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Figure 1: Our system aligns LiDAR captured by StreetView cars throughout a large area of New York City. The two images
on the left show overhead maps of the car trajectories. The third image shows the original alignments provided by Google.
The rightmost image shows our alignment. Different colors represent different scans of the same surfaces.

Abstract

This paper describes an automatic algorithm for global
alignment of LiDAR data collected with Google Street View
cars in urban environments. The problem is challenging
because global pose estimation techniques (GPS) do not
work well in city environments with tall buildings, and
local tracking techniques (integration of inertial sensors,
structure-from-motion, etc.) provide solutions that drift
over long ranges, leading to solutions where data collected
over wide ranges is warped and misaligned by many meters.
Our approach to address this problem is to extract “seman-
tic features” with object detectors (e.g., for facades, poles,
cars, etc.) that can be matched robustly at different scales,
and thus are selected for different iterations of an ICP algo-
rithm. We have implemented an all-to-all, non-rigid, global
alignment based on this idea that provides better results
than alternatives during experiments with data from large
regions of New York, San Francisco, Paris, and Rome.

1. Introduction

There has been a recent explosion in worldwide efforts to
acquire 3D models of real-world urban environments. The
motivation for these efforts is to provide 3D representations
of cities that can be used for mapping, urban planning, vir-
tual tourism, security analysis, and commerce applications.
For most of these applications, the 3D model must be de-
tailed, true-to-life, and globally consistent.

With this motivation, several companies routinely ac-
quire LiDAR data from scanners mounted on cars driving
systematically through cities. For example, Google Street
View cars are mounted with three LiDAR scanners, two
of which point directly left and right and capture vertical

stripes of 3D point samples at 1 degree increments over a
180 degree range approximately 75 times per second. These
scanners yield a set of 3D points on both sides of the street at
approximately 20 centimeter resolution on nearby building
facades. While this 3D data already provides fairly detailed
geometry throughout a city, it is not a globally consistent
3D reconstruction.

The problem is that the absolute point position acquired
by the 3D scanners depends on the scanner poses predicted
by GPS, inertial sensors, and SfM, which are notoriously
inaccurate in urban environments. Different runs (continu-
ous capture sessions) through the same region of a city can
be misaligned by tens of meters due to inaccuracies of GPS
(Figure 2), and sets of points acquired within any single run
can suffer warps due to drifts in pose estimations. The mis-
alignments are usually so serious that traditional point cloud
registration methods such as Iterative Closest Points (ICP)
fail to converge to correct solutions.

The goal of our paper is to investigate robust methods
to perform registration of LiDAR scans collected from car
mounted scanners in urban environments. Our approach is
to align semantic features. We detect semantic objects com-
monly found in cities (roads, facades, poles, cars, segments,
etc.) to establish features within the LiDAR, and then we
align those features across all scans simultaneously with an
all-to-all ICP algorithm. This approach is advantageous in
situations where data is noisy and seen from disparate views
because it considers the entire shape of an object for feature
detection, which can be recognized repeatably and distinc-
tively for many types of objects in urban environments.

We demonstrate the value of semantic features in an ICP
framework for large-scale alignment of LiDAR scans. Our
variant of ICP leverages the fact that different semantic fea-
tures are distinctive within neighborhoods of different sizes
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Figure 2: Global registration errors in Street View LiDAR data.

(scales). Therefore, it executes a coarse-to-fine refinement
by selecting different semantic features to match at every
step – i.e., first it successively aligns mutually closest roads,
facades, and poles, which can be matched robustly even for
gross initial misalignments. Then, it successively matches
mutually closest cars and other small objects, which require
better initial alignments to find correct correspondences.
This multi-stage ICP algorithm can globally align many
scans across a large area simultaneously.

The main contribution of the paper is the idea that se-
mantic features based on object detectors can be used ef-
fectively for alignment of LiDAR data. Secondary contri-
butions include a method for introducing increasingly finer-
scale features in successive stages of an ICP algorithm, and
a framework for aligning features of many different types
in a non-rigid, all-to-all global registration of many Street
View LiDAR scans covering large regions of a city. Our
experimental results indicate that the proposed methods can
achieve significantly better alignments than those provided
by alternative methods for four different cities.

2. Related Work

Alignment of sensor data is a long standing problem in
computer vision and related fields.

