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Abstract

Algorithms for scene understanding and realistic image synthesis
require accurate models of the way real-world materials scatter light.
This study describes recent work in the graphics community to mea-
sure the spatially- and directionally-varying reflectance and subsurface
scattering of complex materials, and to develop efficient representations
and analysis tools for these datasets. We describe the design of acqui-
sition devices and capture strategies for reflectance functions such as
BRDFs and BSSRDFs, efficient factored representations, and a case
study of capturing the appearance of human faces.



1
Radiometry and Appearance Models

Comprehending the visual world around us requires understanding the
role of materials. In essence, we think of the appearance of a material as
being a function of how that material interacts with light. The material
may reflect light or may exhibit more complex phenomena such as
subsurface scattering.

Reflectance is itself a complex phenomenon. In general, a surface
may reflect a different amount of light at each position, and for each
possible direction of incident and exitant light (Figure 1.1, left). So, to
completely characterize a surface’s reflection we need a six-dimensional
function giving the amount of light reflected for each combination of
these variables (position and incident and exitant directions are two
dimensions each). Note that this does not even consider such effects
as time or wavelength dependence. We will consider those later, but
for now let us simply ignore all time dependence and assume that any
wavelength dependence is aggregated into three color channels: red,
green, and blue.

These reflectance functions embody a significant amount of infor-
mation. They can tell us whether a surface is shiny or matte, metallic
or dielectric, smooth or rough. Knowing the reflectance function for
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Fig. 1.1 Materials can exhibit reflectance (left), subsurface scattering (right), or more com-
plex scattering phenomena.

a surface allows us to make complete predictions of how that surface
appears under any possible lighting.

For translucent surfaces, the interaction with light can no longer be
described as simple reflection. This is because light leaves the surface at
a different point than where it entered (Figure 1.1, right). So, in order
to characterize such surfaces we need a function that gives the amount
of light that is scattered from each possible position (2D) to each other
position (another 2D). To be even more correct, of course, it would be
necessary to account for the directional dependency as well.

This study covers the basic principles of how materials are
described, how the appearance of real-world objects may be measured,
and how a knowledge of appearance aids in a variety of applications. In
addition to the obvious application domain of image synthesis, having a
complete knowledge of a material’s appearance can help in interpreting
images. It will aid in 3D reconstruction, view interpolation, and object
recognition. Furthermore, knowing how to characterize materials can
help in understanding how humans perceive surfaces.

This section covers foundational topics. It will survey the domain
of radiometry and introduce the definition of the Bidirectional
Reflectance-Distribution Function (BRDF): a function describing sur-
face reflectance at a point. It will then cover generalizations of the
BRDF, including spatial variation and subsurface scattering. Finally,
it will consider the many different types of data that can be captured
that characterizes “appearance,” and how they relate to each other.
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1.1 Radiometry

The field of radiometry is concerned with the characterization of
the “amount” of electromagnetic radiation, including light, flowing in
space. Though this chapter presents some fundamental concepts, the
reader is referred to classic works such as those of Ishimaru [80] for
more details.

To begin, it is necessary to consider the different quantities related
to light flow, and the radiometric units in which they are expressed.
Light is a form of electromagnetic energy, and so can be measured
using the SI units of Joules. Because in graphics and vision we usually
consider steady-state flows, instead of individual pulses or quanta, we
will most often be interested in the amount of energy flowing per unit
time. This is known as “radiant flux” (Φ) or just “power,” and hence
may be measured using the SI units of Watts.

Although having a way of characterizing the total flow of light is
useful, we will need to consider more complex quantities in order to
talk about concepts such as light sources and surface reflectance.

Point Light in a Direction: Consider an ideal light source (ide-
alized as a point in space). If the light were being emitted uniformly
in all directions, describing its power (in Watts) would characterize
it completely. However, it is possible that light is not being emit-
ted equally in all directions. In this case, characterizing the power
being emitted in a particular direction requires a different unit. In such
cases, we can talk about the amount of power being emitted per unit
solid angle.

So what exactly is a solid angle, and how is it measured? A useful
analogy is to the way an angle is defined in the plane. One radian is
defined as the angle subtended by an arc of a circle, with the arc length
being equal to the circle’s radius. Equivalently, an angle in radians may
be calculated by dividing the length of a circular arc by the radius.

Moving to the concept of solid angles, we will be working in three
dimensions (vs. two for angles), and will be looking at a sphere (vs. a
circle). The fundamental unit of solid angle is known as the steradian,
and is defined as the area of some region on a sphere divided by the
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Fig. 1.2 Point light source emitting light in a direction.

square of the sphere’s radius. A complete sphere thus has 4π steradians,
and smaller solid angles define smaller regions of the space of directions.

So, measuring the directional power or radiant intensity of a point
light source can be done using the units of Watts per steradian:

I =
dΦ
dω

. [W ·sr−1] (1.1)

The same amount of power emitted into a smaller solid angle will result
in a larger measurement (e.g., consider a laser, which has relatively low
power but concentrated into a small solid angle).

Light Falling on a Surface: Another radiometric quantity we often
wish to measure is called irradiance. It represents the amount of light
falling onto a surface. Because the same radiant flux will be “more
concentrated” when falling onto a smaller area of surface than a larger
surface, we define irradiance E as power per unit area:

E =
dΦ
dA

. [W ·m−2] (1.2)

Note that we write this definition in differential form, to emphasize
that we are concerned with the limit of incident power per unit area,
as that area shrinks to zero.

Given this definition of irradiance, there are two immediate and
easily-observed “laws” that emerge. The first is the inverse-square
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law: moving a point light source away from a surface reduces irra-
diance in proportion to the inverse square of the distance. Secondly,
tilting a surface away from a point light results in a lower irradiance,
in proportion to the cosine of the angle between the surface normal
and the direction toward the light. This “cosine law” is often written
as the dot product between the (unit-length) surface normal and light
vectors.

Light Emitted from a Surface in a Direction: We now come
to the final, and most complex, radiometric quantity we are going to
consider, which describes the emission of light from a surface. This can
be thought of as combining the two concepts we just saw: the emitted
light can vary with direction (hence we must control for its directional
distribution, as we did with the point-light case), and we are interested
in the amount of light emitted per unit surface area. This is almost
enough for a practical definition of radiance, but it is conventional to use
a slightly different, “observer-based” definition of surface area, instead
of the one used for irradiance. In particular, an observer or sensor
measuring light emitted from a surface will be sensitive to projected
surface area, perpendicular to the viewing direction (see Figure 1.3).

Hence, we arrive at the definition of radiance: power emitted per
unit projected area (perpendicular to the viewing direction) per unit

Fig. 1.3 Radiance is defined as light emitted from a surface, in a specific direction, per unit
(projected) area.
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solid angle:

L =
dΦ

dAproj dω
. [W ·m−2 ·sr−1] (1.3)

Radiance is perhaps the most fundamental unit in computer vision and
graphics. It is easy to show that the irradiance on a camera sensor is
proportional to the radiance of the surfaces it is imaging, with the
constant of proportionality determined by the imaging optics. (More
accurately, the optical system effectively integrates the radiance over
the solid angle subtended by the aperture, as seen from the surface.)
The sensor irradiance at each pixel is converted to an electrical signal,
then digitized, and so the pixel values we deal with in digital images
are (ignoring effects such as gamma applied to the pixel values) pro-
portional to radiance.

Integrating radiance over all exitant angles, including a cosine term
to account for projected area, gives a quantity called radiant exitance,
which is frequently encountered in graphics simulations:

M =
∫

Ω
L(θ,ϕ)cosθdω. [W ·m−2] (1.4)

When radiance is equal for all exitant directions, as is the case for some
surfaces, this quantity is usually called radiosity and is conventionally
denoted by the symbol B.

The Plenoptic Function and the Light Field: Radiance in a
scene may be represented by the plenoptic function, which is a positive
function defined on a five-dimensional domain:

L(x,y,z,θ,φ) [W ·m−2 ·sr−1]. (1.5)

representing the radiance in every ray direction at every point in three-
dimensional space [1]. Since radiance is constant along rays in free
space, we can often drop one of these dimensions, and the resulting
four-dimensional entity is referred to as the lumigraph [60] or, more
commonly, the (4D) light field [105]. (Note that the term “light field”
was originally introduced by Gershun [53] to describe a vector, rather
than scalar, version of the 5D function.) The set of rays representing
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a light field may be parameterized in several ways, in addition to the
obvious point/angle parameterization L(x,y,θ,φ). In particular, it is
common to parameterize a “light slab” by the positions of ray inter-
sections with two planes: L = L(u,v,s, t), where (u,v) and (s, t) are the
coordinates on two specified planes.

Radiometry vs. Photometry: The preceding discussion has
focused purely on physical (radiometric) units, which is appropriate
when dealing with acquisition apparatus. However, there is a paral-
lel set of photometric units, which also take into account the intensity
perceived by a human observer. In particular, they account for the fact
that the human eye is sensitive to a range of wavelengths from 400
(blue) to 700 (red) nanometers, but that the sensitivity is not constant
within that range.

The original photometric unit was an “international standard
candle,” defined in terms of carbon filament lamps. Today, the candela
is one of the seven base SI units: one candela is the luminous intensity
of a light source producing 1/683 Watt per steradian, at a frequency
of 540×1012 Hz (corresponding to green light with a wavelength of
approximately 555 nm). Beginning with this unit, it is possible to define
concepts analogous to radiant flux, irradiance, and radiance, namely
luminous power (measured in lumens, where one lumen is equal to one
candela times one steradian), illuminance (measured in lux = lumens
per square meter), and luminance (measured in nits = candelas per
square meter or lux per steradian).

While it is important to be aware of the difference between radiom-
etry and photometry, we will assume single-wavelength, radiometric
measurements in the remainder of this section.

1.2 Surface Reflectance

Having learned about radiometry, we are now ready to define the Bidi-
rectional Reflectance-Distribution Function (BRDF), which character-
izes reflection at a point on a surface [142]. Formally, it is the ratio
between the reflected radiance of a surface and the irradiance that
caused that reflection. The radiance and irradiance are each measured
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at a particular angle of exitant and incident light, respectively, so the
BRDF is usually written as a function of four variables: the polar angles
of incident and exitant light.

fr(ωi → ωo) = fr(θi,ϕi,θo,ϕo) =
dLo(ωo)
dEi(ωi)

. [sr−1] (1.6)

The BRDF has units of inverse steradians and is often written as a
differential quantity. This is to emphasize that there is no such thing
as light arriving from exactly one direction, and being reflected into
exactly one outgoing direction. Rather, we must look at non-zero inci-
dent and exitant solid angles, and consider the limit as those approach
zero.

Because BRDFs are 4D functions, they are a bit tricky to visualize
directly. Instead, we often visualize two-dimensional slices of this func-
tion. Figure 1.4 shows two 2D slices of a BRDF, each corresponding
to one direction of incidence (the arrow) and all possible directions
of reflection. The blue surface is a hemisphere stretched such that its
radius in any direction is the reflected radiance in that direction, and
is known as a goniometric plot.

You will note that, for this particular BRDF, some of the incident
light is reflected equally in all directions. This is the constant-radius
(spherical) portion of the surface you see. However, there is also a bump
in the surface, indicating that there is a concentrated reflection in one
particular direction.

If we change the direction of incidence, we see that the constant
portion of the function remains unchanged, but the position of the
bump moves. In fact, the bump always appears near the direction of

Fig. 1.4 Goniometric view of slices of a BRDF corresponding to two incident directions
(denoted by the yellow arrows).
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“ideal mirror reflection” of the incident direction. This is known as a
specular highlight, and it gives a surface a shiny appearance.

Properties of the BRDF: Before we look at specific BRDF mod-
els, let us discuss a few properties shared by all BRDFs. The first
is energy conservation. Because all incident light must be either
reflected or absorbed, and no light may be created during reflection,
it is impossible for a surface to reflect more light than was incident
on it. Expressing this mathematically, we see that the integral of the
BRDF over all outgoing directions, scaled by a cosine term to account
for foreshortening, must be less than one:

∀ωi :
∫

Ω
fr(ωi,ωo) cosθo dωo ≤ 1. (1.7)

A second, more subtle, property of BRDFs is that they must be
unchanged when the angles of incidence and exitance are swapped:

fr(ωi → ωo) = fr(ωo → ωi). (1.8)

This is a condition known as Helmholtz reciprocity, and is due to
the symmetry of light transport [186]. Some systems, such as the work
on Helmholtz stereopsis [211], have relied on this property, which often
expressed as camera/projector duality: in many imaging systems it is
possible to interchange the roles of camera and projector, provided that
cosine terms are properly accounted for.

Though all real BRDFs satisfy the above two properties, measured
data (which can include non-local effects) and the adhoc shading mod-
els used in graphics and vision frequently do not. The term physically-
plausible BRDF is sometimes used for reflectance functions that satisfy
energy conservation and reciprocity.

Some, but not all, BRDFs have a property called isotropy: they
are unchanged if the incoming and outgoing vectors are rotated by
the same amount about the surface normal. With isotropy, a useful
simplification may be made: the BRDF is really a three-dimensional
function in this case, and depends only on the difference between the
azimuthal angles of incidence and exitance.

The inverse of isotropy is anisotropy. An anisotropic BRDF does
not remain constant when the incoming and outgoing angles are
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Fig. 1.5 Anisotropic reflection.

Fig. 1.6 Left: dusty surfaces exhibit an increase in reflection toward grazing angles [152].
Right: corner-reflectors are one example of a configuration that may produce retroreflection.

rotated. In this case, a full four-dimensional function is necessary to
characterize the behavior of the surface. Anisotropic materials are fre-
quently encountered when the surface has a strongly directional struc-
ture at the small scale: brushed metals are one example (Figure 1.5).

Another commonly observed characteristic of some BRDFs is
asperity scattering: an increase in light reflected into all grazing
angles, as is typical for “dusty” surfaces (Figure 1.6, left). Finally,
some BRDFs exhibit retro-reflection. That is, they scatter light most
strongly back into the direction from which it arrived. Street signs and
the paint found on roads are common examples of this phenomenon,
which is created through “corner reflector” configurations (Figure 1.6,
right) or particles of high-index material embedded in paint.
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Parameterization: Thus far, we have assumed that the 4D BRDF
domain is parameterized by the spherical coordinates of the incident
and reflected directions. We are free to choose any parameterization,
of course, and there are others with significant advantages. We may
require a parameterization without singularities, for example, or we
may want one that allows a more compact or intuitive representation.

One useful parameterization of the BRDF [159] uses the “halfway”
vector h (i.e., the vector halfway between the incoming and reflected
rays) and a “difference” vector d, which is just the incident ray in a
frame of reference in which the halfway vector is at the north pole (see
Figure 1.7). Using the spherical angles of h and d, a point in the BRDF
domain is written:

(θh,ϕh,θd,ϕd) ⊂ [0, 2π) × [0, π/2) × [0, π) × [0, π/2). (1.9)

A typical BRDF varies slowly over much of its domain, and the
halfway/difference parameterization exploits this by moving the coordi-
nate axes away from these regions. The axes are aligned with directions
of common BRDF phenomena (specular and retro-reflective peaks) and
this enables representations that are both intuitive and efficient.

Isotropy and Helmholtz reciprocity are conveniently described using
the halfway/difference parameterization. Helmholtz reciprocity implies
that the BRDF is unchanged under ϕd −→ ϕd + π, so that ϕd can
be restricted to [0,π). Isotropy implies that the BRDF is a constant
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Fig. 1.7 Halfway/difference angle parameterization of BRDFs. Instead of treating the
BRDF as a function of (θi,ϕi) and (θo,ϕo), as shown at left, the BRDF is considered
a function of the half-angle (θh,ϕh) and a difference angle (θd,ϕd), as shown at right. The
vectors marked n and t are the surface normal and tangent, respectively.
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function of ϕh, meaning that this dimension can simply be ignored in
the isotropic case.

For glossy surfaces, specular peaks occur at small half-angles (i.e.,
θh ≈ 0), but variation with respect to the difference angle (θd) is gov-
erned primarily by Fresnel reflection and tends to be limited for small
and moderate values of θd.

Lambertian BRDF: We now turn to looking at specific examples
of BRDFs. We will look at simple examples, such that the reflectance
may be written as a mathematical formula. Real surfaces, of course,
are more complex than this, and mathematical models frequently do
not predict the reflectance with great accuracy.

The simplest possible BRDF is just a constant:

fr = const . = ρ/π. (1.10)

(Keep in mind that the BRDF is defined in terms of irradiance,
which has the “incident cosine law” implicitly included.) This results
in a matte or diffuse appearance, and is known as ideal Lambertian
reflectance. This BRDF is frequently written as a constant ρ divided
by π. In this case, ρ is interpreted as the diffuse albedo: it is the frac-
tion of light that is reflected (vs. absorbed) by the surface. Plugging
this BRDF into the energy conservation integral verifies that the surface
conserves energy precisely when the albedo is less than or equal to one.

Phong and Blinn–Phong BRDFs: Another simple analytic
BRDF is the Phong model [153], designed to qualitatively mimic the
the appearance of glossy materials:

fr = ks (r · v)n, (1.11)

where v is the view direction and r is the mirror reflection of the light
direction from the tangent plane. Note that the Phong “BRDF” used in
computer graphics often includes an additional 1/cosθo factor, which
is canceled by the irradiance “cosine law.” This is not a physically-
plausible BRDF: it does not exhibit reciprocity, and does not conserve
energy.
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A common variant of this model is sometimes known as the Blinn-
Phong model [9]:

fr = ks (n · h)n, (1.12)

though again it is often stated as a physically-implausible shading
model rather than a BRDF. Lewis [106] introduced a physically-
plausible BRDF based on this model that is appropriately scaled to
conserve energy.

In contrast to the Lambertian BRDF, the distribution of reflected
light in these models is not constant. In fact, there is a lobe centered
around the direction of ideal mirror reflection for each incident angle,
containing significantly more energy than the rest of the domain. This
is known as the specular lobe, and its size and width (fall-off) are
controlled by the parameters ks and n, respectively.

There are a few things to remember when working with the above
models. First, they are not physically-based and only qualitatively
reproduce the rough appearance of a specular lobe. Second, in com-
puter graphics these models are frequently not presented as BRDFs,
but rather operate on incident illumination quantities that have not
had the “cosine law” applied. In this case, the models that are actu-
ally used are equivalent to “BRDFs” with the incident cosine divided
out, and hence do not satisfy Helmholtz reciprocity. Finally, the spec-
ular exponents n in the original Phong and Blinn-Phong formulations
are not equivalent in the widths of highlights they produce. To obtain
roughly-equivalent highlights from the Blinn-Phong model, it is neces-
sary to use an n that is four times as large as in the Phong model.

Lafortune BRDF: A popular model used for fitting analytic func-
tions to measured BRDF data is the Lafortune model [93]:

fr =
(
Cxlxvx + Cylyvy + Czlzvz)n, (1.13)

in which lx, vx, etc. represent the components of the light vector
l and view vector v, in a coordinate system in which the surface
normal is oriented along the z axis. This model reduces to Phong
by choosing −Cx = −Cy = Cz = n

√
ks, but through suitable choice of
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parameters can also represent non-Lambertian diffuse reflection, off-
specular reflection, anisotropy, and retro-reflection. It is also common
to fit a sum of multiple lobes of (1.13) to measured datasets.

Ward BRDF: Another popular BRDF used in fits to measurements
is the Ward model [191]:

fr = ks
e−tan2 θh ((cos2 φh)/α2

x +(sin2 φh)/α2
y)

4παxαy
√

cosθi cosθo
. (1.14)

Compared to the Blinn–Phong BRDF, the Ward model includes a
specular peak shaped by a Gaussian function (as opposed to a power-
of-cosine model), but also can model anisotropic reflection by using
separate Gaussian widths αx and αy in two perpendicular directions.

