes. In Com-
puter Graphics (ACM SIGGRAPH ’01), ACM Press, 361–370.

WESTOVER, L. 1990. Footprint evaluation for volume render-
ing. In Computer Graphics (Proc. ACM SIGGRAPH ’90), ACM,
367–376.

WHITTED, T., AND KAJIYA, J. 2005. Fully procedural graphics.
In Proc. ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, 81–90.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a
programmable ray processing unit for realtime ray tracing. ACM
Transactions on Graphics (SIGGRAPH 2005) 24, 3, 434–444.

ZHANG, Y., AND PAJAROLA, R. 2006. Single-pass point rendering
and transparent shading. In Proc. Eurographics Symposium on
Point-Based Graphics 2006, 37–48.

ZWICKER, M., PFISTER., H., BAAR, J. V., AND GROSS, M.
2001. Surface splatting. In Computer Graphics (Proc. ACM
SIGGRAPH ’01), 371–378.

ZWICKER, M., RÄSÄNEN, J., BOTSCH, M., DACHSBACHER, C.,
AND PAULY, M. 2004. Perspective accurate splatting. In Proc.
Graphics Interface, 247–254.

11

	1 Introduction
	2 Related Work
	3 Overview
	3.1 EWA Surface Splatting
	3.2 Design Overview

	4 Rendering Pipeline
	4.1 Rasterization Setup
	4.2 Rasterization
	4.3 Ternary Depth Test
	4.4 Attribute Accumulation
	4.5 Normalization
	4.6 Fragment Shading and Tests

	5 Hardware Architecture
	5.1 Rasterization Setup and Splat Splitting
	5.2 Splat Reordering
	5.3 Rasterization and Early Tests
	5.4 Accumulation and Reconstruction Buffer

	6 Implementations
	6.1 VLSI Prototype
	6.2 FPGA Implementation
	6.3 OpenGL Integration

	7 Results
	7.1 Performance Measurements
	7.2 Scalability

	8 Conclusions and Future Work