Image Alignment. There has been a large amount of pre-
vious work on Structure from Motion (SfM) – i.e., align-
ment of images taken from different viewpoints [19, 30].
For example, multiple authors demonstrate successful sys-
tems for reconstructing point clouds of large environments
[1, 11, 16, 26, 34, 35, 29]; and Klingner et al. describe
a system for computing large SfM solutions from Google
Street View images, tackling the issues of large-scale data
processing and reconstruction with rolling shutter cameras
[25]. However, these systems are very computationally ex-
pensive and work effectively only where imaged surfaces
are diffuse and have lots of texture (e.g., Rome, not New
York). We aim to provide an alternative based on LiDAR
that is less expensive and works in a wider range of urban
settings. In Section 6, our result is compared to the initial
alignment provided by Google, which represents the result

of many man-years of effort using methods based on GPS,
inertial sensors, and SfM.

Point Cloud Alignment. There has also been prior work
on registration of 3D data yielding a variety of algorithms
for alignment of point clouds, range scans, and polygonal
meshes in computer graphics [12, 31]. For example, there
are many variants of the Iterative Closest Point (ICP) algo-
rithm [6, 20] that differ in assumptions about how well an
initial guess for the alignment can be estimated, how effec-
tively shape descriptors can suggest correspondences, what
types of distance functions should be used (e.g., point-point,
point-plane, etc.), etc. [31]. In our case, since LiDAR can
be noisy and initially misaligned by more than 10 meters,
these variants of ICP fail to converge to the correct solu-
tion in our experiments (see Section 6). To address this is-
sue, people usually use algorithms like RANSAC or Gen-
eralized Hough Transforms to produce an initial alignment
and then refine the solution with ICP (e.g., while tracking
RGBD scanners [21, 28]). However, RANSAC and its vari-
ants work effectively only for scans with large overlaps and
for transformations with low-dimensionality (e.g., rigid mo-
tions), which is not the case for our data.

Simultaneous Localization and Mapping (SLAM). Other
researchers have considered algorithms to extract and track
features for SLAM applications in robotics [37]. For ex-
ample, SLAM methods have been proposed with loop clo-
sures to align range scans captured from backpacks [10],
helicopters [38], and other types of vehicles [7, 9]. Most of
these methods are aimed at real-time robotics applications
and thus are limited in their ability to simultaneously ana-
lyze many runs acquired with large drifts at different times,
as our system does.

Semantic Reconstruction. Although primitive features are
very popular [15, 36, 33, 39, 23, 40, 22, 24, 18], people
have previously used semantic information for reconstruc-
tion. For example, Bao et al. jointly detect objects with
pose information and estimate the 3D structure [5, 3]. Sim-
ilarly, Dame et al. use detected objects as a shape prior for
dense reconstruction [4, 13]. However, these method don’t
use semantic information to find or improve feature corre-
spondence.

Others have detected specific types of objects and used
them for alignments [8, 14]. For example, [2] extract se-
mantic elements of building facades, such as windows,
doors and roofs. However, it focuses exclusively on build-
ing facades with highly specialized feature detectors (e.g.,
windows are detected as holes on walls) and alignment al-
gorithms (e.g., features are matched floor-by-floor). Results
are shown only for two pairs of facades with less than 30
feature matches in total. In indoor settings, Salas-Moreno
et al. use 3D polygonal models to detect specific objects
after pre-training, which are then used for alignment. In



contast to this work, we address very difficult problems due
to misalignments at large scales over wide areas in outdoor
environments, and we introduce semantic features (“Seg-
ments”), some of which do not require pre-training, and
thus capture a wide variety of object types not known in
advance.

3. Overview
In this paper, we investigate general approaches for

alignment of LiDAR acquired with Google Street View cars
over long-range runs and multiple scans of the same areas
at different times.

Input Data. Our input is LiDAR data acquired with an R5
Google Street View car. It includes a series of depth mea-
surements with an initial guess for the pose of each LiDAR
scanner for every scanline, which was estimated by Google
using pose estimation algorithms in place in 2011 (prior to
the ones described in [25]). These initial poses reflect the
results from Google’s process at that time to combine GPS
coordinates, inertial sensor data, and SfM to estimate poses
that stitch together nearby images into panorama. The pose
estimates given by Google align nearby images with great
accuracy, but drift over the span of 10 meters or more, and
sometimes provide very poor alignments at loop closures
over long-range runs and for data collected during different
“runs” (each time a car collects data is a separate run).