Torrance-Sparrow BRDF: Numerous BRDFs have been derived
from first principles that predict the aggregate reflectance for surfaces
that at a small scale consists of tiny, mirror-reflective “microfacets” ori-
ented in random directions. An early microfacet BRDF was originally
developed in the physics community by Torrance and Sparrow [181],
introduced to the graphics community by Blinn [9], and later refined
by Cook and Torrance [18]:

fr =
D G F

π cosθi cosθo
. (1.15)

There are three major terms in the model that describe the angular
distribution of microfacets, how many are visible from each angle, and
how light reflects from each facet.

The first term D in the Torrance–Sparrow model describes the den-
sity of facets facing in any possible direction:

D =
e−(tan2 θh)/m2

4m2 cos4 θh
, (1.16)

where θh is the angle between the halfway vector h and the surface nor-
mal n. Notice that part of this term resembles a Gaussian, and this is
not a coincidence: the Torrance–Sparrow model makes the assumption
that the microfacet normals have a Gaussian distribution controlled
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by a “roughness” parameter m. The cos4 θh term occurring here is a
change-of-basis term: it is included to properly normalize a probability
distribution expressed in terms of the halfway vector.

The next term G in the Torrance–Sparrow model accounts for the
fact that not all facets are visible from all directions, because they are
hidden by the facets in front of them. It includes both “shadowing”
and “masking” effects, representing occlusion from the point of view of
the light and viewer, respectively:

G = min
{

1,
2 cosθh cosθi

cosθd
,

2 cosθh cosθo

cosθd

}
. (1.17)

This formula is derived by considering a particular microgeometry: the
microfacets are assumed to form V-shaped grooves in the surface, which
are symmetric about the (macroscopic) surface normal.

Finally, the reflection from each facet is described by the Fresnel
term F , which predicts that reflection increases toward grazing angles.
This term arises from a solution to Maxwell’s equations on a surface:

F =
1
2

(
F⊥ + F‖

)
=

1
2

[(
sin(θt − θd)
sin(θt + θd)

)2

+
(

tan(θd − θt)
tan(θd + θt)

)2
]
,

(1.18)
where θt = sin−1((sinθd)/η

)
, η is the index of refraction of the surface,

and the two terms represent the portion of reflected light polarized
perpendicular and parallel to the plane of incidence. Note that this
term involves the “difference angle” θd, as defined in Figure 1.7, which
is the angle of incidence (and exitance) on a microfacet oriented to
produce mirror reflection between the desired angles of incidence and
reflection.

More recently, Ashikhmin et al. [3] generalized these types of micro-
facet BRDFs to allow expressing arbitrary half-angle distributions.
They demonstrate how to modify these BRDFs to replace the ana-
lytic distribution in (1.16) with alternative analytic forms or tabulated
(sampled) functions that can express arbitrary patterns.

More complex analytic BRDFs: In addition to models for
primarily-specular surfaces, physically-based BRDFs have been derived
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for rough diffuse surfaces (the Oren–Nayar model [146]), and for dusty
surfaces (the Hapke/Lommel–Seeliger model, developed to model lunar
reflectance [66]). They range in complexity from simple formulas that
ignore many real-world effects to complex models that attempt to
account for most actually observed surface phenomena (e.g., the He–
Torrance–Sillion–Greenberg model [71]). While a detailed description
of these models is beyond the scope of this study, they are frequently
used in photo-realistic rendering systems. One drawback of these mod-
els, however, is that their additional complexity and many parameters
can make it difficult or unstable to fit them to measured data.

Beyond Analytic BRDFs: Although we could continue to develop
mathematical BRDF formulas of increasing sophistication that explains
a greater variety of optical phenomena, over the past decade it has
become increasingly practical to simply measure the BRDFs of real
material samples [122]. In fact, this is one of the main theses of the
avenue of research surveyed in this study: that measured data can cap-
ture a greater variety of real-world optical phenomena with greater
accuracy than is possible with analytic models.

1.3 6D Datasets: SVBRDFs, BTFs, and Distant-Light
Reflectance Fields

Of course, the BRDF is merely the beginning of our study of the appear-
ance of materials. Real-world objects will exhibit more complex behav-
iors, such as a BRDF that changes from point to point on the surface.
Adding two spatial dimensions to the four directional dimensions of the
BRDF leads us to the six-dimensional Spatially-Varying BRDF:

SVBRDF(x,y,θi,ϕi,θo,ϕo). [sr−1] (1.19)

Section 3 of this article describes the challenges of capturing, repre-
senting, editing, and analyzing these complex functions [94].

The study of the Spatially-Varying Bidirectional Reflectance-
Distribution Function (SVBRDF) necessarily represents a shift from
thinking of the appearance of “materials” to that of “objects,” and
therefore requires considering the role of object geometry. In cases in
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which the geometry is known (either because it is planar or because it
has been scanned or modeled), the spatial dimensions of the SVBRDF
are simply represented on a parameterization of that geometry. The
SVBRDF is thus defined very close to the interface between a surface
and the surrounding air, and it seeks to describe the scattering effects
that occur at and immediately below this interface.

In many cases, however, it is impossible, difficult, or undesirable
to model the scene geometry and to compensate for its effects during
measurement. In this case, a 6D function may still be defined, with
the spatial dimensions represented relative to some reference surface,
or simply as image coordinates in a camera that was used for capture.
In this case, the function is often called a non-local reflectance field,
or simply 6D reflectance field. It may be thought of as representing
the apparent exitant light field L(x,y,θo,φo) [105, 60] due to all pos-
sible directions of (non-local) incident light or, equivalently, the (4D)
reflectance field R(x,y,θi,φi) [30] for all possible viewing directions.
When the reference geometry is planar, the term Bidirectional Texture
Function (BTF) is frequently used [24].

BTFs and 6D reflectance fields, if sampled sufficiently densely, can
represent non-local effects including those of foreshortening, occlusion,
shadowing, refraction, subsurface and volumetric scattering, and inter-
reflection. They are useful for objects that have significant mesostruc-
ture, or geometric structure that exists at or near the measurement
scale. However, they give up the property that 4D “slices” at individ-
ual locations on the reference surface are proper physically-plausible
BRDFs. Because of the non-local effects on apparent reflectance, they
may fail to satisfy reciprocity or energy conservation and, even for sur-
faces with an underlying isotropic material, might not exhibit isotropy.

1.4 Subsurface Scattering

The SVBRDF and the BTF are not enough to characterize all
materials. Many surfaces exhibit translucency: a phenomenon in which
light enters the object, is reflected inside the material, and subsequently
re-emerges from a different point on the surface. Such subsurface scat-
tering can have a dramatic effect on appearance, as can be seen from
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these computer graphics simulations that differ in only one respect:
the left image simulates surface reflection only, while the right image
includes subsurface scattering [150].

In order to cope with subsurface scattering, we will need to examine
more complex appearance functions: those that can include the phe-
nomenon of light leaving the surface at a different point than the one
at which it entered.

1.4.1 The BSSRDF

The relevant function is known as the Bidirectional Scattering-Surface
Reflectance-Distribution Function, or BSSRDF:

S(xi,yi,θi,ϕi,xo,yo,θo,ϕo) =
dL(xo,yo,θo,ϕo)
dΦ(xi,yi,θi,ϕi)

. [m−2 ·sr−1] (1.20)

This takes the SVBRDF and adds two more variables, representing the
surface location at which the light leaves the surface: we are now up to
a function of eight variables.

Unlike the BRDF, which is defined relative to input power averaged
over a differential area, the BSSRDF is defined relative to input power
at a single point. For this reason, the BSSRDF is expressed as a fraction
of incident flux instead of incident irradiance, and its units are inverse
squared meters times inverse steradians [142].

As we will see later in this article, the high dimensionality of this
function leads to great difficulty in capturing and working with the
BSSRDF directly, especially if a high sampling rate in each dimension
is desired [57].

1.4.2 The Dipole Model

Because of the enormous size of the BSSRDF, approximations to it
have become quite popular. One of the most powerful relies on the fact
that, in many cases, the appearance is dominated by light that has
reflected many times within the material. In this case, the details of
each scattering event become unimportant, and the appearance is well
approximated by thinking of light “diffusing” away from the location
at which it enters the surface, much as heat might spread [83].
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It turns out that the pattern of diffusion is well approximated by
a dipole: a combination of a point light some distance below the point
at which light entered the surface, and a negative light source some
(slightly larger) distance above the surface. Combining the contribu-
tions of these two light sources with transmissive Fresnel terms for
light entering and leaving the surface (which are simply one minus the
reflective Fresnel equation given in (1.18)) yield a simple, yet powerful,
model:

S =
1
π

Ft(θi) Rd

(‖xi − xo‖
)

Ft(θo). [m−2 ·sr−1] (1.21)

Because of the symmetry of diffusion, the model is effectively a function
of only one variable: the distance between the points of incidence and
exitance.

This dipole model, originally introduced in 2001, has become popu-
lar for simulating subsurface scattering in many materials, and we will
see applications of it later in this article.

1.4.3 Homogeneous and Heterogeneous Scattering

Of course, the dipole approximation assumes a uniform material: the
same amount of scattering everywhere on the surface. For more real-
istic surfaces, it might be necessary to add some of the complexity of
the BSSRDF back in, by considering spatial variation. For example,
in Figure 1.8 it is clearly visible that internal structure affects the
scattering.

1.5 8D Reflectance Fields

While the BSSRDF is most often associated with subsurface scattering
in translucent media, measured on the material/air interface, its defi-
nition is general enough to represent light transport from incident to
exitant light rays in arbitrary configurations (e.g., the two rays do not
even need to intersect). When thought of in this way, it is typical to refer
to this function as an 8D reflectance field, representing the full exitant
4D light field for each possible ray of a 4D incident light field. As with
the 6D reflectance field, it is common for this function to be parameter-
ized over some arbitrary reference surface enclosing the scene. Thus, an
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Fig. 1.8 Left: a synthesized image with surface reflection only. Right: the same model with
a simulation of subsurface scattering.

8D reflectance field, if sufficiently densely sampled, can describe scat-
tering in participating media, interreflection among multiple objects,
refractions, caustics, cast shadows, etc.

A major difference between 6D and 8D reflectance fields is that
the latter can include effects due to local lighting. In contrast, the 6D
reflectance field carries the implicit assumption of distant (directional
or environment) lighting, and thus includes the net effect of equal illu-
mination along all incident rays having the same direction. Thus, only
the 8D reflectance field can capture, for example, the effect of an indi-
vidual light ray on the surface, which is often of interest for translucent
materials.

1.6 Generalizing Reflectance and Scattering

It turns out that even BSSRDFs and 8D reflectance fields do not
cover all possible aspects of surface appearance. First, one could con-
sider all of the functions discussed above as being dependent on the
wavelength of light. Moreover, some surfaces are fluorescent : they emit
light at different wavelengths than those present in the incident light.
Other surfaces may have appearance that changes over time because
of chemical changes, physical processes such as drying, or weathering.
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Fig. 1.9 Taxonomy of scattering and reflectance functions.

Still other surfaces might capture light and re-emit it later, leading to
phosphorescence and other such phenomena.

Thus, a complete description of light scattering needs to add at least
two wavelength and two time dimensions to the BSSRDF. Moreover,
representing volumetric scattering adds two additional spatial dimen-
sions, since this violates the assumption that radiance along light rays
is constant.

So, we can think of all of the functions we have seen as special-
izations of a 14-dimensional scattering function, representing the dis-
tribution of light at arbitrary time, wavelength, position, and angle
that is due to an incident light ray at some time, wavelength, position,
and angle. While nobody has really tried to capture this full function,
many efforts exist to capture one or more of its low-dimensional sub-
sets (Figure 1.9). In fact, it can be argued that over the past decade,
researchers have explored most of the subsets that “make sense,” up to
the limits of acquisition devices.



2
Principles of Acquisition

Measuring reflectance requires the ability to strike a surface with vis-
ible light and sense the radiance it emits. Traditionally, this has been
accomplished with a gonioreflectometer. Consisting of a moving light
source and a single moving photo-detector, this device is slow but pro-
vides highly repeatable Bidirectional Reflectance-Distribution Func-
tion (BRDF) measurements. Over the past two decades, significant
effort has been devoted to streamlining the measurement process using
cameras, light arrays, projectors, and generalized optics. Among other
things, this has enabled the collection of large BRDF databases and
the efficient measurement of higher dimensional scattering functions.

This chapter provides an overview of the acquisition process. We
begin with the basic building blocks: lights sources and projectors to
emit light rays; lenses and mirrors to bend them; and digital cameras to
measure radiance that is reflected from a material. We then provide an
overview of acquisition system designs for reflectance functions defined
over domains of increasing dimension.

97
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2.1 Traditional BRDF Measurement:
The Gonioreflectometer

Consider the BRDF to be a function of five dimensions — four angular
dimensions and one spectral dimension. Ignore, for now, its dependence
on polarization and time, and do not allow fluorescence. One generally
measures such a BRDF by illuminating a (locally) flat surface with a
narrow beam of light with directed solid angle (ωi) and placing a sensor
to subtend an output directed solid angle (ωo). The system is designed
so that the input and output directions are known relative to the local
coordinate system of the planar surface patch.

The classic BRDF measurement device is the four-axis goniore-
flectometer. This device uses a combination of servo motors to posi-
tion a source and photo-detector at various locations on a hemisphere
above a planar material sample. The sensor is typically linked to a
spectroradiometer or another optical assembly that permits recording
of dense spectral measurements for each angular configuration of the
source/sensor pair (e.g., [197]).

This measurement process is a lengthy one, and it can require days
to measure a single material. The advantage of this approach, however,
is that the system can be carefully calibrated, so that measurements
become repeatable. It also provides the ability to capture dense spectral
information, which is a tremendous advantage over most camera-based
systems.

Acquisition time and equipment cost can be reduced if one is will-
ing to restrict attention to isotropic BRDF. In this case, the angular
domain is only three-dimensional, and one requires only three degrees
of freedom (3DOF) in the acquisition system. For a gonioreflectome-
ter built at Cornell University [108], this is accomplished by having
two degrees of freedom (2DOF) in the orientation of the planar sam-
ple and one degree of freedom (1DOF) in the angular position of the
source. Using this system, one can acquire 31 spectral samples per
source/sensor configuration (10 nm increments over the visible spec-
trum); and capturing 1000 angular samples — a very sparse sampling
of the 3D angular domain — takes approximately 10 hours.

For repeatability, any measurement of reflectance should be accom-
panied by a precise specification of the solid angles used to acquire
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it, and precise guidelines for these specifications have existed for quite
some time [142, 171]. Gonioreflectometers can be carefully constructed
and calibrated so that these specifications are readily available, and for
this reason, they are considered “gold standard” measurement devices
for BRDF. But even with these devices, there are physical limitations
that make accurate BRDF measurements difficult to obtain. Grazing
angle effects, in which the incident and/or exitant directions are close
to the measurement plane, are very hard to capture because of surface
foreshortening; and the sensor’s noise level and limited dynamic range
can corrupt measurements of strong specular reflections or very dim
reflections.

2.1.1 The Importance of Scale

The BRDF is a derivative quantity, so any measurement device neces-
sarily measures its average over finite intervals of space and solid angle.
Indeed, “truly infinitesimal elements of solid angle do not contain mea-
surable amounts of radiant flux” ([142], p. 7). We use the term scale in
this chapter to refer to the size of the angular and spatial intervals used
to measure a BRDF, and the importance of determining an appropriate
scale cannot be overstated.

Consider the measurement geometry shown in Figure 2.1, where a
portion of a planar sample is observed by a sensor through an optical

Fig. 2.1 BRDF measurement from a planar sample. Radiance emitted from surface patch
Ao into solid angle ωo is observed by the sensor (only extreme rays are drawn). This
surface must be uniformly illuminated over larger area Ai, the scattering properties must
be uniform across Ai, and subsurface scattering effects must be limited to a radius of less
than r. (Adapted from [142], p. 25.)



100 Principles of Acquisition

system. The finite area of the sensor back-projects to a finite area
on the surface Ao, and the sensor measures the radiant flux emitted
from this area over a finite solid angle ωo. The planar sample is illu-
minated by a bundle of light rays covering area Ai ⊃ Ao. Selecting a
measurement scale requires making choices for the values of Ai, Ao, ωi,
and ωo.

Precise BRDF measurements are obtained only when the finite solid
angles ωi and ωo are small enough for the BRDF to be relatively con-
stant over the directions within them. This means, for example, that
measuring the BRDF of a perfect mirror requires a sensor with an
infinitesimal aperture. Fortunately, for graphics and vision applications,
sufficient precision can usually be obtained using “off the shelf” sen-
sors that have small apertures and high sensitivity. Sufficient precision
in ωi is also quite achievable, but choosing appropriate values for the
spatial intervals Ao and Ai is more difficult. In order to obtain a repeat-
able measurement, the surface scattering effects must be statistically
uniform over Ai, where statistical uniformity means that any varia-
tions (e.g., due to interreflections, shadowing, and masking at a rough
air/material interface) must occur over very small distances relative to
the smaller area Ao. In addition, Ai must be large enough to guarantee
that flux incident outside of Ai would not contribute significantly to
the radiance reflected within Ao. This means that subsurface scatter-
ing cannot cause measurable fractions of incident flux to be transported
over distances greater than r.

How do we verify that these spatial scale conditions are satisfied?
One approach is to use reciprocity, which tells us that the BRDF
must be unchanged when the directions of the source and sensor are
exchanged. In theory, by physically exchanging the input and output
directions in a measurement system (with the same angular and spa-
tial intervals), one may verify this condition. Alternatively, one can
gradually increase the areas Ao and Ai and determine when observ-
able changes cease to occur in the estimated BRDF value. One can
also measure the distance r by observing the reflection from a sur-
face point intensely irradiated by a sharply focused beam, such as that
from a laser (see Section 2.4). In this case, the radius of the band of
diminishing radiance surrounding the intense central spot provides an
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estimate of r. Finally, one may simply choose a spatial scale and then
try to isolate the “direct” reflection component at that scale from the
“non-direct” one. This separation can be approximately accomplished
by modulating the incident light field, a procedure that is described in
more detail in Section 2.5.2.

2.2 Image-based Acquisition

Vision and graphics applications often require representations of
higher dimensional appearance functions (Spatially-varying BRDF
(SVBRDF), Bidirectional Scattering-Surface Reflectance-Distribution
Function (BSSRDF), etc.), and in order to measure these functions we
require techniques that are more efficient than the gonioreflectometer
described in the previous section. To achieve this, we leverage arrays of
light sources, digital projectors, and digital cameras to rapidly manip-
ulate and sense visible light. A camera’s sensor array contains millions
of photo-sensitive elements, and by using lenses and mirrors appro-
priately, these elements can be used to simultaneously collect a large
number of reflectance samples. Similarly, the rays output by an array
of sources or a digital projector can be directed onto a material sample
from various directions with few moving parts.

What are we trading for the gain in efficiency obtained with these
devices? Spectral resolution, for one. If a trichromatic sensor is used
(e.g., Red, Green, Blue), one obtains only three spectral measurements
for each angular configuration, and these measurements are weighted
averages over large, overlapping intervals of the visible spectrum. This
reduced spectral information is not sufficient for physically-accurate
color reproduction, and it limits one’s ability to predict a material’s
appearance under changes in source spectrum. Another limitation is
the complexity of the required calibration procedure. In any camera-
based system, one must estimate the geometric mapping from pixels in
the camera (points in a plane) to rays in a three-dimensional coordinate
system attached to the sample. To be precise, one must also estimate
the exitant solid angle subtended by the camera’s aperture, and the spa-
tial area Ao sensed by each pixel. Finally, one must estimate the radio-
metric mapping between the intensities recorded by a camera and scene
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radiance values, including corrections for the vignetting in the camera’s
optical system and the camera’s radiometric response function.

The complexity and fragility of the required calibration reduces the
accuracy and repeatability of the measurements, but the significant
efficiency gains often make this trade worthwhile.

When using a camera-based system for reflectometry, one must pay
particular attention to scale. As depicted in Figure 2.1, it is essential
that the spatial intervals Ao observed by each pixel are large enough
to satisfy the requirement for statistical uniformity in the material. In
general, this means that high-resolution images must be appropriately
downsampled to obtain valid BRDF measurements.

2.2.1 Camera Calibration

As described above, a camera must be calibrated both geometrically
and radiometrically to be used for reflectometry. The purpose of the
former is to recover the mapping from the camera’s pixels to rays in
a three-dimensional coordinate system attached to a material sample.
The purpose of the latter is to recover the mapping from each pixel’s
intensity value to a (relative) scene radiance value.

Geometric calibration involves the recovery of a camera’s extrin-
sic parameters (position and orientation relative to a world coordinate
system) and intrinsic parameters (focal length, radial distortion param-
eters, etc.). Free and reliable tools for geometric camera calibration are
readily available [145, 12]. For a small number of cameras with similar
fields of view, the most practical procedure uses multiple images of a
planar checker-board pattern [210]. For camera arrays with a wider set
of views, synchronous imaging of a small moving point light source,
such as a light-emitting diode (LED), is a better alternative [27]. Note
that none of these techniques provide information about the solid angle
subtended by the camera’s aperture, and in practice this is often left
unspecified in camera-based reflectometry.

Radiometric camera calibration involves two stages. First, one must
determine the radiometric response function of the camera. This is the
non-linear mapping that often exists between the irradiance incident
on the image plane and the recorded intensity. Standard methods for
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doing this exist, and they usually involve imaging a calibration target
or capturing multiple exposures of a static scene (see [61] for a recent
review). A second step is required to recover the optical fall-off of the
lens system. An imaging system with an ideal thin lens exhibits a rela-
tionship between scene radiance and image irradiance that falls-off as
cos4 α, where α is the angle between the incoming chief ray and the
optical axis. In a real camera, the optical fall-off includes vignetting
effects and must be measured for each zoom and aperture setting. It
can be measured, for example, by capturing an image of a cloudy sky
through a diffuser. One then compensates for optical fall-off by dividing
subsequent measurement images by this “vignetting image.”

A severe limitation that comes with the use of digital cameras for
reflectometry is their small dynamic range. In order to measure high
radiance values at specular peaks while maintaining sufficient signal-
to-noise ratios in darker regions, one must acquire several images with
different exposures and merge them into a single high-dynamic-range
(HDR) image [31, 131]. This task is relatively straightforward once the
radiometric camera response is known.

Another limitation of cameras is the finite depth of field induced
by their optical designs. Only one fronto-parallel scene plane can be in
perfect focus at any given time, and the depth of field (i.e., the range
of depth values that are sufficiently sharp) is inversely proportional
to the camera’s aperture. When an object is close to a camera and
has significant volume, one often requires a small aperture setting to
obtain a sufficient depth of field, and this, in turn, means that exposure
time (and sensor noise) increases. The correct balance between depth of
field and exposure time for a given acquisition system depends on the
objects being considered, the amount of light available, and the noise
levels of the cameras being used. This balance is determined largely
through trial and error.

2.2.2 Light Source Calibration

Individual light sources are often used to create incident light fields for
appearance acquisition, and these light fields are typically modeled in
one of two ways. They are either modeled as parallel rays at a particular
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orientation, as created by far-field source; or they are modeled as a set of
rays that intersect at one point, as emitted by an ideal near-field point
source. In either case, calibration consists of estimating the radiometric
and geometric parameters of the light field model.

The parameters of a light model are determined from measurements
collected by a geometrically and radiometrically calibrated camera.
Geometrically, the position of a near-field source or the direction of a
far-field source is recovered by placing shiny spheres in the scene, esti-
mating their positions relative to the calibrated camera, and observing
the points of mirror reflection (e.g., [100]). Radiometrically, one recov-
ers the relative radiance along each ray (most sources do not emit uni-
formly), by imaging a planar diffuse target (made of a material such
as Spectralon R©) whose position is known relative to the light source
and camera. Each pixel provides a measurement of the relative radi-
ance emitted from a point on the planar target, and from this one
can compute the relative radiance incident at that point by: (1) back-
projecting the pixel ray to its corresponding 3D point on the target; (2)
computing the surface normal and local light direction at that point;
and (3) dividing by the scalar product of the normal and light vector
to compensate for surface foreshortening. The result of this calculation
is the relative radiance along one source ray.

In some cases, linear light sources and area light sources have proven
effective, in which cases alternative calibration procedures are required
(e.g., [48]).

2.2.3 Projector Calibration

Programmable light sources are those that allow the relative radiance
along output rays to be independently controlled. Digital projectors
are the most readily available programmable sources, and by replac-
ing standard light sources with projectors in an acquisition system,
one obtains greater flexibility in exchange for increased complexity
and cost.

A projector is modeled exactly like a camera, so as described above,
its calibration requires estimating the mapping between projector pixel
intensity values and relative radiance values along corresponding rays
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in 3D space. To achieve this calibration, one first calibrates a camera
radiometrically and geometrically, and then uses this camera to make
measurements of the projector’s output [156]. To obtain the intrin-
sic and extrinsic parameters that describe the projector’s geometry,
a simple technique is to project a fixed checker-board pattern onto
a planar surface that is placed at multiple orientations in the scene.
By collecting images of these illuminated planes with a fixed camera,
the intrinsic and extrinsic parameters of both the camera and pro-
jector can be recovered in the same manner as is done for a camera
pair [12].

Radiometrically, a projector can be calibrated from as few as two
images. First, a “vignetting image” for the projector is acquired by
projecting an all-white pattern onto a planar diffuse target, capturing
an image with a calibrated camera, and then estimating the relative
radiance of each projector ray as described above. Then, one projects
a grayscale “step” pattern (one square for each gray level) onto the
same plane, records an image, converts this to radiance values along
the projector rays using the known geometry, and then corrects for
optical fall-off using the vignetting image. This yields the projector’s
non-linearity in tabular form.

An important disadvantage of using digital projectors is that
they exhibit a variety of phenomena that are undesirable from the
standpoint of appearance acquisition [209]. They often vibrate at a
high frequency; their output radiance varies slightly over time; there
is “light leakage” from one pixel to the next; the output radiance from
an “all black” image is non-zero; and “pixelation” is augmented by
dead space that exists between pixels. In addition, because of their
optical design and relatively large aperture, projectors typically have
a small depth of field.

Only some of these effects can be corrected. The effective “black
level” of the projector, meaning the scene radiance it induces when
projecting an all black image onto a particular scene, can be mea-
sured and then subtracted from subsequent measurements obtained
with “patterned” projections onto the same scene. Also, even though
pixelation and blurring cannot be completely eliminated, they can be
reduced using signal processing techniques [209].
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2.2.4 Colorimetric Calibration

As described above, camera-based acquisition systems typically provide
only coarse spectral appearance information. If a single light source and
trichromatic camera are used, then one obtains three spectral measure-
ments of reflectance, each of which represents a weighted integral over
the visible spectrum. This is ideally obtained using separate color filters
and a monochrome camera, but for efficiency reasons, it is sometimes
obtained by demosaicking a single image captured through a color filter
array.

The International Color Consortium (ICC) maintains a standard-
ized color management system that can be used to approximately
translate measurements obtained with a particular camera under a par-
ticular light source to a standard colorimetric representation — usually
CIE XYZ — that can, in turn, be appropriately transformed for any cal-
ibrated display. The translation from camera tristimulus values (Red,
Green, Blue) to CIE XYZ is approximate because a camera’s spectral
filters are not exact linear combinations of the CIE standard observer’s.
(This means, for example, that the mapping from camera tristimulus
values to XYZ is not one-to-one.) A way of obtaining a good approxi-
mate translation is to use established software tools that can create an
“ICC profile” for any source/camera pair. A discussion of this proce-
dure in the context of appearance acquisition is provided by Goesele
et al. [56], who also describe how to combine ICC color management
with HDR imaging.

This procedure creates an appearance representation that is valid
for the illuminant spectrum used for acquisition. Appearance under
changes in illuminant spectrum can only be approximated, and the
usual method for doing so is through generalized diagonal trans-
forms [40], meaning independent per-channel gains in a color space
that is linearly related to XYZ. Based on perceptual experiments, a
preferred color space for this form of “spectral re-lighting” is one known
as the Bradford transform (see [38]), and this has been incorporated
into the ICC color management system [169]. Alternatively, one can
compute an optimized color space for relighting if one is given a set
of illuminant spectra, spectral BRDFs, and per-channel sensor/display
spectral distributions [40, 16].



2.2 Image-based Acquisition 107

When a projector is used as a light source, the measurement
procedure is complicated by the existence of its three spectral filters.
DLP projectors use a rotating color wheel to project colors, so in order
to make an accurate appearance measurement under such a projector’s
“white,” one should set the camera’s exposure time to be an even mul-
tiple of the filter wheel’s rotational period, or remove the filter wheel
altogether.

Colorimetric calibration is especially important when multiple cam-
eras and multiple light sources (or projectors) are used. In this case,
any differences in the spectral characteristics of the devices can man-
ifest themselves as noise in the aggregated reflectance measurements.
To compensate for these differences, one must create separate ICC pro-
files for each camera/source pair and map measurements from each to
a standard color space as described above.

2.2.5 Object Shape

If the materials being measured exist on arbitrarily-shaped surfaces, the
shape of these surfaces must be known in the same coordinate system
defined by the geometric calibration of the cameras and sources. From
the perspective of measuring reflectance, three-dimensional surface
reconstruction and alignment can thus be viewed as another calibra-
tion step. In this context, one of the requirements of the reconstruction
system is that it recovers shape in a manner that is not biased by
the material properties of the surface being measured. Indeed, having
the calibration of the measurement system depend on the signal being
measured is very inconvenient.

A common approach to recovering shape for general materials is
to use structured lighting from lasers or projectors [7, 79], possibly
in conjunction with stereo cameras [29, 208, 28]. For the purposes of
appearance capture, one disadvantage of these approaches is that the
recovered shape must be aligned with the images used for reflectome-
try, causing alignment errors that are manifested in noisy reflectance
samples. Another disadvantage is that they do not directly estimate sur-
face normals, which are ultimately required for measuring reflectance.
Estimating surface normals from a range-scan requires differentiation
of the discrete shape, and this is an additional source of noise.
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By directly estimating surface normals from the same images being
used for reflectometry, these two sources of noise can be reduced. Sur-
face normals can be estimated using photometric stereo, but in its clas-
sic formulation [203], this assumes Lambertian reflectance and violates
the requirement of being independent of reflectance. Developing more
general photometric stereo techniques is an active area of research,
and [115, 59, 2, 77, 137] are some recent examples. The most practi-
cal method to date is perhaps that of Ma et al. [112], which uses a
sequence of three gradient-illumination patterns induced on a sphere
around an object. Assuming either perfectly diffuse of perfectly spec-
ular reflectance, the image captured under each illumination pattern
provides one component of the surface normal, and by using polariza-
tion to separate the diffuse and specular reflectance components (see
Section 2.5.1), one can use this technique to recover high-quality surface
normals at high frame rates.

Surface normal estimates that are truly independent from surface
reflectance can be obtained by exploiting Helmholtz reciprocity. This
approach relies on the acquisition of reciprocal pairs of images — images
for which the positions of the light source and camera are swapped [211].
The disadvantage of this approach is that it requires correspondence
between images captured from different viewpoints to compute surface
normals. Practically, this means that the resolution of the recovered
normal field may be lower than that of the input images. Photometric
stereo, on the other hand, provides per-pixel normals whenever the
underlying reflectance assumptions are satisfied.

Current best practice is to recover coarse geometry using struc-
tured lighting and then combine this with surface normal estimates
obtained photometrically from the same images being used for reflec-
tometry (e.g., [112, 195]). This approach leverages the fact that range
scanners provide accurate low-frequency geometry while photometric
methods provide good high-frequency detail. A convenient algorithm
for combining these two sources of data has been developed by Nehab
et al. [140]. It is also conceivable that accurate low-frequency shape
could be obtained without active lighting using multi-view stereo
techniques [165].
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2.3 Acquiring BRDF, SVBRDF and 6D Reflectance Fields

Cameras, light sources, projectors, and optics can be combined in a
variety of ways to measure surface reflectance, and this section pro-
vides a survey of some existing acquisition system designs. We consider
appearance functions defined on domains having between three and six
spatio-angular dimensions, from isotropic BRDFs to six-dimensional
Bidirectional Texture Functions (BTFs) and spatially-varying BRDFs.
The acquisition of eight-dimensional functions (BSSRDFs and 8D
reflectance fields) is discussed in Section 2.4.

In designing an acquisition system, there are four competing fac-
tors that need to be considered: acquisition time; precision; cost; and
material diversity, meaning the breadth of materials that are to be con-
sidered. It is possible to build an efficient system for measuring BRDF
using spherical material samples, for example, but not every material
can be “painted on” to a sphere.

Figure 2.2 includes six different systems that have been used to
measure BRDF, BTF, and SVBRDF. One of the earliest camera-based

(e)

(a) (b) (c) (d)

(f)

Fig. 2.2 Designs for acquiring BRDF, SVBRDF, and BTF (6D reflectance fields). In each
case, a single image captured by a camera provides a dense sampling of a 2D slice of the
spatio-angular domain. Table 2.1 provides corresponding references to the literature.
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Table 2.1 Sample references corresponding to the designs in Figure 2.2. This is not a com-
prehensive list.

BRDF SVBRDF BTF
(a) Ward [191] Extension to [191] Extension to [191]
(b) Dana and Wang [25] Dana and Wang [25] N/A
(c) Ghosh et al. [54] Extension to [54] N/A
(d) Inefficient Han and Perlin [64] Han and Perlin [64]
(e) Inefficient Dana et al. [24], Dana et al. [24],

Malzbender et al. [116], Malzbender et al. [116]
McAllister [126]

(f) Marschner et al. [119], Stanford gantry [104] Stanford gantry [104]
Matusik et al. [122], Debevec et al. [30] Debevec et al. [30]
Ngan et al. [141]

systems for measuring BRDFs was designed by Ward [191] and is
shown in Figure 2.2(a). In this system, the radiance emitted by a
planar sample is reflected from a half-silvered hemispherical mirror
and captured by a camera through a fish-eye lens. In this way, a single
image provides a dense sampling of the entire hemisphere of output
directions, and by illuminating a homogeneous planar sample with
light source subtending solid angle ωi, this yields a densely sampled
2D slice of the BRDF: fr(ωi, ·). For isotropic materials, only one DOF
in the light source is required, and this can be affected using a 1DOF
rotation stage couple to the source arm. For anisotropic surfaces, the
additional DOF is most easily achieved by coupling an additional
1DOF rotation stage to the material sample. Also, this system could
be extended to handle SVBRDF by adding a 2D translation stage
to the material sample as depicted in the figure. In this case, each
image provides a 2D slice fr(x,ωi, ·). Using this system, Ward claimed
that an anisotropic BRDF could be densely sampled in 10 minutes.
A very nice property of this system is that it allows the measurement
of retro-reflection directions, meaning those for which the incident
and reflected directions are equal. This is not possible with the
gonioreflectometer described in Section 2.1.

An alternative design, shown in Figure 2.2(b), uses a light source
with a much smaller spatial extent. This corresponds to a smaller Ai in
Figure 2.1, but with Ai ⊃ Ao still large enough to satisfy the require-
ments for valid BRDF measurements. The light from the source is
reflected from a parabolic mirror, which is also used to reflect the
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exitant rays. This design is due to Dana and Wang [25] and it has
the advantage of enabling the measurement of complete anisotropic
SVBRDF without mechanical rotation stages. The incident direction
is controlled by translations of the source and material sample, as
depicted in the figure, and one expects measurements obtained by this
system to be highly repeatable. Note that because the spatial extent of
the light source is smaller than that of Figure 2.2(a), Dana’s system is
appropriate for SVBRDF but not well suited to measuring general 6D
reflectance fields, where light transport within and above the material
sample can occur over greater distances.

One way to reduce calibration requirements and improve repeata-
bility is to develop acquisition systems with few moving parts. This can
be accomplished by replacing the single moving point sources in Fig-
ures 2.2(a–b) with a large number of fixed sources that provide a sam-
pling of the incident hemisphere of directions. In addition to improving
repeatability, this provides more flexibility in the set of incident light
patterns used to illuminate the sample. Instead of sequentially activat-
ing each incident ray, one can simultaneously activate many to produce
patterns corresponding to spherical harmonics. The advantage of this
approach is that it reduces the dynamic-range requirements for the sen-
sor and increases the signal-to-noise ratio. Schechner et al. [164] discuss
these benefits and propose using a Hadamard basis to sample the space
of illuminations from a discrete set of point sources.

Figure 2.2(c) achieves a very dense sampling of the incident hemi-
sphere without motion using a digital projector. This design is due
to Ghosh et al. [54], who actually use a pair of curved, rotationally-
symmetric mirrors instead of the single mirror shown here. Instead of
sequentially activating individual incident rays, they use an orthogonal
basis defined over a radially symmetric zone of the input hemisphere.
In addition to reducing dynamic-range requirements, this also reduces
aliasing in angular samples. Figure 2.2(c) also depicts a 2DOF trans-
lation stage that is coupled to the material sample. This is not part
of Ghosh et al.’s system but is a simple extension that would provide
the ability to measure SVBRDF. Like Figure 2.2(b), the limited spatial
extent of the incident illumination would make the system unsuited for
measuring general 6D reflectance fields.
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An alternative motionless design that is suitable for measuring
both SVBRDF and BTF is the kaleidoscope-based system of Han and
Perlin [64]. This system, which is depicted in Figure 2.2(d), is built
around a polygonal mirror that narrows toward the material sample,
and it allows multiple views of the material sample to be acquired by a
single camera. For example, the triangular kaleidoscope in [64] allows
for 22 distinct and simultaneous views. By adding a beam splitter
and projector to the system, the sample can be also be illuminated
from multiple directions simply by setting appropriate regions of the
projected image to white. The main functional difference between
Han and Perlin’s system (Figure 2.2(d)) and that of Ghosh et al.
(Figure 2.2(c)) is that the latter provides lower angular resolution
in exchange for high spatial resolution of the sample. Also, since the
entire planar material sample is illuminated, the kaleidoscope system
is more suitable for BTF measurement.

A fifth design based on planar material samples is shown in Fig-
ure 2.2(e). It is much like a gonioreflectometer, except that the single
sensor is replaced by a camera. For this reason it is sometimes called
a spatial gonioreflectometer. In comparison to Figure 2.2(a), for which
each image measures a slice fr(xi,ωi, ·), the spatial gonioreflectome-
ter provides slices fr(·,ωi,ωo). That is, it yields a dense sampling of
the spatial domain. To measure isotropic SVBRDF, only three degrees
of freedom are required in the angular positions of the incident and
reflected directions. A three-axis spatial gonioreflectometer was built
by McAllister [126], using a 2DOF rotation stage coupled to the mate-
rial sample and a 1DOF rotation stage coupled to a source arm. For
anisotropic SVBRDF and general 6D reflectance fields, one requires
4DOF for the input/output directions that can be achieved by mov-
ing a single source/camera pair [24] or densely covering the visible
hemisphere with multiple cameras and sources (e.g., [116]). Note that
while it can be used for measuring homogeneous materials (BRDF),
the spatial gonioreflectometer is no more efficient than the traditional
gonioreflectometer when the camera and source are distant from the
sample (so that the input/output rays are parallel). To gain efficiency,
a near-field camera and/or source must be used [85].
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An alternative approach to using curved mirrors is to use a curved
material sample instead of a planar one (Figure 2.2(f)). This permits
the efficient measurement of BRDF as well as the measurement of
SVBRDF and 6D reflectance fields that are defined over non-planar
shapes. Efficient BRDF measurement is achieved when the curved sur-
face has uniform material properties and is observed at an appropri-
ate scale [119, 111]. Since the surface normal varies from point to
point on the surface, a single image under directional lighting provides
a very dense (near continuous) sampling of a two-dimensional slice
of the BRDF domain. For isotropic materials, a sphere can be used
with a fixed camera and a 1DOF rotation stage coupled to the source
arm [122]. For anisotropic surfaces, one can use a cylinder and increase
efficiency using multiple material strips that are cut at different orienta-
tions relative to the tangent direction [141]. The cylinder provides one
degree of freedom in its surface normal, and two more degrees of free-
dom are obtained by rotating the cylinder and the source. The fourth
and final DOF comes from the number of “strips,” which is typically
coarsely sampled.