Problem. Our problem is to refine the initial pose estimates
to build a globally consistent model of the city, where all
features observed multiple times are aligned and geomet-
ric relationships between features are accurate across wide
areas.

This problem is challenging for several reasons. First,
scans are low-resolution and noisy, and thus do not con-
tain local features that can be matched with high preci-
sion. Second, overlaps between different scans are rela-
tively small (often occur only at intersections), and thus
most putative matches predicted by feature descriptors are
outliers. Third, urban environments contain many repeated
structures (e.g., windows), further adding to the ambigu-
ity of putative matches. Fourth, overlapping scans are of-
ten captured from perpendicular views (from runs that pass
through the same intersection on crossing streets), and thus
the system must consider view-independent criteria when
matching features. Fifth, initial scanner pose estimates pro-
vided by Google exhibit drifts of a meter or more for each
city block, and thus the alignment algorithm must correct
non-rigid warps. Finally, the datasets are large – each of our
test cases covers several square kilometers in a dense urban
environment (almost 100 city blocks) and has hundreds of
millions of LiDAR points, and thus the system must be scal-
able – e.g., avoid pairwise matching of individual points.

Approach. Our approach is to extract and match semantic

features. We investigate a number of ways to detect objects
in LiDAR scans of cities and then use the clusters of points
detected for each object to form distinctive features. We
align these semantic features using a coarse-to-fine ICP al-
gorithm that selects different semantic features to match at
each stage based on their expect ranges of distinctiveness.

This approach overcomes the main difficulties of previ-
ous approaches to large-scale alignment in urban environ-
ments. It achieves robustness to noise and viewpoint dif-
ferences by extracting and matching semantic features. It
overcomes difficulties of ICP with poor initial alignments
by first considering very sparse and large-scale semantic
features, which can be extracted and matched robustly, and
then later considering denser and smaller features, as the
alignment converges closer to the correct solution. It han-
dles small overlaps and non-rigid warps by simultaneously
aligning all scans together with shape-preserving warps (the
global network of overlapping scans provides critical align-
ment constraints).

The following section provides further descriptions of
these ideas and details of their implementations.

4. Semantic Feature Detection
The main focus of our work is investigating what types of

features are valuable for aligning large-scale LiDAR scans
of cities. Specifically, we aim to find features that are: 1)
repeatable, 2) stable, 3) view-independent, 4) distinctive,
5) sparse, and 6) provide universal coverage over the city.
Though these properties are well established for feature de-
tectors, the last three are most interesting in our context be-
cause they interact. Features that are sparse and discriminat-
ing can be matched with high precision, but densely spaced
feature correspondences are required to solve for the correct
non-rigid warp. It is usually not possible to extract features
with all these properties in noisy data.

Observing that the distances between closest point cor-
respondences in the ICP algorithm decrease with each iter-
ation, we decided to extract a set of features, each of which
is valuable at a different scale. Some features (like building
facades) are sparse and distinctive within large regions of a
city and thus suitable for early iterations of ICP. Other fea-
tures (like edges of window frames) are dense and repeat-
ing, and therefore distinctive only within small neighbor-
hoods. By extracting features at multiple scales and intro-
ducing them to the ICP algorithm gradually based on the ex-
pected misalignment at each iteration, we can achieve con-
vergence to the correct minimum more robustly.

Within this context, we observe that semantic features
are among the most valuable at large scales. By using al-
gorithms to detect objects of specific types spread sparsely
through a city (roads, facades, poles, cars, etc.), we acquire
features that can be matched uniquely within a large neigh-
borhood. For example, consider tall poles (e.g., street lights,
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Figure 3: List of features for alignment. We extract semantic features from LiDAR data. (a, b) Building facades and roads
are detected by fitting large planes. (c) The pole is used to detect signs, lights and trees. (d) Cars are detected by an exemplar
SVM. (e) Objectness is proposed by segmentation. (f) Lines are used to refine alignment.

telephone poles, traffic lights, traffic signs, etc.) – they are
robust to detect in a LiDAR scan, have distinctive shapes,
and are spread sparsely and universally throughout most
urban environments (e.g., there is a tall pole every ten or
twenty meters in most areas). As a result, they make an ex-
cellent feature for the early iterations of the ICP algorithm,
when initial misalignments are of the same size as the spac-
ing between features – i.e., mutually closest features of the
same semantic type provide correct correspondences.