Finally, instead of using spheres or cylinders as curved material sam-
ples, one can use arbitrary shapes as long as the geometry is known in
the coordinate systems of the camera and light source. This is impor-
tant for live materials such as human skin [117, 120] and the skins of
fruits that cannot be “painted on” to a plane, sphere, or cylinder.

Unlike measurement systems based on planar materials (Fig-
ures 2.2(a–e)), each dense 2D slice obtained from an image of a curved
sample does not correspond to fixed input or output direction. Instead,
the sampling pattern of a curved sample is best understood using an
alternative BRDF parameterization, such as Marschner’s [117] or the
halfway/difference parameterization of Rusinkiewicz [159] (discussed on
page 86), that aligns the per-image 2D slices with the coordinate axes.
For orthographic camera projection and distant lighting — or more
generally, when scene relief is relatively small — a single image of a
curved surface provides BRDF samples lying in a plane of constant dif-
ference angle (θd), since this angle is independent of the surface normal.
In the special case of isotropic materials, this means that while each
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(orthographic) image provides only one sample of the θd-dimension, it
represents a nearly continuous sampling of θh and φd. As a result, a set
of images provides dense sampling of (θh,φd), but only as many samples
of θd as there are images. Conveniently, this irregular sampling obtained
from image-based data corresponds well with the behavior of general
BRDFs, which vary slowly in the sparsely sampled θd-dimension, at
least away from grazing angles [136]. At the same time, by imag-
ing curved surfaces, one efficiently obtains high sampling rates of the
half-angle θh, which are necessary to recover high-frequency variation
(e.g., due to specular highlights) that is generally observed in this
dimension.

The design in Figure 2.2(f) can also be used to measure SVBRDF
and 6D reflectance fields. In order to capture the SVBRDF or 6D
reflectance field of a curved surface, the acquisition system must be
able to position sources and cameras over the entire sphere in order to
sample the hemisphere of directions above every surface tangent plane.
One device for accomplishing this task is a spherical gantry, the first
example of which was built at Stanford University [104]. To get a sense
of how many images are required to densely sample the reflectance field
of a regular surface, we can perform a simple counting exercise. When
the shape of the object is known and the source and view directions are
given, each pixel in an image provides one sample of the reflectance field
(or the BRDF at a particular surface point). Sampling the 4D angular
domain at every surface point therefore requires capturing images from
the full double sphere of view and illumination directions. Obtaining
5◦ or 1◦ angular sampling rates for these spheres requires millions or
hundreds of millions of images, respectively.

To reduce measurement time is to capture the images more quickly
using a system with an array of cameras that acquire in parallel and
either a rapidly-moving source (e.g., [30]) or an array of sources that
are activated sequentially (e.g., [116, 51, 196, 195]). This streamlines
the acquisition process at the cost of an increase in calibration com-
plexity (and fragility). For SVBRDF, another strategy for reducing the
measurement burden is to decreasing the number of required images
by exploiting symmetries (e.g., isotropy) and spatial regularities. This
is discussed in more detail in Section 3.2.2 (page 136).
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One very important consideration for reflectometry using curved
surfaces is the presence of interreflections on non-convex shapes. When
there is mutual illumination between distinct surface points, reflectance
values can no longer be directly inferred from intensities observed on the
image plane. For surface that are not mirror-like, mutual illumination
can be removed from the images by modulating the input illumination
with a moving binary pattern (see Section 2.5.2).

2.3.1 Passive Acquisition

All of the techniques described above rely on active illumination, mean-
ing that illumination (and viewpoint) are carefully controlled during
acquisition. An attractive alternative is to use passive techniques that
recover reflectance information from one or more “natural” images via
inverse rendering. Most inverse rendering problems are ill-posed, and in
order to solve them, one must typically make strong assumptions about
the class of materials that are present in the scene. (An early review of
inverse rendering problems and techniques is provided by Patow and
Pveyo [147].)

One approach is to use a parametric BRDF model, since these
impose strong constraints on reflectance. One notable example is the
work of Boivin and Gagalowicz [10], who employ the anisotropic Ward
model, and show that when the scene geometry, camera position, and
lighting are all known, one can estimate BRDF parameters from as
little as one image. In their system, surfaces are manually grouped
into regions of homogeneous reflectance, and then BRDF parameters
are iteratively updated by comparing rendered results with the input
image. In other work, parametric BRDF models have been shown to
enable the simultaneous recovery of reflectance and shape (e.g., [50]),
or reflectance and illumination (e.g., [67]).

Ramamoorthi and Hanrahan [155] derive an elegant framework for
inverse rendering without parametric BRDF models by interpreting the
rendering equation as a convolution. This yields an important theoret-
ical tool that, among other things, enables the recovery of reflectance
through de-convolution when the scene lighting and surface geometry
are known, and when the complete 4D light field is observed. If, instead
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of the entire light field, only a single image is given as input, one can
apply the same approach, but in this case one is limited to so-called
“radially-symmetric” BRDF, meaning those that are one-dimensional
and symmetric about the reflection vector [155].

Developing inverse rendering techniques that are able to handle
more general reflectance models, meaning those with are neither para-
metric nor radially-symmetric, remains an active area of research.

2.4 Acquiring BSSRDF

A general BSSRDF is a function of nine dimensions if we include the
spectral dimension. Even if we ignore the dependency on wavelength,
densely sampling an eight-dimensional space is an extremely burden-
some process. To make it tractable, we reduce the dimensionality of the
BSSRDF by expressing it in a parametric form. A number of paramet-
ric models have been explored. Each is targeted to a particular class
of materials and each requires an acquisition system with particular
capabilities.

The BSSRDF can be expressed as a linear combination of a single
scattering term and a multiple scattering term. The former describes
light that refracts below the surface and is scattered only once before
refracting out [65], while the latter describes light that undergoes mul-
tiple scattering events below the surface interface. When the material
is homogeneous, has a smooth surface, and is highly scattering, both
terms can be described with high accuracy by a parametric model with
relatively few degrees of freedom. When these conditions are satisfied,
scattering within the material can be described by a diffusion process,
which, in turn, can be approximated by a simple dipole model [83].
Accordingly, the BSSRDF can be written:

S = S(1)(xo,ωo,xi,ωi) +
1
π

F (ωi)Rd(||xi − xo||)F (ωo), (2.1)

where the first and second terms represent single and multiple
scattering, respectively. The multiple scattering term is parameter-
ized by only three spectrally-varying parameters. The first is the index
of refraction (usually denoted by η(λ)). This is usually assumed to
be constant over the visual spectrum, and it describes the Fresnel
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transmittance functions, F (ωi) and F (ωo), that govern reflection and
refraction at the (smooth) material/air interface. The analytic forms
of these functions can be found, for example in [148]. The other two
parameters are the reduced scattering coefficient σ′

s(λ) and absorp-
tion coefficient σa(λ), which together define an analytic expression
for Rd(r) in (2.1). (An alternative, more intuitive, parameterization
uses the total diffuse reflectance and translucency or diffuse mean free
path [82, 176].)

A variety of systems have been proposed for measuring the param-
eters of this model. All of them focus on the multiple scattering term
and are based on the assumption that single scattering effects (S(1)

in (2.1)) are negligible far from the point of incidence. This is true
whenever the scattering albedo is close to one [82], meaning that
the material modulates radiation predominantly through scattering
as opposed to absorption (see [13]). Jensen et al. [83] measure the
absorption coefficient and reduced scattering coefficient using a nar-
row focused beam of illumination and a camera (Figure 2.3). These
measurements are made independent of the material’s index of refrac-
tion, and they provide three wide-band spectral measurements of each
parameter. Weyrich et al. [195, 196] obtain similar measurements for
human skin using a linear array of optical fibers that are couple to a
camera (see Section 5.4.2.1, page 166). In both systems, the index of
refraction is not measured and an assumed value (typically 1.3–1.5) is
used instead. Also, neither of these systems measure the phase function

Fig. 2.3 Measuring a BSSRDF. A narrowly focused beam illuminates a homogeneous
translucent material, and the radiance emitted from each surface point is recorded by a
camera. When the air/material interface is smooth and the index of refraction is known,
each pixel provides a measurement of the “subsurface function” R(xi,xo).
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of the material, which is necessary to compute the single scattering
term of (2.1). This can be added to the model by using a parametric
phase function (e.g., the Henyey–Greenstein phase function [74]) with
a manually tuned parameter.

The model of (2.1) assumes the material/air interface to be smooth.
This can be relaxed to account for microstructure (surface roughness)
by adding a spatially varying BRDF and generalizing the Fresnel trans-
mittance functions. If single scattering is ignored, one can write the
BSSRDF as [34]:

S =
1
π

ρ(xi,ωi)Rd(||xi − xo||)ρ(xo,ωo), (2.2)

where

ρ(x,ω) = 1 −
∫

fr(x,ω,ωi)cosθidωi

is one minus the “directional-hemispherical reflectance factor” ([142],
p. 12), or the fraction of incident radiant flux that is transmitted by
the rough material/air interface. Note that the domain of integration
in the expression above is the entire incident hemisphere.

So far, we have considered homogeneous materials with subsurface
scattering properties that do not change from point to point. Most
interesting materials are not homogeneous, however, and in practice it
is necessary to adapt the models of (2.1) and (2.2) (and the acquisition
system) to handle inhomogeneity. Most approaches do so by decom-
posing reflectance into local (BRDF) and non-local (BSSRDF) compo-
nents (at a particular scale!), and then further factoring the non-local
component. Accordingly, the emitted radiance is written as:

L(xo,ωo)

=
∫

fr(xo,ωo,ωi)L(xo,ωi)cosθidωi

+
∫ ∫

fi(xi,ωi)R(xi,xo)fo(xo,ωo)L(xi,ωi)cosθidωidA, (2.3)

where the spatially-varying BRDF fr, the spatially-varying transmit-
tance functions fi and fo, and the subsurface term R(xi,xo) are either
tabulated functions or low-parameter analytic models.
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Acquiring the parameters of such a model, one requires an acqui-
sition system that combines a spatial gonioreflectometer or spherical
gantry (Figure 2.2(a,d,e)) with a subsurface measurement system.
If acquisition time is an important consideration, the number of
required measurements can be reduced by assuming a factored and/or
parametric form for R(xi,xo). Below are four examples:

• Jensen et al. [83] suggest using a dipole-diffusion model with
reduced scattering coefficients and absorption coefficients
that vary as a function of incident point on the material
interface: σ′

s(xi,λ) and σa(xi,λ). This is a coarse approxima-
tion, of course, since it does not model volume effects, but the
parameters can be measured very efficiently. Tariq et al. [176]
use a single projector–camera pair to acquire spatially-dense
estimates of σ′

s(xi,λ) and σa(xi,λ) of a human face in under
a minute.

• Weyrich et al. [195] represent the non-local reflectance of
faces using a dipole-diffusion model with fixed material
parameters σ′

s(λ) and σa(λ) that is modulated by a spatially-
varying scalar function: Rd(||xi − xo||)M(xo,λ). They show
that for human faces, the parameters of this subsurface model
can be estimated directly from images acquired by a spherical
gantry — the same images that are used to estimate the local
(spatially-varying BRDF) component.

• Fuchs et al. [43] also use a scalar modulating function, but
replace the two-parameter dipole-diffuse model with a linear
combination of exponential functions:

R(xi,xo) = M(xo)
∑

k

ck(xi)edk(xi)||xo−xi||. (2.4)

The parameters of this model are measured at three wave-
lengths by illuminating a surface at many points sequentially
using three optically-coupled lasers.

• Peers et al. [150] efficiently measure a non-parametric sub-
surface function R(xi,xo) using a projector that illuminates
multiple surface points in parallel. When these surface points
are sufficiently far apart, a single image — with the Fresnel
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transmittance effects removed — provides dense measure-
ments of R(xi, ·) for many xi.

• Unlike the three approaches above, which use parametric
(Fresnel) transmittance functions and spatially-varying
forms for R(xi,xo), Tong et al. [179] handle inhomogeneity
using measured, non-parametric, and spatially-varying rep-
resentations of the transmittance functions fi and fo. This
model is fit to measurements obtained by a gantry that com-
bines a spatial gonioreflectometer with lasers positioned at
multiple input angles. It is a very flexible representation,
capable of describing some general reflectance fields in addi-
tion to BSSRDF.

2.5 Separating Reflection Components

For non-conducting materials (dielectrics or non-metals), a typical
image can be considered a linear combination of component images,
with each component resulting from a distinct reflection mechanism. If
we choose a particular measurement scale, then the radiance emitted
from such a surface can be written as a sum of two terms,

L(xo,ωo) =
∫

fr(xo,ωi,ωo)L(xo,ωi)cosθidωi

+
∫ ∫

S(xi,ωi,xo,ωo)L(xi,ωi)cosθidωidA, (2.5)

corresponding to local reflection (BRDF) and non-local reflection
(BSSRDF) at that particular scale. Likewise, the local BRDF com-
ponent can be further factored into reflection that occurs exactly at
the air/material interface and that which involves local subsurface
effects.

These components differ in their dependence on wavelength, polar-
ization, and the angular configuration of sources and sensors. For many
objects, they also differ in how they change spatially across the surface.
By separating images according to these reflectance components, their
different behaviors can be exploited to reduce the acquisition time and
the size of the resulting representation.
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2.5.1 BRDF: Interface and Body Reflection

First, consider the case in which the measurement scale is chosen
to be large relative to the subsurface scattering effects of a material
(i.e., Ao 
 r in Figure 2.1). In this case, there are no non-local effects,
and the appearance of the material can be completely described by the
first (BRDF) term in (2.5). We are interested in separating the appear-
ance of this material into two components, corresponding to reflection
at the air/material interface and reflections below the surface. These
two components are termed the interface and body components [167]
(specular and diffuse are also commonly used), and they can be sepa-
rated using two physical properties: color and polarization.

The specular component of reflection corresponds to the portion of
the incident radiant flux that is reflected at the surface boundary. For
a perfectly smooth surface, this component is described by a “specular
spike” occurring in the mirror direction, and the reflected flux can be
computed using the Fresnel equations. Rough surfaces are more com-
mon, and in these cases, the specular component takes the form of a
“specular lobe,” whose shape is determined by the surface microstruc-
ture (recall the Cook–Torrance model from Section 1). The diffuse
reflection component is induced by flux that penetrates the surface
and multiply refracts internally before refracting back out into the air.
Diffuse-reflected flux is randomly polarized, and it is distributed more
or less uniformly over the output hemisphere.

The diffuse and specular components differ in their dependence on
wavelength, polarization, and the angular configuration of the input
and output directions. For many objects, they also differ in how they
change spatially across the surface, and this is shown in the example
of Figure 2.4. In general, the SVBRDF fr(x,ωi,ωo) is a function of
spatial (x) and angular (ωi, ωo) dimensions. The diffuse component is
well-represented by a Lambertian model for a wide range of input and
output angles, but for surfaces with significant texture, it can change
quite quickly from point to point. Said another way, it varies slowly in
the angular dimensions, but varies quickly in the spatial dimensions.
The specular component is often just the opposite. It tends to exhibit
rapid changes in the angular dimensions, but often changes slowly over
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Fig. 2.4 An image that has been separated into diffuse (middle) and specular (right) com-
ponents using polarization. The diffuse component is approximately Lambertian but varies
rapidly between surface points. The specular component exhibits more complex variations
in the angular domain, but varies smoothly (if at all) across the surface.

much of an object’s surface. By separating the diffuse and specular
contributions to a set of images of an object, these behaviors can be
exploited to reduce the number of required input images [162, 212].
This will be discussed in more detail in the next chapter; here we focus
on techniques for separating the two components in an image.

2.5.1.1 Polarization

The diffuse and specular components of an image are typically
separated using color, polarization, or both. The polarization of light
refers the orientations of the (orthogonal) planes of vibration for the
electric and magnetic fields along the direction of propagation of
an electromagnetic wave. A single ray can have linear, circular, or
elliptical polarization, with each referring to the path traced out by
the electric field vector as the wave propagates. We speak of collections
of light rays as being, polarized, unpolarized, or partially polarized.
Polarized light is coherent in terms of its polarization state, whereas
unpolarized (or randomly polarized) light is completely incoherent.
Partially polarized light refers to a mixture of randomly polarized and
coherently polarized rays.

Before now, we have largely ignored polarization, and have focused
instead on the angular and spatial distributions of incident and reflected
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flux. Polarization reflectance effects can be quite complicated, and a
completely general description might require as many as 16 BRDFs —
a four-by-four matrix in terms of Stokes parameters — for a single mate-
rial ([142], p. 32). Fortunately, polarization effects for non-conducting
surfaces can be described and exploited quite simply.

The simplest way to separate specular and diffuse reflections is by
“cross-polarization,” in which linear polarizing filters are placed on the
source and camera (e.g., [128]). Most light sources emit unpolarized
light, and by passing this through a linear polarizing filter, one obtains
linearly polarized light at half the original radiance. When linearly
polarized flux is incident on a non-conducting surface, the reflected
flux will be partially linearly polarized. It consists of the diffuse com-
ponent, which is unpolarized, and the specular component, which
maintains a linear polarization. By placing another linear polarizing
filter in front of the camera and orienting it with the polarization
direction of the specularly-reflected flux, one obtains an image con-
sisting of the complete specular component and half the diffuse com-
ponent: I1 = Id/2 + Is. Then, by rotating the camera’s filter by 90◦,
the specular component is blocked, and this second image contains the
(attenuated) diffuse component only: I2 = Id/2. From these two images,
the diffuse and specular components are simply given by Id = 2I2

and Is = I1 − I2. Figure 2.4 shows an image that was decomposed in
this way.

One potential complication in this process is that the polarization
plane of the specularly-reflected flux depends on the material’s index of
refraction (which may vary with wavelength) and the orientation of the
incident polarization relative to the incident plane. This relationship is
described by the Fresnel equations for a non-conductor, and by assum-
ing an index of refraction (1.5, the refractive index of ordinary win-
dow glass, is the usual choice), one can design polarized lighting arrays
with optimal polarization fields [112]. For a single source, however,
the simplest strategy is to polarize the incident flux in the direction
orthogonal to the plane spanned by the light direction and the cam-
era’s optical axis. This way, the polarization of the specular-reflected
flux will remain in that direction, regardless of the material’s index of
refraction.
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Another effect to be aware of is that diffuse reflectance can become
partially polarized when the angle between the surface normal and view
direction is large [200]. This means that polarization-based separation
will be less accurate near the occluding contour of an observed object.

Finally, it is worth re-emphasizing that this strategy cannot be used
for metallic materials or semiconductors, since reflectance in these cases
is due purely to surface effects. The imaginary component of the index
of refraction is non-zero in these cases, and the Fresnel equations that
govern interface effects are more complicated (e.g., [148]). For example,
linearly polarized incident flux leads to elliptically polarized reflected
flux in general. The differences between the way in which different
materials (especially conductors vs. dielectrics), and the way in which
these vary geometrically, can be exploited in other ways than described
here. This is especially useful in uncontrolled environments, where the
polarization state of the illuminant cannot be controlled [200, 201].

2.5.1.2 Wavelength/Color

If we consider the wavelength dependence of the BRDF, it becomes a
function of five dimensions, fr(λ,ωi,ωo). In many cases, this function
can be factored into separated functions of wavelength and geometry:

fr(λ,ωi,ωo) ≈ g(λ)f(ωi,ωo). (2.6)

This is typically a good approximation, but not always. For example,
the underside of a compact disc exhibits joint angular and spectral
variations caused by diffraction effects, and these cannot be described
by this factored form.

As mentioned above, the BRDF of many materials, including all
dielectrics, can be decomposed into two additive components: a spec-
ular (interface) component and a diffuse (body) component. Utilizing
the spectral/angular factorization described above, the BRDF of such
materials can be written as:

fr(λ,ωi,ωo) = gd(λ)fd(ωi,ωo) + gs(λ)f̃s(ωi,ωo).

Additionally, since the index of refraction of many surfaces is constant
over the visible spectrum [97] the function gs(λ) can be considered
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constant, and this leads to the expression:

fr(λ,ωi,ωo) = gd(λ)fd(ωi,ωo) + fs(ωi,ωo), (2.7)

where fs(ωi,ωo) = gsf̃s(ωi,ωo). In this expression, the function gd(λ)
is often referred to as the spectral reflectance of the material.

Equation 2.7 is at the core of Shafer’s dichromatic model of an
image [167]. When such a surface is lit by a single illuminant and imaged
by a trichromatic sensor, the observed colors can be written as linear
combinations of a source color and diffuse color [167]. We can write the
three channels of the observed image IRGB = {Ik}k=R,G,B as:

Ik = σddk + σssk, (2.8)

where σd and σs are “geometric scale factors” that depend on the light
positions and specular BRDF, and

dk =
∫

e(λ)gd(λ)ck(λ)dλ (2.9)

sk =
∫

e(λ)ck(λ)dλ. (2.10)

Here, e(λ) is the spectral power distribution of the incident illumina-
tion, gd(λ) is the spectral reflectance of the surface, and ck(λ) is the
spectral sensitivity of a linear sensor. We define d = {dk}k=R,G,B and
s = {sk}k=R,G,B to be the diffuse color and source color mentioned
above. Empirically, this model has shown to be suitable for a diverse
set of materials, including certain types of plant leaves, cloth, wood,
and the skin of fruits [97, 178, 72].

The dichromatic model provides a means of using color for sepa-
rating diffuse and specular reflection components. Unlike polarization,
however, one cannot achieve this separation unambiguously using color.
Even when the source color s is known, there is a one-parameter fam-
ily of diffuse colors that satisfy (2.8), and thus a one-parameter family
of possible separations. To choose a good separation from the set of
possibilities, the traditional approach is to exploit spatial coherence
in the distribution of diffuse colors on a surface (e.g., [87, 114, 138,
167, 175]) and/or the distinct angular behavior of diffuse and specular
effects [161].
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2.5.2 Local and Non-local Reflection

In the previous section, we assumed that the measurement scale is cho-
sen to be large relative to the subsurface scattering effects of a material.
When this assumption is relaxed, one can consider three distinct reflec-
tion mechanisms instead of two. In addition to the specular (interface)
component and local body component, there is a non-local body com-
ponent that results from subsurface scattering over a radius that is sig-
nificant relative to the measurement scale. Looking back at Figure 2.1,
the difference between the local and non-local body components is that
the former includes effects for which the radius r is much smaller than
Ao, while the latter includes effects for which r is comparable to, or
greater than, the measurement scale Ao.

Both the local and non-local body components exhibit the color
and polarization properties described above, and both can be separated
from the specular component using the same techniques. These physical
properties cannot be used to separate the two body components from
each other, however; for this we require another approach.

Nayar et al. [137] have recently shown that the local and non-local
reflection components can be separated by modulating the illumina-
tion by high-frequency patterns. When a surface is illuminated by a
high-frequency projected pattern, the exitant radiance due to local
reflections exhibits rapid spatial variation, but since non-local reflec-
tions generally act as a low-pass filter, the exitant radiance due to this
component is very smooth.

Consider the measurement geometry in Figure 2.5, where a rough
inhomogeneous material is illuminated by directional lighting that is
modulated by a binary pattern. As shown in Figure 2.1, the sensor
records the emitted radiance over finite spatial and angular intervals.
Suppose two measurements are taken, one with the binary pattern as
shown, and one with the pattern inverted, and for reasons that will
become clear in a moment, denote these images by Imax and Imin,
respectively. If the spatial frequency of the binary pattern is high
relative to the translucency of the material (i.e., its period is much
smaller than the diffuse mean free path), these two measurements can
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Fig. 2.5 Exitant radiance due to local and non-local reflections can be separated using high-
frequency structured lighting. A checker-board illumination pattern is translated across the
surface and the maximum and minimum intensities are recorded at each pixel of a camera.
The local and non-local contributions (for this measurement scale) are trivially recovered
from these measurements.

be written as:

Imax = Id + Ig/2

Imin = Ig/2,

where Id and Ig are the direct and global (or non-direct) components
of the measurement that would be created if the binary pattern con-
tained no zeros. In other words, given these two measurements, we can
compute Id = Imax − Imin and Ig = 2Imin, which provide good approx-
imations to the two terms on the right of (2.3).

By illuminating a surface with a checker-board pattern and observ-
ing it with a camera, this same separation can be accomplished in
parallel at every surface point. In practice, one shifts the checker-board
pattern across the surface in order to obtain more accurate estimates
of the maximum and minimum intensities at each pixel, and one then
compensate for the fact that the radiance in dark regions of the binary
pattern is not exactly zero [137]. Since other global effects, such as
volumetric scattering and interreflections between surface points, also
behave as low-pass filter of illumination, this same procedure can be
used to isolate the direct component from these effects as well. (This
can be leveraged for a variety of applications, including the reconstruc-
tion of translucent surfaces [15], and rapid estimation of scattering
parameters for human faces [176].)

The definitions of local and non-local are scale-dependent, and will
therefore vary with Ao and Ai in Figure 2.5. An illustration of this scale
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Fig. 2.6 The designation of reflection being local or non-local depends on measurement
scale. Shown are the separated components using the method of Nayar et al. [137] for various
resolutions of the image plane and incident checker-board pattern. The dominant mechanism
of reflection goes from non-local to local as scale increases. (Figure courtesy of the Columbia
University Computer Vision Lab (CAVE), http://www.cs.columbia.edu/CAVE/)

dependence is shown in Figure 2.6, where the separation is performed
with Ai and Ao successively increased by a factor of two. At a small
scale, the majority of reflected flux is due to non-local subsurface effects,
but as the scale increases, more and more of this flux is deemed to be
local.

This scale dependence exists whenever the reflectance of a mate-
rial is decomposed into local and non-local components (i.e., according
to (2.3)), and as a result, such an appearance model is only guaranteed
to be accurate for the scale at which it is acquired. Efficient acquisition
of multi-scale appearance models remains an open research problem.



3
Spatially- (and Temporally-) Varying

Reflectance Models

This section describes the challenges and emerging techniques
related to representing the measured appearance of opaque sur-
faces with spatially-varying (inhomogeneous) reflectance. Recall from
Chapter 1 that the appearance of these surfaces is characterized by
the Spatially-Varying Bidirectional Reflectance-Distribution Function
(SVBRDF) [142] which gives the amount of light reflected from an
object’s surface along direction ωo as a function of the position on the
surface (x,y) and the direction of incoming light ωi:

S(x,y,ωi,ωo), (3.1)

where these directions are defined with respect to the local surface
normal and tangent vectors. Recall also that this function depends on
wavelength λ, although most applications in computer graphics ignore
this by considering its values within a tristimulus color space (e.g.,
RGB). As we will see, the fact that this function is defined over a high-
dimensional (6D) domain makes it challenging to represent. Finally,
it’s important to recall the differences between the SVBRDF and the
Bidirectional Texture Function (BTF) [24] as discussed earlier. This
chapter reviews representations of both.

129
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We begin with a brief review of state-of-the-art devices for acquir-
ing SVBRDFs and BTFs of real-world objects (the previous chapter
covered this topic in detail) and then provide a broad review of rep-
resentations of these measured datasets in chronological order of when
they were published. This review is organized around whether or not a
technique employs a parametric function of the local surface reflectance
or relies instead on a more general-purpose non-parametric model. We
then discuss the important role of basis decomposition algorithms in
this area and highlight a particular project, the Inverse Shade Tree
framework [94], in order to help illustrate key ideas and open research
problems. Finally, we conclude by reviewing prevailing representations
of measured spatially- and temporally-varying appearance of physical
objects.

3.1 Acquisition

Modern image-based systems for capturing the spatially-varying
reflectance of real-world objects use digital cameras and point light
sources to record measurements sampled densely over the object surface
at multiple view and light directions (Figure 3.1, left). For a properly
calibrated rig, in which the spectral and angular sensitivity of the cam-
era and output of the source are known, each pixel value corresponds to
the integral of the SVBRDF over the region of the surface A subtended
by the pixel, the solid angle of incident directions ΩL subtended by the

Fig. 3.1 Left: Images taken from different viewpoints of an object illuminated by a point
light source capture measurements of the SVBRDF defined over its surface. (Images repro-
duced from [101].) Right: The response at each pixel measures the integral of the SVBRDF
over the surface area A visible below that pixel, the solid angle ΩL subtended by the source
and the solid angle ΩC subtended by the camera’s lens system.
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light source, and the solid angle of reflected directions ΩC subtended
by the camera’s lens system:

Iij =
∫

Aj

∫
ΩLi

∫
ΩCi

S(x,y,ωi,ωo)dωodωidA, (3.2)

where Iij refers to the j-th pixel in the i-th image. In order to correctly
interpret the response at each pixel as a measurement of the SVBRDF
two conditions must be met. First, the surface geometry at each pixel
must be known — this consists of the average surface position, the
surface normal, and, for anisotropic materials, the tangent direction.
Additionally, the resolution of the imaging device and the accuracy of
this geometric model must result in samples of a physically valid BRDF
which conserves energy and obeys Helmholtz reciprocity (Section 2) —
inaccuracies in the geometric model is a key source of error. Second,
each pixel must measure only light that was directly reflected from the
object surface. Light arriving at a surface position which was reflected
from another part of the model will contaminate these measurements.

It is useful to categorize acquisition systems based on whether
they restrict the target to some simple known geometry (e.g., planar
[19, 22, 23, 24, 48, 64, 94, 113, 118, 125, 134]) or allow arbitrary 3D
shapes [10, 47, 52, 58, 59, 100, 101, 132, 144, 162, 205, 206]. The for-
mer avoids the difficult and error-prone task of acquiring and align-
ing a model of the 3D geometry of the target object to images like
the ones in Figure 3.1, left. On the other hand, most spatially-varying
objects do not have a simple geometry nor can they be easily rolled
onto, for example, a planar or cylindrical substrate. In these cases,
the problem of jointly measuring the shape and surface reflectance is
unavoidable. Previously proposed systems capture the target geometry
using either optical triangulation-based methods [47, 162, 144] (often
after coating the object in a diffuse powder [57, 202]), silhouette-based
methods [47, 132], non-optical methods such as computed tomography
(CT) [101] or user-assisted photogrammetric techniques [10, 206]. In a
second step, the obtained 3D model is aligned to 2D images. Although
this registration problem has been heavily scrutinized in the litera-
ture [5, 6, 42, 91, 98, 99, 157, 183, 185, 199], it remains challenging
in practice. Techniques have also been proposed that recover geometry
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and reflectance simultaneously in a single optimization [52, 58, 59].
However, published techniques place restrictions on the reflectance
(i.e., that it conforms to a particular analytic BRDF model) and often
recover only a partial estimate of the object geometry (i.e., surface
normals from a single viewpoint [58, 59] or a height field [52]).

An example of a device suitable for measuring the SVBRDF of
physical objects is the Stanford gantry [104]. This system allows plac-
ing a camera and light source at arbitrary positions on the sphere sur-
rounding a desktop-sized target object and thus allows sampling all six
dimensions of this function.

3.2 Representation

The key benefit of using measured data to render images of the acquired
material properties under novel (virtual) lighting conditions and differ-
ent geometric configurations is that it provides the most accurate model
of their visual appearance. However, this accuracy comes at the cost
of large storage requirements and processing times. To meet this chal-
lenge, researchers have developed a number of representations of the
SVBRDF and BTF that reduce the amount of data that must be stored
and processed during rendering. Another desirable property of a repre-
sentation is that it allows editing the angular and spatial components
of the measured sample. This is crucial for incorporating measured
data into a production setting where designers require control over the
materials and objects in a virtual scene.

3.2.1 Parametric Models

A common approach is to model the reflectance at each surface loca-
tion using any one of the parametric BRDFs reviewed in Section 1.
This greatly reduces the amount of data that must be processed since
only a handful of values must be maintained at each surface point. Fur-
thermore, this approach is particularly useful when only a small num-
ber of input images are available since it provides a way of smoothly
interpolating the reflectance at arbitrary view and light directions. The
downside of this approach is that it assumes the reflectance conforms
to the chosen analytic model which may not always be the case. For
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example, the Cook–Torrance BRDF is able to reproduce the appear-
ance of plastics and metals, but it cannot capture other effects such
as anisotropy or retro-reflection (backscattering). Furthermore, this
method is only appropriate for datasets that provide measurements
of the local reflectance at each surface point and would not be appro-
priate for modeling more general BTFs. Another disadvantage, which
is not always avoided by alternative approaches reviewed later, is that
this approach requires a non-linear optimization to estimate the BRDF
parameters that provide a best fit to the measured data. This is often
a fragile process that is sensitive to poor local minima [141].

Sato et al. [162] estimate the parameters of the Torrance–Sparrow
BRDF over the object surface. They fit the diffuse and specular param-
eters separately after having separated the input images into these com-
ponents using a color-space technique. Their final representation allows
only smooth spatial variation in the specular fall-off whereas the diffuse
color can take on an arbitrary value at each surface point.

The inverse rendering framework proposed by Yu et al. [206] models
the spatially-varying reflectance of building interiors using the Ward
BRDF. The parameters of this BRDF are estimated from natural
images with complex lighting that include secondary (global) illumi-
nation effects. They simulate these global effects to isolate measure-
ments of the local surface reflectance. Their final representation allows
high-frequency variation in the diffuse component while the specular
parameters are estimated at a coarser spatial resolution.

Nishino et al. [144] fit the parameters of a simplified Torrance–
Sparrow BRDF to the reflectance measured at a dense set of points over
the surface of a 3D object. The shape of the target object is digitized
separately using a laser scanner. In addition to the surface reflectance,
their optimization also estimates the distribution of incident (distant)
lighting in the form of an environment map.

Lensch et al. [100, 101] describe a representation of the spatially-
varying reflectance of desktop-sized objects with arbitrary 3D
geometry. They apply the Levenberg–Marquardt [103] optimization
algorithm along with a divisive clustering technique that assigns each
surface point to one from a small set of component materials, each repre-
sented with the Lafortune BRDF [93]. Their final representation models
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Fig. 3.2 Reflectance clusters computed for the bird model at each step in the divisive
clustering algorithm of Lensch et al. [101]. The reflectance of each is represented using the
Lafortune BRDF [93].

the reflectance at each surface location as a linear combination of these
BRDFs (typically less than five). Note that because this approach effec-
tively shares angular measurements between different surface locations,
it avoids potential problems associated with fitting the BRDF param-
eters independently at surface locations where the reflectance was not
adequately sampled (e.g., the specular highlight at a particular sur-
face point may not be observed in any of the input images). Figure 3.2
shows a typical set of cluster centers along with a visualization of their
spatial distribution.

Daubert et al. [26] fit the parameters of the Lafortune BRDF to
the reflectance simulated at a dense set of surface locations over vir-
tual samples of cloth also using the Levenberg–Marquardt algorithm.
McAllister et al. [125] and McAllister [126] take a similar approach,
also modeling the SVBRDF as a collection of Lafortune lobes. Both
projects demonstrated that these fit spatially-varying parameters can
be stored as a collection of texture maps and evaluated efficiently within
a physically-based or interactive rendering system.

Gardner et al. [48] fit the parameters of the Ward BRDF to a sparse
set of angular measurements of roughly planar samples obtained by
sweeping a linear light source over the target. Their setup along with
the fact that they use planar samples avoids undersampling important
features of the BRDF (diffuse amplitude, specular amplitude, and spec-
ular fall-off) at any surface location and ensures a stable and robust
optimization. They also estimate the degree of translucency over the
target surface using a backlight and present applications to document
scanning and analysis.
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Georghiades et al. [52] fit the parameters of the Torrance–Sparrow
BRDF to the local reflectance at each surface point. In addition to
reflectance, they also compute the 3D shape of the target object in
the form of a heightfield seen from a single viewpoint. Finally, their
optimization treats the positions of the light sources as additional free
parameters and thus automates this step in the calibration. However,
their final representation requires the sample to have a homogeneous
specular lobe (amplitude and fall-off), but does allow arbitrary varia-
tion in the diffuse component.

Goldman et al. [58, 59] estimate the surface normals and reflectance
in the form of an isotropic Ward BRDF at each pixel in a fixed cam-
era viewpoint from images taken under known variable point lighting.
Similar to the method of Lensch et al. [101], they model the per-pixel
reflectance as a linear combination of a small number of basis BRDFs.
This basis, the projection of the measurements into this basis (referred
to as spatial blending weights), and the surface normals are all esti-
mated together using a standard coordinate descent approach where
each subset is alternately optimized using the Levenberg–Marquardt
algorithm while the other parameters are held fixed. In addition to
greater compression rates and a more stable optimization, this study
makes the important observation that expressing the data within a
low-dimensional linear basis also allows making intuitive edits to the
sample. The parameters of each individual basis BRDF can be adjusted
to edit their associated reflectance everywhere they appear over the sur-
face. Conversely, the spatial blending weights can be edited to alter the
distribution of these component materials. We return to this impor-
tant connection between basis decomposition and editability later in
Section 3.3.

Marschner et al. [118] model the appearance of polished wood as
the weighted sum of a standard specular and diffuse component with
an analytic model of the way light is reflected from a dense collection
of oriented fibers located below the surface. The fiber orientation is
estimated at each surface location through a linear optimization that
assumes that the brightest measurements lie along the specular cone
and the remaining BRDF parameters are derived using a simple statis-
tical analysis. Light reflected directly from the surface is ignored and
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therefore the shape and size of the surface specular lobe must be set
manually.

In summary, using an analytic BRDF to model the reflectance at
each surface location over a spatially-varying material sample leads to
a very compact representation that is easily integrated into existing
real-time and physically-based rendering systems. Another important
advantage is that this approach can be effective when only a small
number of input images are available. The key drawback is the loss
of accuracy when the measured reflectance substantially deviates from
the chosen analytic model and the often fragile non-linear optimization
that must be performed.

3.2.2 Non-Parametric Models

Alternative approaches to representing the SVBRDF and BTF use
general-purpose dimensionality reduction and function interpolation
algorithms. These so-called non-parametric methods do not require
that the measured reflectance comply with a particular analytic func-
tion and, as a result, apply to a wider range of materials. Another
benefit of these methods is that the underlying optimization is often
more stable and less susceptible to poor local minima. Their increased
generality and accuracy, however, often come at the cost of requiring
a denser sampling of the angular domain and can run counter to the
goal of obtaining an intuitive representation that lends itself to direct
editing.