This motivating observation drives our investigation of
semantic features. The following paragraphs describe the
set of semantic features we detect and discuss the scale at
which they are introduced to the ICP algorithm. The de-
tailed algorithm and parameters can be found in the supple-
mentary material.

Figure 4: An example of Distance-height image that is used
for detecting poles and cars.

Structural Infrastructure. In urban environments, we ob-
serve that many stationary objects embedded in the city in-
frastructure provide salient semantic features (e.g., build-
ings, traffic lights, etc). They usually have distinctive shape

properties and are sparsely scattered throughout the city,
and so they make excellent features for long range corre-
spondence. The challenge is that those objects don’t have a
single overall shape that’s easy to represent using 3D polyg-
onal models (as in [32]). Our approach is to design specific
semantic detectors for these types of objects.

At the largest scale, we detect building facades and roads
using a plane detection algorithm based on hierarchical
clustering. We sample features for all planes larger than
10m2.

At a slightly smaller scale, we detect poles (signs, lights
and tree trunks) using a Hough transform that accumulates
evidence for tall, thin, cylinders at the same XY coordinate.
These features usually provide high coverage and distinc-
tion over large neighborhoods because they are easily rec-
ognizable and well-spaced throughout most cities.

Specific Objects. We also consider extracting features for
specific types of objects commonly found in urban settings.
As a prime example, parked vehicles provide an excellent
source of semantic features. The spacing between parking
vehicles are normally smaller than the poles, but they can
be used after the data is aligned by the larger scale features.
We find that we can use supervised learning to train a de-
tector for vehicles. There are three steps to extract vehicle
features: 1) train detection model based on the labeled ex-
amples, 2) detect car bounding boxes and 3) segment the
foreground of the bounding box to find the points belong-
ing to the vehicle.

To reduce the detection search space, we represent the
depth scans with distance-height (DH) image as shown in
Figure 4. The x axis is the travel distance of the car and
the y axis the point height above the ground, which can be
estimated robustly given how the laser scanner is mounted



on the car. The pixel value of this image is the point depth
relative to its laser scanner. The sampling resolution in this
image is 10cm on both axes.

The training data is collected by labeling bounding boxes
for vehicles on this type of images for each scan. Then each
labeled object is used as an exemplar and we train an SVM
for each exemplar as in [27]. The patch in each box is rep-
resented by HOG features. Given a new scan image, we
slide these exemplar SVMs and the detection score at each
location is the highest response from all the SVMs. In our
experiments, we find that it is easy to find a balance between
detection precision and recall. The points in a bounding box
are segmented by mean-shift clustering to figure out which
part is the foreground.

Segments. Besides the objects for which we can train clas-
sifiers in advance, there are other miscellaneous objects that
provide good features. Instead of detecting them with exact
categories, we use segmentation to detect clusters of points
with high “objectness” and use them as features. To seg-
ment the point clouds, we first remove the detected build-
ing facades and roads, and then use hierarchical clustering
grouping points into segments with methods based on [17].
These features detected based on objectness usually have
distinct shapes, robust segmentations after ground-plane re-
moval, and stable locations. Although they are not as sparse
as the detected objects, they can be used after alignment
with detected objects.

Geometric Primitives. At the finest scale, we detect small
geometric primitives, such as lines, which commonly occur
on edges of windows and doors and other semantic features.
Although lines are neither sparse or distinctive in our case,
we find they are very useful to refine the solution after all
the other semantic features have been aligned.

5. Optimization Algorithm
After extracting a set of semantic features, each associ-

ated with different scales, we then aim to compute transfor-
mations that align them with as little distortion as possible.

To address this problem, we must parameterize features
with the fewest variables possible, define an energy func-
tion that trades-off alignment of features with warps of the
scans, and develop an optimization algorithm that converges
to a solution robustly and efficiently. The optimization al-
gorithm is the most interesting of these issues, but we de-
scribe our design choices for all of them in the following
paragraphs for completeness.

Parameterization. The free variables in our optimization
represent the transformations to be applied to the center of
the car as it travels along its trajectory and the placement of
lasers relative to the center of the car (Figure 5).

Specifically, the non-rigid transformation of the car tra-
jectory is represented by a set of rigid transformations

(translations and rotations) associated with control points of
a Cardinal spline. For example, in Figure 5, the gray curves
are Cardinal splines representing the trajectories of the cen-
ter of the car on different runs, where each of the gray dots
is a control point Si associated with its own translation Ti
and rotation Ri. The orange and purple vectors represent
offsets of the LiDAR scanners with respect to the center of
the car, each of which has its own translation and rotation
that can be optimized.

Since the feature observations in laser scans are relative
to car trajectories, they do not have their own variables.
Changing the transformation variables associated with the
car trajectory and scanner configurations directly affect the
locations of features. For example, the position of F1 is
controlled by the transformation variables associated with
spline point P1 and LiDAR scanner Lk, since the vector V1
from the LiDAR scanner to the feature observation is fixed.
Similarly, the position and orientation of the LiDAR plane
feature F2 (shown in red) is controlled by the transforma-
tion variables associated with spline point P2 and LiDAR
scanner Lk. Thus, the number of free variables to optimize
is usually much smaller than the number of features. Spline
control points are spaced every 2 meters along the car tra-
jectory in all experiments. For example, in New York, there
are 26,013 control points, which amounts to 156,078 vari-
ables in all.

V1

V2

d1

d2 F2

F1

V2

[Cc Tc Rc]

P2

P1

[Si Ti Ri]

Figure 5: Optimization variables. Splines representing the
trajectories of cars are shown in gray – they are interpolated
from spline control points (shown as gray dots) with vari-
ables representing a translation and rotation at each control
point. Offsets of LiDAR scanners (purple) are shown as
vectors, each associated with translation and rotation. Fi-
nally, a single feature correspondence is shown (as a big
black dot) whose position and orientation are associated
with translation and rotation variables.
Energy Function. We aim to solve for these variables by
minimizing the following energy function:

E(P,C, T ) = EData(C, T ) + ESmooth(P, T ) + EInertia(T ),

whereP is a set of spline control points,C is a set of feature
correspondences, and T is a set of transformations associ-
ated one-to-one with control points.



The data term, EData, favors alignment of correspond-
ing features. Specifically, it is computed by summing the
squared Euclidean distances between every pair of corre-
sponding features. Since features can be represented by any
of three 3D primitives types in world space (point, point on
a line, or point on a plane), equations for each of the dis-
tance calculations are specialized to the feature types. De-
tails are deferred to the supplemental material for brevity.

The smoothness term, ESmooth(P, T ), favors maintain-
ing the local shape of the spline path representation of the
car trajectory. It is computed by summing the squared Eu-
clidean distances between the location of every spline path
control point Pi after applying its transformation, Ti, versus
the position that would have by applying the transformation
associated with each of its neighbors.

ESmooth(P, T ) = wSmooth

|P |∑
i

|Neighbor(Pi)|∑
j

(d(Ti(Pi), Tj(Pi))
2),

We include Smoothness equations for each pair of spline
control points within 8m of each other and weight them with
a Gaussian function that is stronger for closer pairs (σ=4m).

The inertia term,EInertia, favors smaller transformations.

EInertia(T ) = wInertia

|T |∑
i

|Ti|,

where |Ti| measures the magnitude of translation and ro-
tation in the transformation Ti. This term is included
mainly to preserve the global positioning of the solution in
space (otherwise, the system of equations would be under-
determined), and so wInertia is set very low (i.e., 10−3 for
translation, and 10−1 for rotation).

Optimization Algorithm. We optimize this energy func-
tion with a new double-loop (multi-stage) variant of ICP. In
the outer loop, a set of features is selected to be considered
for the current loop of the algorithm based on a chosen scale
S, which descrease progressively from 20 meters down to 1
meter with each outer loop. Then, for a selected set of can-
didate features and scale S, the algorithm iterately: 1) es-
tablishes putative correspondences between mutually clos-
est compatible features within distance S, 2) solves for the
transformation parameters that minimize the energy func-
tion E, and 3) decreases wSmooth to allow more deformation
as the solution converges.

In the outer loop, the key issue is to select valuable fea-
tures for a given scale S. As described in the previous
section, each feature is associated with a range of scales
for which it is expected to be useful, as determined by the
feature detector, and thus this process is trivial during op-
timization. In our experiments, poles are introduced at the
largest scale, then roads and facades, next cars, then objects,
and finally window edges.