Common to these methods is the fact that they all exploit phenom-
ena present in real-world reflectance functions. Indeed, requiring that
the measured data conform to a particular analytic function is one
example of this philosophy, but there are less restrictive constraints
that allow achieving a practical representation while also applying to
a wide class of materials. We have already discussed isotropy and reci-
procity as being common, and useful, properties of reflectance from
an acquisition standpoint because they substantially reduce the angu-
lar domain and thus the number of required images. These traits
are exploited to achieve compact representations as well. Real-world
SVBRDFs also tend to be compressible in the sense that they permit
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a sparse representation when projected into particular bases such as
the wavelet basis [123]. However, the degree of compressibility is often
heavily influenced by the way in which the angular domain is param-
eterized as discussed in Chapter 1. Another common property is sepa-
rability, which refers to the fact that spatially-varying reflectance can
often be written as a linear combination of diffuse and specular compo-
nents. This is useful because when isolated, each of these components
exhibits different (and exploitable) behavior. For example, the diffuse
component is typically well-represented by a Lambertian model and
can often be reliably estimated over the entire surface from just a hand-
ful of images. Spatial smoothness is another important property which
refers to the fact that for many surfaces, reflectance is slowly varying
from point to point. This is more often true for the specular reflectance
component (e.g., [162, 212]). Thus, knowledge of the reflectance at one
point on a surface is often a good indicator of the reflectance at another.
Finally, spatial regularity is another way of describing the correlation
between the reflectance at distinct surface points on the same surface.
Here, it is assumed that the reflectance at all surface points can be
written as linear combinations of a single set of basis BRDFs (e.g.,
[59, 94, 100]).

Since the work of Dana et al. [24], Nishino et al. [143], Cula and
Dana [20], Zalensny and Van Gool [207], and Furukawa et al. [47],
standard rank-reduction algorithms such as Principal Component
Analysis (PCA) have been used extensively to compress measured
SVBRDFs/BTFs of physical samples [89, 109, 135]. This requires first
resampling the data along a regular grid of angular positions and orga-
nizing these samples into a matrix that is subsequently factored using
the Singular Value Decomposition (SVD) algorithm. Local PCA has
also been used to compress BTFs [133]. This involves projecting subsets
of the data into different linear bases designed to achieve a greater com-
pression ratio. Vasilescu and Terzopoulos [184] and Wang et al. [187]
extended this work to consider multilinear representations that are
computed by applying the N -mode SVD algorithm to higher-order ten-
sors. This is a more natural approach since these functions are inher-
ently high-dimensional and allow exposing (and exploiting) coherency
between all of the dimensions at once. Leung and Malik [102] used the
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k-means clustering algorithm to compress BTFs. In their approach,
a dataset is represented as a small collection of textons, which cap-
ture the spatial and directional appearance of small surface patches.
Weistroffer et al. [192] avoid resampling the input data by computing
the factorization with respect to a secondary basis defined over the 4D
BRDF domain. They show examples of using radial basis functions and
a database of measured isotropic BRDFs [122] as the secondary basis
to model the samples captured by Lensch et al. [100].

Malzbender et al. [116] introduced Polynomial Texture Maps
(PTMs) which represent the directionally dependent appearance of an
object at each pixel in a fixed camera viewpoint as a low-dimensional
polynomial. They demonstrated a number of applications of this model
that included BTF samples in the sense that the underlying geometry
is only approximately known.

Zickler et al. [212] introduced reflectance sharing as a general strat-
egy for interpolating sparse measurements of the SVBRDF by fitting
a set of radial basis functions. The input is a set of images of a known
three-dimensional shape, with each image being captured under colli-
mated illumination in a known direction. To exploit spatial smoothness,
they view each pixel as a sample lying in the (5D isotropic) SVBRDF
domain, and note that each image provides a near-continuous sampling
of a 2D slice in this domain. SVBRDF estimation is formulated as a
scatter-data interpolation problem, in which samples are simultane-
ously interpolated in both the angular and spatial dimensions.

The Inverse Shade Tree framework introduced by Lawrence
et al. [94] is another non-parametric approach for modeling spatially-
varying reflectance. This project builds on earlier work [86, 95, 127]
that demonstrated measured (tabulated) BRDFs can be factored into
a small number of low-dimensional components using algorithms like
SVD. They focus on the goal of intuitive editing and this work is dis-
cussed in greater detail later.

Wang et al. [190] model the reflectance at each surface point of
a spatially-varying surface as the product of a non-parametric (tab-
ulated) half-angle distribution and analytic shadowing/masking and
Fresnel components. These types of “hybrid” BRDFs were introduced
by Ashikhmin et al. [3] and later refined by Ngan et al. [141] where
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they were shown to be successful in representing real-world anisotropic
surfaces (as compared to available parametric models). The half-angle
distribution and tangent direction at each surface point are estimated
incrementally using a technique akin to texture synthesis algorithms.

Alldrin et al. [2] present a photometric technique that estimates
the surface normal below each pixel in a fixed camera viewpoint along
with the surface reflectance represented as a linear combination of a
small number of tabulated bivariate BRDFs. Prior work [158, 172]
has demonstrated that real-world isotropic BRDFs can be accurately
approximated as functions over a properly chosen 2D domain. Alldrin
et al. build on this observation by modeling the basis BRDFs as sam-
pled (non-parametric) functions defined over these bivariate domains.
This allows achieving greater flexibility and generality. They employ
a factorization method similar to that used in the Inverse Shade Tree
framework of Lawrence et al. [94].

The following section examines the increasingly important role basis
decomposition has come to play in representing measured SVBRDFs.
We highlight the Inverse Shade Tree framework [94] as a way to illus-
trate the key ideas in this area of work and indicate open research
questions.

3.3 Case Study: Basis Decomposition and the Inverse
Shade Tree Framework

Although (3.1) allows a unique BRDF at every surface location, real-
world surfaces are typically composed of only a handful of component
or basis materials distributed in potentially complex spatial patterns.
For example, the bird figurine in Figure 3.1 was made from only a few
different types of paint. This property may be exploited by projecting
the measurements into a low-dimensional linear basis spanned by K

functions ρk(ωi,ωo) (which are defined over the BRDF domain) for
which Tk(x,y) encode the coordinates of the measurements within this
basis:

S(x,y,ωi,ωo) ≈
K∑

k=1

Tk(x,y)ρk(ωi,ωo). (3.3)
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Fig. 3.3 Images of a greeting card taken from different viewing angles and under varying
point illumination.

By way of example, consider the greeting card in Figure 3.3 which
was measured at a spatial resolution of 470 × 510 and angular resolu-
tion of 5 × 400 camera × light positions using a spherical gantry [104]
for a total of 2,000 images (5.5 GB). This dataset is composed of only
three distinct materials: two types of colored paper (yellow and blue)
and a metallic paint that takes the shape of a dove. The IST framework
exploits this type of structure by computing a hierarchical decompo-
sition of these input images into a tree-structured collection of lower-
dimensional functions that correspond to intuitive (latent) features in
the dataset. Equation 3.3 corresponds to the top-level decomposition
that rewrites the 6D input SVBRDF as the sum of products of a set
of 4D functions (basis BRDFs) and 2D spatial blending weight maps
(coordinates in this basis). As illustrated in Figure 3.4, the complete
process, which involves further decomposing each of these tabulated
4D basis BRDFs into 2D and finally 1D functions, can be thought of
as computing a shade tree [17] whose leaf nodes capture elements such
as the shape and size of the specular lobe and the spatial distribu-
tion of each component material over the object surface. This process
accomplishes two things. First, it compresses the input because only
a small number of lower-dimensional (1- and 2D) functions must be
stored instead of the densely sampled 6D input. Second, if the factor-
ization at each level produces a meaningful and physically valid decom-
position then the final representation will allow making intuitive edits



3.3 Case Study: Basis Decomposition and the Inverse Shade Tree Framework 141

. . .

θh θd

θh θd

..
.

××

× ×

Η•Ν Η•V

Decomposition into
Shade Tree

Interactive Renderings (compare to images at left)

Appearance Editing

Interactive Renderings of Edited SVBRDF
ba

c d

e f

++

a' b'
e'

f'

Input Measurements of SVBRDF (Thousands of Images)

Fig. 3.4 The Inverse Shade Tree framework [94] is a set of techniques for decomposing a
measured SVBRDF into a set of (a) spatially-varying blending weight maps and (b) basis
BRDFs. The basis BRDFs are factored into sampled 2D functions corresponding to (c)
specular and (d) diffuse components of reflectance (we show lit spheres rendered with these
factors, not the 2D factors themselves). These 2D functions are further decomposed into
(e & f) 1D curves. In addition to providing accurate interactive rendering of the original
SVBRDF, this representation also supports editing either (a ′) the spatial distribution of
the component materials or (b ′) individual material properties. The latter is accomplished
by editing (e ′ & f ′) the sampled curves. (Figure reproduced from [94].)

to the angular and spatial components of the measured input. The key
research challenge is developing an algorithm that can reliably compute
such intuitive decompositions. It’s illustrative to compare alternative
factorization methods with this goal in mind. We do so below, focus-
ing on the top-level decomposition expressed in (3.3) where the goal
is separating the measured input into a set of intuitive and physically
valid component BRDFs and their respective spatial distributions.

PCA: Perhaps the most popular rank-reduction algorithm is PCA,
including extensions such as multilinear tensor factorization [184]. The
main advantage of PCA is that it yields a global minimum in the sense
of total least squares. However, this algorithm recovers a basis that is
orthonormal and rarely provides a meaningful description of the input.
In particular, this algorithm produces negative values which are not
present in a physically valid BRDF.
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Clustering : A popular method for clustering data is the k-means algo-
rithm [68]. Like all clustering algorithms, k-means partitions the input
into disjoint sets, associating each point (row in the aforementioned
data matrix) with a representative cluster center. This set of cluster
centers can be interpreted as spanning a linear subspace into which the
data is projected as with the approach of Lensch et al. [100]. Although
clustering performs well on datasets for which the component materials
are well-separated over the surface, it struggles when these materials
are only ever observed in combination with one another such as, for
example, datasets that include semi-transparent materials.

Non-Negative Matrix Factorization: Another matrix decomposition
approach is Non-Negative Matrix Factorization (NMF) [96]. As with
related algorithms such as Probabilistic Latent Semantic Indexing [76],
NMF guarantees that both resulting factors contain only non-negative
values. One motivation for this constraint is to encourage the algorithm
to describe the input data as the sum of positive parts, thereby pro-
ducing a more meaningful factorization. However, this non-negativity
constraint alone is often not enough to achieve an intuitive separation.

Alternating Constrained Least Squares (ACLS): Lawrence et al. [94]
introduce ACLS, a straightforward coordinate descent technique that
allows computing a matrix factorization subject to general linear con-
straints. Building on the work of Goldman et al. [58, 59] they also
observe that even when a sample consists of multiple component mate-
rials only a few typically contribute to the reflectance at any one surface
point. This notion of sparsity is enforced by modifying the objective
function to favor blending weights that are closely aligned to one of the
coordinate axes in the computed basis.

Figure 3.5 visualizes the set of blending weights produced by these
factorization algorithms when applied to a dataset composed of a plank
of oak wood with a semi-transparent piece of tape and a bicycle retrore-
flector. The visualization of PCA displays positive values as green
and negative values as red; the other methods produce non-negative
weights which are shown as grayscale images. Note that although PCA
gives an optimal result in terms of this error metric, it fails to pro-
vide an intuitive representation. For example, consider the difficulty
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Fig. 3.5 Visual comparison of the spatial blending weights computed using different factor-
ization algorithms for the “Wood+Tape” dataset. ACLS (bottom row) enforces sparsity and
guarantees that the component BRDFs are physically valid (energy conserving and recip-
rocal). This aids in providing automatic separation of the measured data into its correct
component materials.

in using this representation to change only the properties of the light
wood grain. NMF [96] produces a more understandable separation, but
it also displays a significant amount of undesirable blending between
the component materials which would complicate editing. Clustering
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algorithms provide a representation that is as sparse as possible in
the way defined previously, but struggles to separate a clear term for
the semi-transparent tape since this is only ever observed in combi-
nation with the underlying wood. In this example, ACLS is able to
more cleanly isolate the component materials, but at a slightly larger
numerical error.

In summary, the goals of compressing measured SVBRDFs and
exposing their intuitive latent structure are complimentary. The first is
necessary to allow efficient rendering and the second enables a designer
to edit and refine the measured sample. Most representations that
achieve both of these goals do so by projecting the input into a suitably
constructed basis through some form of constrained optimization. How-
ever, the AppWand system introduced by Pellacini and Lawrence [151]
describes an alternative approach. In this system, the user indicates
regions of the dataset they wish to modify using a stroke-based inter-
face. These sparse constraints are propagated throughout the entire
dataset using an interactive optimization that enforces the policy that
regions with similar appearance receive similar edits. They show results
on datasets modeled as individual parametric BRDFs at each sur-
face location. Investigating the advantages and disadvantages between
decomposition-based and propagation-based editing techniques and
bringing them to a wider range of material functions is an active area
of research.

3.4 Space- and Time-Varying BRDFs (STVBRDFs)

A number of recent research projects have focused on capturing and
representing the space- and time-varying reflectance of real-world sur-
faces. Consider, for example, the complex spatial and temporal patterns
present in the appearance of a banana peel as it decays or for a metallic
object as its surface oxidizes.

Gu et al. [62] used a “light stage” setup [30, 33, 84, 193, 195] to
measure the STVBRDF of physical samples. These devices consist of
a set of multiple lights and cameras rigidly mounted to a geodesic
dome that can capture a single multi-light/multi-view dataset in sev-
eral seconds. They measured the spatially-varying reflectance of each
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sample at different points in time, for example, as copper rusted, toast
burned, or a banana rotted. They fit the Cook–Torrance BRDF to
the measurements at each spatio-temporal location and analyzed how
these parameters changed over time at each spatial location. Based on
this analysis, they compute a separate temporal curve for each BRDF
parameter (diffuse color, specular color, specular fall-off) under the
assumption that all of the measurements show the same physical pro-
cess at potentially different points in time. This final representation
allows re-targeting the measured appearance on arbitrary objects and
editing the space–time trends to produce custom patterns.

Wang et al. [188] introduced appearance manifolds to model the
time-variant appearance of real-world materials. They used a setup
similar to Gu et al. and fit the parameters of the Ward BRDF to the
data at each space–time sample location. They treat each vector of
fit parameters as a point in a high-dimensional space and hypothesize
that the collection of vectors within a single dataset form a 1D non-
linear manifold (curve). They use a method similar to IsoMap [177] to
reconstruct the best fitting 1D curve through these vectors and apply
a texture synthesis algorithm to generate coordinates along this curve
that allows applying the measured reflectance in novel spatial/temporal
patterns over arbitrary geometry.

Context-aware textures were introduced by Lu et al. [110] to model
the correlation between material properties and the underlying geom-
etry. For example, the degree of weathering or oxidation at a surface
location is often influenced by the local geometric properties such as
curvature and accessibility to the surrounding environment. Computing
the relationship between the reflectance and the local geometric context
allows re-targeting the measured data to objects with arbitrary geom-
etry with user-defined aging factors. They measured the space- and
time-varying diffuse albedo of several objects using a 3D scanner and
digital camera. They focused on time-varying processes that could be
periodically arrested (e.g., they used a chemical reagent to control the
oxidation process of copper) so that the spatially-varying reflectance
could be measured at fixed points in time.
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From BSSRDF to 8D Reflectance Fields

In this survey, we have so far concentrated on capturing surface
reflectance where incident light is scattered locally at the point of inci-
dence. The models that have been presented ignore global effects such
as subsurface scattering, transmission, or interreflections in complicated
surface geometry.

4.1 Capturing BTFs

Some of these effects can be captured by a BTF that records the appar-
ent SVBRDF of a surface sample patch. In contrast to an SVBRDF the
bidirectional texture function (BTF) is used to represent the effects of
self-shadowing and self-occlusions which are common to surfaces with
complicated geometric structure such as woven fabrics.

To acquire the spatially varying reflection behavior, one needs to
capture one image of the given surface patch for every pair of incident
and outgoing directions, i.e., from each point on the hemisphere a set
of pictures has to be acquired where the light sources cover all possible
incident directions.

The acquisition of BTFs from simulated data has been demon-
strated in [180]. Most commonly, moving robot gantries are employed to

146
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cover the multitude of camera and/or illumination directions with few
devices [23, 30]. Instead of moving cameras and light sources, one can
keep the camera fixed and tilt the surface for addressing the individ-
ual directions [134]. Of course, the hemisphere of direction can further
be populated by a set of light sources at fixed locations [37, 132, 193]
speeding up the capture process as switching between light sources is
faster than moving a light source. Similarly, a set of cameras can be
used to capture the necessary data in parallel for all viewpoints [132].
This comes at the expense of setting up, calibrating, and maintaining
multiple cameras.

In order to cover a larger portion of the hemisphere with a sin-
gle device, setups involving mirrors and projectors have been proposed
for capturing BTFs, e.g., [25, 54, 64]. Han and Perlin [64] arranged
three mirrors as a kaleidoscope and set up a single camera and a single
projector via a beam splitter to share the same view. Looking into the
kaleidoscope with a camera the image of the surface patch appears mul-
tiple times in it, each sub-image showing the surface from a different
viewpoint. Due to the multiple reflections, one has to account for atten-
uation. Similarly, the illumination from a projector can be tuned to
illuminate the surface from different angles by selecting the region of
the corresponding sub-image in the projector. This way, the 6D BTF
or reflectance field can be acquired efficiently.

As the raw data of a BTF acquisition is quite large for a single sur-
face patch a number of compression schemes based on spherical har-
monics, local and global principal component analysis (PCA), tensor
decomposition and others have been proposed (see previous chapter
and [134]). The choice of representation will further influence the fol-
lowing rendering algorithm which in the meantime can be evaluated at
real-time rates for environmental illumination [129, 134, 163].

4.2 Acquiring BSSRDFs

BRDFs and BTFs treated so far assume that the light hitting the sur-
face is parallel, originating from an infinitely far away light source. If
one wants to simulate a close by light source, or, equivalently, to project
a light pattern into the scene, e.g., from a spot light or as the result of
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Fig. 4.1 Acquisition setup of Jensen et al. [83] for measuring homogeneous BSSRDFs.

two objects interacting with each other, the far-field assumption is not
valid. Instead, one needs to record the so-called near-field reflectance
field which couples incident to outgoing light rays rather than direc-
tions. Here, the reflectance depends both on the point of incidence and
the reflection point.

This reflection behavior is captured by a BSSRDF or an 8D
reflectance field. For a dense sampling of this 8D function one would
need to record the reflected 4D light field for every possible incident
light ray (4D), i.e., one needs to sample how any incident light ray might
influence any outgoing light ray even though they might not intersect.

Because of their high dimensionality BSSRDFs are in general
hard to represent and to acquire. A simple analytic BSSRDF model
for homogeneous materials has therefore been proposed by Jensen
et al. [83]. It has later been updated to incorporate homogeneous multi-
layer materials [34]. In the first paper, a simple measurement setup is
presented for estimating the parameters of the model for a single homo-
geneous material sample: A focused light beam hits the homogeneous
slab at one point, and the resulting spatial distribution of the reflected
light is measured using a camera. A simpler device for instant measure-
ment of a few samples has been proposed in [195].
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4.3 Diffuse Subsurface Scattering

For heterogeneous surfaces it is impractical to densely sample all eight
dimensions of the BSSRDF/reflectance fields. In order to allow for rea-
sonable sampling effort, one strategy is to assume a less complex light
transport.

Goesele et al. [57] present a measurement setup for acquiring the
appearance of translucent objects with a high scattering albedo. In
these cases, a photon traveling some distance through the material
undergoes so many scattering events that the incident light direction
has actually no influence on the outgoing light direction. Since the
directional dependence can be dropped from the full 8D BSSRDF, the
problem can be reduced to a 4D diffuse scattering R(xi,yi,xo,yo) func-
tion that solely depends on the point where the light enters the material
and the position where it leaves when being reflected. For any pair of
points R indicates how much the incident irradiance at point (xi,yi)
contributes to the outgoing radiosity at point (xo,yo).

A simple 4D tensor can be used to represent this 4D function. In
order to measure its entries Goesele et al. make use of a laser projector,
that sweeps an individual light point over the surface of a translucent
object (see Figure 4.2). A set of high-dynamic-range (HDR) video cam-
eras captures the reflected light at every other surface point. One of
these measurements corresponds to exactly one slice of the 4D tensor.
Illuminating every surface point once eventually fills the entire tensor.

Fig. 4.2 Acquisition setup (a) of Goesele et al. [57] for measuring the appearance of het-
erogeneous translucent objects such as this alabaster figurine on the right (b).
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Because of occlusions and self-shadowing, it is, however, likely that for
some parts of the object no measurements are available, in which case
texture inpainting is applied to fill the gaps. For efficient storage, a hier-
archical representation of the tensor is chosen, providing high sampling
rate only close to the point of incidence, where the BSSRDF drops off
quickly, while for distant points a coarser sampling is sufficient.

Recently, Peers et al. [150] presented a different setup to acquire
the spatially varying 4D diffuse BSSRDF of a planar slab of material.
In order to accelerate the acquisition, a grid of points is swept over the
surface. A PCA of the acquired tensor allows for a high compression
and to extract the principle behavior of the BSSRDF such that it can
be transferred to different object geometry. When doing so, an impor-
tant step is to rearrange the tensor in such a way that the point of
incidence for any row is shifted to exactly the same column. Although
the heterogeneity will influence the drop of intensity with distance to
the point of incidence in a different way for each surface location, the
principle behavior, roughly following an exponential function, is nicely
aligned in this way allowing for higher compression rates.

Heterogeneous BSSRDFs have been modeled and rendered effi-
ciently by Wang et al. [189] using the diffusion equation. Here, the
diffuse light transport through the medium is explicitly modeled in
the volume. With acquisition patterns similar to [150], they acquire
either the transmission or the back-scattered component of the subsur-
face scattering and solve the inverse diffusion problem, initialized by
assuming a homogeneous medium. To accelerate the evaluation in the
forward and backward steps a polygrid diffusion algorithm is proposed.

4.4 Arbitrary Light Transport

For arbitrary materials and scenes, Masselus et al. [121] presented the
first acquisition system for reflectance fields that is suitable for relight-
ing with 4D incident light fields, i.e., where the reflected light depends
on individual incident light rays. For the acquisition, a video projector
sweeps a small block of light over the scene. In order to cope with the
complexity of the acquisition problem the appearance is captured for a
single viewpoint only. Additionally, the resolution of the incident light
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field is limited to a projector resolution of only 16 × 16 for a couple of
projector locations. This low resolution results in clear block artifacts
in the relit images.

4.4.1 Single View — Single Projector

In order to avoid those artifacts, it is necessary to measure the
reflectance for every pair of rays between a camera and a projector,
i.e., to acquire the reflectance for every pair of camera and projector
pixels, again resulting in a fourth-order tensor. While, in principle, this
high-resolution reflectance field could be acquired using scanning, it
would be a rather slow process.

Sen et al. [166] exploited the fact that for quite a number of
real-world scenes the light transport matrix/reflectance field is rather
sparse, i.e., that only a small fraction of the possible input rays actu-
ally contribute to the same reflected ray. In this case, it is possible
to exploit the sparseness by illuminating the scene and measuring the
reflected light rays for multiple illuminating light rays at once. It is pos-
sible to turn on two light rays/two projector pixels at the same time
and tell their corresponding measurements apart when these two rays
affect completely separated parts of the scene/the camera images. Let
us call such two illumination rays radiometrically independent. In
the same way one can also call two blocks of the projector pixels radio-
metrically independent if no camera pixel will be illuminated by both
at the same time. Because of this property it is possible to measure
the rays inside the independent blocks in parallel, i.e., to parallelize
the exact acquisition of these two blocks. In their study, Sen et al.
propose a hierarchical approach for determining which sub-blocks are
independent: Starting from a full white projector image, each block is
subdivided into four children which again get subdivided. Initially, this
will require one measurement per block corresponding to a sequential
acquisition. At some point in time the algorithm might, however, detect
that at some level two blocks are now radiometrically independent,
allowing for parallelized subdivision of these blocks in the future. The
net effect of this parallelization is significant, resulting in an observed
complexity that is O(log(n)) for n projector pixels. For quite a number
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of scenes the pixel-to-pixel reflectance field between a one mega-pixel
projector and a camera can be acquired in only a couple of thousand
images instead of a million.

Once having acquired the pixel-to-pixel light transport one can
apply Helmholtz reciprocity to invert the role of projectors and
cameras. Helmholtz reciprocity states that the reflectance measured
for one path does not change no matter if one follows the path from
the light source to the receiver or the other way around. One sim-
ply has to compute the transpose of the acquired tensor to obtain the
reflectance field from the camera (the new virtual projector) to the
projector (which gets the new camera). The transpose corresponds to
just a resorting of rays, and therefore can be computed very efficiently
(see Figure 4.3). The process is called dual photography.

This dual imaging paradigm can be used to efficiently capture a 6D
reflectance field from a single viewpoint, i.e., to measure the projec-
tor to camera reflectance fields for multiple projectors. The problem is
that during the acquisition the reflectance fields have to be captured

Fig. 4.3 Dual photography: (a) conventional photograph of a scene, illuminated by a pro-
jector with all its pixels turned on. (b) After measuring the light transport between the
projector and the camera using structured illumination, dual photography is able to syn-
thesize a photo-realistic image from the point of view of the projector. This image has the
resolution of the projector and is illuminated by a light source at the position of the camera.
The technique can capture subtle illumination effects such as caustics and self-shadowing.
Note, for example, how the glass bottle in the primal image (a) appears as the caustic in the
dual image (b) and vice-versa. Because we have determined the complete light transport
between the projector and camera, it is easy to relight the dual image using a synthetic
light source (c).
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sequentially for each projector because projectors are active devices.
Their projected patterns might actually illuminate the same points in
the scene causing difficulties when trying to separate their contribu-
tion. If one uses the dual setup, however, where the original camera
is replaced by a single projector and all projectors are replaced by
cameras, one can very well acquire the projector/camera reflectance
fields in parallel since cameras are passive devices which do not inter-
fere with each other [166]. Applying Helmholtz reciprocity, this setup
can virtually be transformed into the single camera/multiple projector
configuration. By swapping camera and projectors one can capture a
6D reflectance field at the same time cost as a 4D reflectance field.
The resulting data now allow to relight an arbitrary complex scene
with arbitrary incident light fields, i.e., with high-frequency illumina-
tion patterns from various virtual projector positions.

Following the same idea of exploiting Helmholtz reciprocity,
Hawkins et al. [69] propose a dual light stage, where a high-power laser
projector is illuminating the scene from one viewpoint (turned into
the virtual camera location later), while a camera with a fish-eye lens
is observing the reflections captured in a diffuse sphere surrounding
the object. As the diffuse sphere allows for a dense sampling of the
outgoing hemisphere (incoming after applying reciprocity), the system
is very well suited to capture the complex reflections and caustics
due to transparent or mirroring objects due to illumination from an
environment map.

4.4.2 8D Reflectance Fields

While methods for measuring 6D reflectance fields such as [69, 121,
166], can in principle be extended to measure the 6D reflectance fields
from a set of different viewpoints, thereby capturing an 8D field, they
inherently would require an acquisition time linear to the number of
viewpoints. Garg et al. [49] have proposed the first method which is
inherently acquiring an 8D reflectance tensor for general scenes. It can
deal with dense tensors and parallelizes the acquisition even between
viewpoints. It exploits a symmetric measurement setup and H-matrices
to exploit the coherence in the reflectance data already during the
capturing process.
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The previously described acceleration for measuring the light trans-
port between a projector and a camera based on the parallelization of
radiometrically independent blocks is unfortunately limited to scenes
where the light transport tensor is sparse. This is often the case for
an individual object in a black room where few interreflections and lit-
tle subsurface scattering take place. For more general cases, the light
transport matrix is typically dense, i.e., every projector pixel indi-
rectly affects every camera pixel due to multiple scattering events. The
resulting light transport is, however, rather smooth for large blocks of
the tensor. For example, illuminating two neighboring spots on a wall
will have a similar effect to all points on an opposite wall. While this
smoothness might be partially destroyed by textures on both walls,
the underlying light transport still has rather low complexity or low
dimensionality — it is called data-sparse. In other parts in the ray
space, however, for example, for direct reflections or refractions, the
reflectance field might not be smooth at all.

H-matrices [63] are an efficient way for representing tensors which
are partially data-sparse. In an H-matrix the original matrix is hier-
archically subdivided into smaller blocks, e.g., using a quad-tree for a
2D matrix, and for every sub-block a low-rank approximation is given,
approximating the original matrix’s entries. If the approximation error
for one block is too large, the block is further subdivided. As H-matrices
have been originally developed to solve integral equations more effi-
ciently, and since the Rendering Equation which describes the light
transport in arbitrary scenes is an integral equation, reflectance fields
can be very efficiently described by this data structure.

Besides resulting in a compact representation of a reflectance field,
H-matrices can efficiently be evaluated during relighting, where the
incident light field is simply multiplied with the tensor.

H-matrices further open the way for efficient acquisition of
reflectance fields of arbitrarily complex scenes where interreflections
and scattering cannot be neglected, as well as for the acquisition of 8D
reflectance fields.

Garg et al. [49] have proposed a measurement setup that forces the
captured reflectance tensor to be symmetric. In their setup every cam-
era is paired with one projector using a beam splitter in such a way
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that it is possible to emit light and to measure light exactly along the
same ray. In the resulting transport tensor every off-diagonal sub-block
is therefore represented twice, once in its original form and once being
transposed, i.e., we could capture the original and the dual image for
one sub-block with just two images by fully illuminating the corre-
sponding two projector blocks.

Since one of the images corresponds to the sum along the rows of
the block and the other image to the sum along the columns of the
block, it is possible to obtain a rank-1 approximation of this block with
just these two images, simply as the tensor product of the two measure-
ments obtained when first illuminating with one block of one projector,
measuring the result in one block of some camera, and then measuring
the transpose, i.e., measuring at the block of the first projector and
emitting light from the first camera’s block.

Let’s look at a very simple example where the off-diagonal block B2

has been determined to be rank-1:

T =
(

B1 B2

BT
2 B3

)
=

(
0 B2

BT
2 0

)
+

(
B1 0
0 B3

)
. (4.1)

In this case, we can determine all entries in B2 (and BT
2 ) from just two

images while B1 and B3 might require additional investigation.
From the intended solution one can subtract the already deter-

mined matrix
( 0 B2

BT
2 0

)
, which leaves us with some residual which

only contains the remaining, yet unknown blocks. These two blocks
are, however, arranged in a very interesting configuration: they are
radiometrically independent, since they clearly affect completely differ-
ent camera and projector regions. As a consequence, these two blocks
can again be investigated further in parallel. This symmetric pho-
tography method allows for the efficient and parallelized acquisition
of even dense matrices as long as the matrices are data-sparse.

In Figure 4.4, we show a low-resolution 8D reflectance field for
3 × 3 cameras and 3 × 3 projectors. With the symmetric photography
approach one can acquire the light transport of scenes as complicated
as this glass of gummy bears and faithfully reproduce the appearance
of the original object (Figure 4.5).
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Fig. 4.4 An 8D reflectance field acquired using symmetric photography. The scene has been
recorded from 3 × 3 different viewpoints and can be relit from 3 × 3 different projectors
with full resolution.

Fig. 4.5 Using symmetric photography the light transport in even very complex scenes can
be efficiently captured. The synthetically relit reflectance field (a) matches the appearance
of the original object under the same pattern (b).
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4.5 Time-Resolved Capture and Interpolation

Besides capturing the full 8D reflectance field of an object, other
extensions of the 6D capture process for example focus on capturing
time-varying reflectance fields.

The main challenge here is to acquire the 6D reflectance field for
each time step. Exploiting specially designed illumination patterns,
Hawkins et al. [70] reduced the time to acquire a static reflectance
field to a few seconds. The authors demonstrated how individual facial
expressions can be acquired in this setting, and how relightable facial
animations can be rendered by blending between the captured images.

Even faster acquisition rates have been achieved by employing
high-speed cameras. Wenger et al. [193] demonstrated how the time-
varying reflectance field of a multi-second performance can be captured.
Although at each time step only a single illumination setting can be
present, they successfully demonstrated how optical flow between the
individual frames can be used to interpolate the reflectance values for
the missing illumination directions from neighboring frames [37].

One step further, Peers et al. [149] even estimated the correspon-
dence between two different individuals to transfer the reflectance field
captured for one actor onto the current facial expression of another
actor. In order to establish the optical flow, both persons are captured
in a more or less homogeneous illumination. Then, the intended illu-
mination is used to relight the actor for which a static reflectance field
has been acquired. This data is then warped according to the optical
flow and then combined with the currently frame of the second actor
using quotient images [168].

Optical flow in the illumination domain has further been exploited
to increase the sampling density in reflectance fields [14, 45]. In [14],
the information in a 6D reflectance field between projectors and a cam-
era is used to estimate the pixel-to-pixel correspondence between the
projectors of two neighboring positions. This way, it is possible to warp
the illuminating pattern for any virtual in-between projector location
in such a way that a smooth motion between the two projectors can
be simulated. Fuchs et al. [45] proposed different interpolation schemes
to interpolate the point light source positions in 4D reflectance fields,



158 From BSSRDF to 8D Reflectance Fields

which most often are acquired by sparsely sampling the hemisphere
of illumination directions [44]. While diffuse and smooth reflectance
effects can simply be blended, the appearance of specular highlights is
interpolated using optical flow, i.e., interpolating the direction of the
reflection vector in the environment map. The interpolation scheme
allows for example for continuous reflections in mirroring objects or
continuous refractions in glass although only a sparse sampling of light
directions is provided.

4.6 Conclusions and Future Work

In this chapter we have introduced the notion of reflectance fields for
relighting with spatially varying illumination patterns: from the acqui-
sition of heterogeneous translucent objects to methods for acquiring
the ray-to-ray light transport in arbitrary materials and scenes.

4.6.1 Open Problems

One big problem of sampling BSSRDFs or reflectance fields is the lim-
ited resolution with respect to the incident and outgoing directions.
While solutions have been proposed to increase the resolution of the
incident illumination [69, 44] by using special light source arrange-
ments, the resolution of the viewing directions is still limited to the
spacing between adjacent camera positions. A scheme for adaptively
controlling the resolution in the viewing and the illumination direction
still needs to be invented.

For representing reflectance fields, various bases have been
proposed, wavelets, spherical harmonics, or the above-mentioned
H-matrices. It remains to be seen how to select the optimal represen-
tation and how to determine the dimensionality of the light transport
locally.

A still outstanding goal is the acquisition of reflectance fields for
relighting with 4D incident light fields for dynamic objects. While ini-
tial solutions to measuring time-varying far-field reflectance fields at
interactive rates have been demonstrated [193, 37], the significantly
higher complexity of near-field reflectance fields currently requires too
many images for every pair of viewing and illumination directions.



5
Acquiring Human Face Appearance

This section discusses the unique challenge of appearance acquisition
of human faces and presents an example project that has leveraged
principles of appearance acquisition and representation to acquire and
model faces based on first principles, in order to analyze skin reflectance
across many subjects. Creating digital faces that are indistinguishable
from real ones is one of the biggest challenges in computer graphics.
Although general rendering quality in graphics often achieves photo-
realistic appearance of synthetic objects, rendering of human faces still
remains a demanding task. This is not only because of the complexity
of facial appearance, but also due to the fact that human observers are
experts in judging whether a face looks “real” or not. The process of
capturing an actor’s performance and likeness has aptly been named
digital face cloning [11, 81]. Digital face cloning has many applications
in movies, games, medicine, cosmetics, computer vision, biometrics, and
virtual reality.

5.1 Skin Appearance

Particular attention has to be paid to the modeling of skin reflectance,
as skin contributes the largest part of facial appearance. The dominant
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Fig. 5.1 Micro-scale, human skin is a very heterogeneous tissue. However, at scales relevant
for rendering, it is sufficient to consider the two prominent layers: epidermis and dermis.
The visual impact of scattering within the hypodermis is negligible. (Image from Wikipedia.)

effect in skin reflectance is due to skin’s semi-translucent layers, see
Figure 5.1. In a rough approximation, skin consists of two optically
active layers, the epidermis and the dermis underneath it. Light trans-
port is mainly affected by surface reflection at the air/skin interface
(which can be described by a Bidirectional Reflectance-Distribution
Function (BRDF)) and by internal scattering and absorption effects
that take place after refraction at this interface. These internal effects
comprise highly directional single scattering (light that exits the
medium after a single, or very few scattering events) and mostly
isotropic multiple scattering within and between the epidermal and
dermal layers. Absorption is mainly affected by the distribution of chro-
mophores in the skin, substances with characteristic absorption spectra
whose distribution varies depending on anatomical and physiological
conditions. An excellent survey on the physiological and anatomical
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properties of skin and the state-of-the-art in skin appearance modeling
has been published by Igarashi et al. [78].

Existing work on skin modeling employs all major classes of
reflectance models, BRDF [65, 120, 170], Bidirectional Scattering-
Surface Reflectance-Distribution Function (BSSRDF) [34, 35, 36, 83],
and Bidirectional Texture Function (BTF) [21], see Section 2, to model
skin reflectance. In practical environments, most skin models reduce
skin reflectance to a two-component model, combining surface reflec-
tion and single scattering in a joint BRDF, and covering all inter-
nal scattering and absorption effects by a single diffusion approxi-
mation [11, 75, 160, 198]. More sophisticated, multi-layered, models
exist [36, 55, 90], but they are either impossible or very demanding to
be acquired for full faces. To date, the physiologically most advanced
skin reflectance model that is still practical for rendering is arguably
the model by Donner et al. [36]. They present efficient means to sim-
ulate heterogeneous subsurface scattering in a dual-layered skin model
that is parameterized solely by chromophore distribution maps and
demonstrate that the anatomically motivated model is capable of cre-
ating realistic skin appearance from simple, hand-drawn input param-
eter maps (Figure 5.2). They also present a multi-spectral acquisition
procedure to obtain the model parameters from in-vivo measurements
of skin, but the requirement of surface application of a water-based gel
makes their acquisition method prohibitive for human faces.

Fig. 5.2 Realistic skin appearance from hand-drawn parameter maps. Using a small set of
simple, hand-drawn chromophore distribution maps and high-quality geometry of a palm
(scan courtesy by Ma et al. [112]), the skin model by Donner et al. [36] generates realistic
appearance and allows, for instance, to simulate appearance changes due to mechanical
deformation: the right-most example shows a reduction of blood flow (hemoglobin concen-
tration) after clenching and releasing the hand. The altered parameter map for hemoglobin
is shown in the insets.
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5.2 Face Acquisition Systems

Fueled by the steady interest in realistic face appearance in games and
film industry, a variety of systems has been developed that aim at the
appearance reproduction of a given subject’s face.

Within the design space between parametric and non-parametric
models (see Section 3.2), such systems traditionally have been closer
to non-parametric, image-based modeling. This is motivated by the
fact that image-based models implicitly capture effects such as self-
shadowing, interreflections, and subsurface scattering, without the need
to explicitly model every facial detail and its reflectance properties; they
make it easier to achieve photo-realistic results and are less sensitive
to measurement errors than explicit models. More recently, the general
focus shifted toward describing face appearance from first principles
by explicitly modeling facial geometry and surface properties, as, in
general, explicit models are more directly accessible to editing opera-
tions, allow for more flexibility in post-production, and have a smaller
memory footprint.

Pighin et al. [154] use a manually created impostor geometry and
view-dependent texture mapping [32] to reproduce faces under static
illumination conditions. Debevec et al. [30] use a light stage to acquire
the dense reflectance field of a human face and present a process
for creating realistic, relightable 3D face models by mapping image-
based reflectance characteristics onto 3D-scanned geometry. While this
method does consider the aggregate behavior of subsurface scatter-
ing in skin, it cannot reproduce correct subsurface scattering effects
for heterogeneous illumination. Hawkins et al. [70] extend this technol-
ogy to allow for deformations of the underlying face geometry, enabling
changes of expression for the relightable face dataset. Wenger et al. [193]
use rapidly time-multiplexed illumination to capture a reflectance field
over time, allowing for relightable real-time performance, albeit only
for a fixed viewpoint.

Borshukov and Lewis [11] combine an image-based model, high-
quality explicit geometry, an analytic surface BRDF, and an image-
space approximation for subsurface scattering to create highly realistic
face models for a feature film. Fuchs et al. [46] use a lower-resolution
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light stage to acquire reflectance fields from sparse viewing directions.
While the reflectance field resolution would not be high enough to
synthesize smooth lighting variations, they use clustering to deter-
mine component BRDFs (see Section 3.2.1). Weyrich et al. [195] use a
much denser sampling (150 light sources, 16 cameras) to obtain enough
reflectance samples to fit a BRDF in every surface point on the face.
A separate contact-probe is used to acquire subsurface scattering prop-
erties of the skin. More detail on this project is given in Section 5.4.
A contact-less approach to measuring subsurface scattering in a human
face has been introduced by Tariq et al. [176], who use structured-light
projection to densely sample the impulse response of the skin.

The latest peak in reconstruction quality of individual faces, and
a largely parametric modeling approach, is the project presented by
Ghosh et al. [55]. Using an elaborate combination of structured-
light geometry acquisition, gradient illumination to determine high-
quality normals [112], cross-polarization to identify surface reflectance
([30], see Section 2.5.1), active lighting to measure subsurface scat-
tering [176], and global/local separation ([137], see Section 2.5.2) to
separate localized scattering in the skin’s upper regions from more
de-localized scattering in deeper regions, their method acquires parame-
ters for the multi-layered reflectance model shown in Figure 5.3. While

Fig. 5.3 Approximate skin reflectance components of the model by Ghosh et al. [55]. The
individual components roughly correspond to the skin’s layered structure and are assumed
to be independent and purely additive. Surface reflectance is modeled by a microfacet-based
BRDF model, single scattering using the first-order scattering BRDF model by Hanrahan
and Krueger [65], and both subsurface scattering terms by the single-layered multi-pole
BSSRDF model by Donner and Jensen [34]. (Image courtesy by Abhijeet Ghosh.)
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Fig. 5.4 Multi-layered face reconstruction by Ghosh et al. [55]. (Images courtesy by Abhijeet
Ghosh.)

physiologically motivated, its components are purely additive, which
may make the reflectance model physically less plausible. On the other
hand, this design decision allows for an efficient fit to the measured
data and leads to compelling reconstructions, as shown in Figure 5.4.
The results also qualitatively capture the comparatively bluish contri-
bution by the epidermis and the reddish color of the dermis, which is
dominated by hemoglobin.

5.3 Appearance Editing

For any digital face representation, the ability to post-process the
dataset and to edit facial appearance is desirable. Nevertheless, high-
level appearance editing of general face datasets is still an underdevel-
oped field. Film productions, amongst the most prominent applications
of digital face cloning, typically focus on face acquisition for specific
shots, whose requirements are known at acquisition time, and use
a significant amount of manual labor to meet the artistic require-
ments [11, 39, 75, 160, 198]. In particular, editing of facial appearance
is still mostly within the realm of the artist, who manually edits facial
textures. More automatic approaches to realistically alter appearance
apply image-based techniques to photographs [107, 182]. A higher-level
editing technique is to use morphable face models to blend between
shape and texture of multiple individual face models [8, 46].

Generally, the goal of high-level appearance editing should be that
the results continue to appear realistic to a human observer. It is to be
expected that representations closer to the anatomical reality [36, 55]
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bear the potential of guaranteeing realism under modifications. Even a
realistic model, however, requires knowledge about realistic parameter
ranges. The remainder of this chapter discusses a project that targets
the analysis of facial reflectance to determine guidelines and high-level
editing operations to alter facial appearance in a realistic way. An addi-
tional degree of detail is provided to illustrate how this project builds
upon the principles discussed in the previous papers.

5.4 Analysis of Human Face Appearance

The face analysis project conducted by Weyrich et al. [194, 195] tar-
geted the creation of a practical, explicit (non-image-based) represen-
tation for human faces, the creation of respective acquisition hardware,
and the collection of reflectance data over a large population, in order
to derive high-level parameters for realistic appearance editing.

5.4.1 Skin Reflectance Model

At its core is a simple skin reflectance model that aims to strike a bal-
ance between physical realism and practicability. Key requirements of
such a model are generality, to allow for a flexible use, and editability,
that is, it should be possible to change the face’s appearance using intu-
itive controls. These design goals leave a wide range of potential models
that are more or less strictly aligned with physical reality [78]. A key
decision in the project, however, has been that the model should have
a minimal number of degrees of freedom, to facilitate fitting the model
to measured data. On the other hand, physical quantities within the
model should be wellexposed to further an elementary understanding
of skin reflectance.

The project uses a single layer to describe the bulk effect of subsur-
face scattering in epidermis and dermis, modulated by an additional
modulation texture [57], in order to achieve spatial variation in the
diffuse term. On top of the epidermis, a thin oil layer is assumed.
This decomposition separates reflectance into specular and diffuse
reflectance and is simple enough to be accessible to modeling from
measured data.
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Diffuse subsurface scattering is modeled using the dipole-diffusion
approximation [83], see Section 2.4. This model assumes isotropic scat-
tering (which, as will be shown, holds for facial skin) and a homo-
geneous material. The specular term is described by the widely-used
Torrance–Sparrow BRDF model, which proved superior over other
reflectance models in modeling skin gloss at the oily skin/air inter-
face [194].

5.4.2 Data Acquisition

Two custom reflectance acquisition devices were built to capture sur-
face and subsurface reflectance independently. A contact device allows
for sparse subsurface measurements across the face. Instead of mea-
suring pure surface reflectance, the second device captures the full
skin reflectance as a whole. Skin reflectance being a sum of subsur-
face and surface components, surface reflectance can then be derived
by subtracting an estimated subsurface component from the overall
skin reflectance measurements.

5.4.2.1 Subsurface Scattering Acquisition

The first device, internally referred to as the “BSSRDF Gun”, is
a contact-measurement device to measure purely subcutaneous light
transport. The quantity of interest is the wavelength-dependent mean
free path �, or skin’s translucency 1/�, respectively (see Section 2.4).
The device feeds light into the skin using an optical fiber. A bundle of
optical fibers arranged around the feeding fiber collects light exiting the
skin at different distances to the feeding fiber. Digitizing the radiant
exitance using an HDR camera at the end of the fiber bundle allows
to measure the characteristic radial fall-off, that is, the diffusion kernel
due to skin’s subsurface scattering. � is obtained by fitting the dipole
approximation of the diffusion model BSSRDF [83] to the measured
fall-off.

As we will see in Section 5.4.4, translucency only varies minimally
across the face. Hence, only a few measurements of the BSSRDF Gun
are required to obtain representative translucency values of a face. Note
that an even contact between the fiber probe and the skin is required
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to eliminate surface reflectance effects. This is ensured by gently evac-
uating the sensor using a suction pump.

5.4.2.2 Reflectance Field Acquisition

The second measurement device samples skin reflectance as a whole,
that is, the sum of subsurface and surface effects. The device captures a
150 × 16 reflectance field of the face within a spherical dome equipped
with sixteen 1300 × 1030 firewire cameras and 150 disk-shaped LED
panels. A commercial single-shot 3D scanner acquires the facial geom-
etry, which is required to associate pixels in the reflectance field with
surface points on the face. The setup is completely synchronized, that
is, the 150 light sources are sequentially triggered, while all cameras
simultaneously acquire images at 12 frames per second. Each lighting
condition is imaged under two different exposure times to increase the
dynamic range of the measurements. Hence, a full acquisition takes
about 25 seconds.

The resulting reflectance field has to be radiometrically corrected,
according to the spatial location of each surface point, considering dis-
tance to the respective light source and differences between camera sen-
sitivities and light source characteristics (see Section 2.2). Figure 5.5
shows a sample reflectance field before correction. In order to improve
the accuracy of the geometric reconstruction, the reflectance field is
used to determine photometric normals that in turn are used to refine
the geometry (Section 2.2.5).

5.4.3 Model Fit

The model fit determines model parameters for each surface point on
the face. In a first step, the diffuse albedo Rd in each point is estimated
by color-space-based separation of specular and diffuse reflection, see
Section 2.5. This separation technique is extended to trade the Lamber-
tian model of diffuse reflectance for a diffuse term that considers the
transmissive Fresnel terms Ft(η, ·), cf. (1.21). The same diffuse term
occurs in the BRDF approximation of the dipole-diffusion model [83],
see Section 1.4. The subsurface scattering BSSRDF is parameterized to
meet the average diffuse albedo Rd, while maintaining the translucency
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Fig. 5.5 Raw reflectance images of a subject acquired with all 16 cameras and 14 (of 150)
lighting conditions. Each row shows images with different camera viewpoints and the same
lighting condition. Each column displays images with different lighting conditions and the
same viewpoint. The images are not yet color corrected, revealing differences between cam-
era characteristics and light source colors.

obtained using the “BSSRDF Gun”. The modulation texture is set
to scale the underlying BSSRDF to meet Rd in every surface point.
Finally, the parameters of the Torrance–Sparrow surface BRDF are
obtained by fitting this BRDF to the residual reflectance samples after
subtraction of the diffuse reflectance in each point.
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5.4.4 Results and Analysis

After the model fit, model parameters for each surface point on the
face are known. These parameters are encoded in floating-point tex-
tures over a common uv-parameterization of the facial geometry. Using
custom shaders that implement the skin model within a Monte-Carlo
raytracer, this allows to render photo-realistic images under arbi-
trary illumination from arbitrary vantage points. In particular, as the
reflectance field has been acquired within a fully calibrated system, it
becomes possible to replay the exact illumination and viewing condi-
tions of each reflectance field image. This allows to directly evaluate our
skin model in a side-by-side comparison with photographs from within
the acquisition dome. Figure 5.6 shows such a comparison. It compares
single input reflectance images with synthetic images for different faces
and different viewpoints. Note, that a slight blur in the fitted model
reflects the fact that each surface point’s parameters are fitted to 2,400
input images simultaneously, which in the presence of noise and mea-
surement imprecisions makes it impossible to retrieve the exact input
image from the model.

A central goal of the project has been to analyze skin reflectance
properties over a large group of subjects in order to obtain general
insight into the variability of skin appearance across individuals.

5.4.4.1 The Face Database

To this end, 149 subjects were scanned and classified by skin type,
gender, age, and other traits. Each scan was manually classified into
facial regions, such as forehead, nose, chin, and others. This allows for
a statistical analysis of characteristic variations in skin reflectance for
different populations and across different facial regions. The skin type
is classified according to the Fitzpatrick system [41]. Table 5.1 explains
the Fitzpatrick system and shows the distribution of our measurements.
Table 5.2 shows our face region classification.

5.4.4.2 Findings

Translucency Variance: An initial experiment on variation of skin
translucency validated the isotropic assumption of the model’s
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Fig. 5.6 Comparison of real photographs (first and third rows) to our model (second and
last rows). All photographs were cropped according to the 3D model to remove distracting
features.

subsurface scattering term. By taking subsurface scattering measure-
ments under 16 different orientations of the sensor, the degree of
anisotropy of the diffusion kernel has been measured. It turns out that
light diffusion is not always isotropic; abdominal skin, for instance,
shows a well-expressed scattering anisotropy. All facial measure-
ments, however, show near-isotropic diffusion kernels, which justifies an
isotropic BSSRDF model for facial skin. Spatial translucency variance
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Table 5.1 The Fitzpatrick skin type system and the number of subjects per skin type.

Skin Skin Sun Exposure Subjects
Type Color Reaction (M/F)

I Very white Always burn —
II White Usually burn 8 / 6
III White to olive Sometimes burn 49 / 18
IV Brown Rarely burn 40 / 8
V Dark brown Very rarely burn 13 / 2
VI Black Never burn 4 / 1

Table 5.2 Ten face regions: (1) mustache, (2) forehead, (3) eyebrows, (4) eyelids, (5) eye-
lashes, (6) nose, (7) cheek, (8) lips, (9) chin, and (10) beard region.

was also analyzed by measuring 52 points in two subjects’ faces. As
far as accessible by the sensor, all facial regions showed a very uni-
form translucency. Ultimately, this led to the decision to model skin
translucency to be constant across each face and reduce the number
of measurements per subject to three. Analyzing translucency vari-
ations across multiple subjects revealed a subtle difference between
male and female subjects (females having a slightly more translucent
skin), while other traits did not correlate statistically significantly with
translucency.

Spatial BRDF Variance: A more significant variability, however, could
be found in the surface reflectance. The respective Torrance–Sparrow
parameters ρs and m vary significantly in dependence of the facial
region. For each facial region, principal component analysis (PCA) of
these parameters has been performed, considering the BRDF fits of all
subjects in the database. It turns out that the parameters do not only
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vary between facial regions, but depending on the region, there is also
a higher variability across subjects. Exemplary observations are: the
nose is quite specular, while the chin is rather non-specular; the BRDF
variance on the forehead is extremely low and almost uniform across
subjects, while reflectance above the lip varies highly between subjects.
This shows clearly that spatial BRDF variance is an important aspect
of facial appearance.

Skin Trait Variance: In order to detect correlations between
reflectance parameters and the traits associated with each subject,
canonical correlation analysis (CCA) was performed. It turns out that
the surface BRDF parameters correlate the most with skin type and
gender. Less surprising, albedo is highly correlated with skin type.
Apart from that, there is no significant correlation of albedo with other
traits.

5.4.5 Appearance Transfer

It is now possible to use the parameter observations within the face
database to derive intuitive user controls to alter facial appearance.
While the analysis performed in the previous section can generally
be used as a guideline when changing skin parameters, it is desirable
to have higher-level controls. Weyrich et al. suggest the texture
synthesis procedure by Heeger and Bergen [73] as a generic tool to
transfer appearance parameters between subjects and to seamlessly
blend between them [124]. The texture synthesis is applicable to all
model parameter types and can be used to add freckles, moles, gloss
variations, and other individual effects. With the face database at
hand, this provides a general appearance editing framework. Figure 5.7
shows examples where this method has been applied to a face’s diffuse
reflectance, where changes are most visible. Altering other model
parameters works analogously, although the effect appears to be more
subtle in renderings.

5.4.6 Conclusion

This section presented a project that developed a simple and practical
skin model. An important feature of this model is that all its parameters
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Fig. 5.7 Appearance editing, altering the diffuse reflectance. From left to right: Real photo-
graph; rendering; making the face sun-burnt; adding hair follicles in the beard area; making
the skin type darker.

can be robustly estimated from measurements. This reduces the large
amount of measured data to a manageable size, facilitates editing, and
enables face appearance changes. Images from the model come close
to reproducing photographs of real faces for arbitrary illumination and
pose. The model has been fit to data of a large and diverse group of
people. The analysis of this data provides insight into the variance of
face reflectance parameters based on age, gender, or skin type. The
database with all statistics is available to the research community for
face synthesis and analysis [130].

In general, the model itself may be extended to be closer to human
anatomy, much in the lines of Ghosh et al. [55] or Donner et al. [36].
Despite its simplicity, however, it was already able to provide useful
insight into skin reflectance in general. Other important areas that
require a different modeling approach are facial hair (eyebrows, eye-
lashes, mustaches, and beards), hair, ears, eyes, and teeth. Very fine
facial hair also leads to asperity scattering and the important “velvet”
look of skin near grazing angles [88]. None of the models presented in
this section take this into account.
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Open Problems and Future Work

In this article we presented an introduction to appearance capture and
suitable representations, together with the description of selected work
that measures the spatially- and directionally-varying reflectance and
subsurface scattering properties of complex materials. The presented
topics have been selected to provide a good coverage of core problems
in appearance acquisition. As any active research area, hover, the field
keeps on evolving, and there are various open problems currently under
investigation. The remainder picks out a few topics that are represen-
tative for current research interests.

Practical Hardware Designs: Depending on the application scenario,
existing hardware designs for appearance capture are not always prac-
tical. One challenge, for instance, is the design of portable measurement
systems. An interesting approach has been explored by Kuthirummal
and Nayar [92], who show that a radially-symmetric mirror placed in
front of a camera can be used for, among other things, obtaining simul-
taneous measurements of multiple viewpoints for BRDF measurement.
Ben-Ezra et al. [4] built a solid-state BRDF measurement device for
rapid BRDF acquisition that consists of a dense set of LEDs in a hemi-
spherical arrangement. The design exploits the fact that LEDs can be
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used both as emitters and receivers, which enables a compact, portable
system design and fast acquisition.

Interaction between wavelength and geometry : As mentioned in
Section 1, it has been common to factor BRDF (and higher dimen-
sional reflectance functions) into separated functions of wavelength and
geometry:

fr(λ,ωi → ωo) ≈ g(λ)f(ωi → ωo). (6.1)

It is not yet clear, however, to what degree this approximation is accu-
rate. Indeed, as stated by Nicodemus et al. ([142], p. 31):

“Unfortunately, we are not aware of any data that will establish the
extent to which there may be interaction between geometrical depen-
dence and spectral dependence, except for the knowledge that it is
a significant factor in some internal-scattering situations, as pointed
out earlier, in addition to the obvious case of a diffraction grating
where there is clearly substantial interaction. Certainly, there will be
some wavelength bands over which the interaction is so slight that this
last procedure will yield a good approximation, and it will probably
hold more widely. But until more complete bidirectional reflectance-
distribution data are gathered to establish such dependencies, we can
only speculate and caution against the possibility of interaction effects.”

This situation has not changed significantly in the 30 years since this
was written, and one interesting direction to pursue is the collection
of multi-spectral reflection measurements that allow this interaction to
be thoroughly explored.

Simultaneous recovery of shape and reflectance: Joint estimation of
shape and reflectance is a challenge, compared to the traditional way
of reflectance-independent estimation of geometry followed by reflec-
tometry. Most examples of the former rely on parametric models
[50, 59, 139, 174, 204], but with the right representations of reflectance
this might be avoidable. In a practical system, the two approaches
might be combined, with the latter used to provide initial conditions
to bootstrap a joint estimation.

Acquisition ‘in the wild’ : Many environments, especially those out-
doors, do not permit precise lighting control. Estimating reflectance
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(and shape) in these environments requires techniques that are dif-
ferent from many of those that have been discussed in this article.
There are a number of approaches (both active and passive) that
have been proposed to acquire appearance models in semi-controlled
or uncontrolled environments, and almost all of them have relied on
low-parameter BRDF models. Developing techniques that can handle
a broader class of materials remain an open problem. Results in this
direction seem imminent with the maturation of multiple-view geome-
try and camera autocalibration. There is also evidence that alternative
non-parametric representations of BRDF exist that are more appro-
priate for this task [158]. It is also possible that there are additional
physical constraints that have yet to be exploited [173].

The separation of reflection components can be especially useful in
natural environments when controlled, active illumination is difficult or
impossible. Local and non-local reflections for non-conducting surfaces
can be separated (at least approximately) using a simple stick occluder
under direct sunlight [137], and diffuse/specular separation can be
achieved using color information according to the dichromatic model
and/or passive polarization imaging [201, 138]. In many cases, passive
polarization imaging can also be used for material identification, for
example, to distinguish metallic from non-metallic surfaces [200, 201].
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