In the inner loop, the algorithm first finds putative cor-
respondences within a given scale S. Our method uses a

kd-tree to find all pairs of features of the same semantic
type on different scans, where the two features are mutually
closest, separated by a Euclidean distance less than S, and
pass compatibility checks based on Spin Images shape de-
scriptors and feature types. These putative correspondences
may not all be correct, but enough usually are to make a
step towards the correct alignment, whereafter the distance
threshold is reduced in the next iteration to remove outliers.

Our method for minimizing the objective function in the
second step of the inner loop is a multi-phase non-linear op-
timization that first solves for translations, keeping rotations
fixed (which requires solving only a linear system of equa-
tions) and then solves for translations and rotations together
using the translations computed in the first phases as an ini-
tial guess for the nonlinear optimization. Rotation matrices
are linearized to improve efficiency.

6. Results and Evaluation

In this section, we report results of experiments aimed at
investigating how well our algorithms are able to align Li-
DAR scans captured with Street View cars throughout large
cities. We ask several questions, including: 1) “are seman-
tic features valuable in the early iterations of ICP?,” 2) “are
each of the detected semantic features valuable at the point
they are introduced in our ICP algorithm?,” and “are our al-
gorithms robust enough to work on different cities with the
same object detectors?.”

Input Data Sets. Our data sets are comprised of the raw
LiDAR scans captured by R5 Google Street View cars over
large sections of New York, Paris, Rome, and San Fran-
cisco. Each data set contains ∼300-500M points represent-
ing ∼50-100 city blocks covering ∼2-4km2. Feature com-
putation takes 15 minutes per city block using a cluster with
200 processors. Optimization takes 6 hours on 1 processor
after that.

Figure 6 shows example alignments for some intersec-
tions in the New York data set. Note the gross misalign-
ments marked by arrows in the initial data provided by
Google (left) and how they are corrected by our algorithm
(right). These are challenging cases because the scanner
view angles are nearly perpendicular as the car drives down
different streets through the same intersection.

Ground Truth Data. In order to evaluate and com-
pare alignment results quantitatively, we manually labeled
“ground truth” point correspondences spanning each pair of
overlapping scans throughout every city. To minimize bias,
we did our best to spread the ground truth correspondences
evenly through each city, while being sure to cover every
street intersection. As an example, in the New York data
set, there are 589 manual correspondences.



Figure 6: Examples of misalignments (left image in each pair) fixed by our algorithm (right image in each pair) in the New
York data set. Different colors represent different scans of the same intersection.

Evaluation Metrics. Given this ground truth, we eval-
uate any predicted alignment by calculating the distance
(error) between each pair of ground truth correspondences
and plotting the cumulative distribution of error frequen-
cies – i.e., for every distance error we plot the percentage
of ground truth correspondences whose features are aligned
closer than that distance.

Semantic Feature Results. Our first experiment was de-
signed to test whether each of the semantic features de-
scribed in Section 4 is valuable at the point it is introduced
in our coarse-to-fine ICP algorithm. To address this ques-
tion, we used the algorithm to align scans in each city and
plot the errors achieved by the combinations of features
used by each stage of the ICP algorithm.
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Figure 7: Plots of the percentage of ground truth features
(vertical axis) aligned within different distance thresholds
(horizontal axis) using different combinations of features
(different curves) during tests on scans of New York. Higher
curves are better.

Figure 7 shows the results for New York, which was cho-
sen for this investigation because it is the most challenging
case. We see indeed that the alignment after adding each se-
mantic feature provides better results (higher curves) than
the combination without it – i.e., curves for larger combi-
nations of features are higher and there is a gap between
adjacent curves.

This result demonstrates not only that features we ex-
tract are complimentary to one another, but also that they
are introduced to ICP at an appropriate stage of the algo-
rithm (i.e., when mutually closest compatible points pro-
vide mostly correct correspondences). If this were not true,
then there would not be separation between the curve for
one feature and the ones above and below it.

Robustness Results. Our second experiment was designed
to test whether our method is robust enough to work well
for a variety of cities using the same object detection pa-
rameters. So, we compare results of our method on Street
View scans of New York, San Francisco, Paris, and Rome.

This test is challenging because the four cities all have
different geometric properties due to their cultural, histor-
ical, and architectural differences. For example, in Paris,
there are a lot of trees on both sides of the main roads, which
block the building facades. In Rome, there aren’t as many
poles as in other cities. In New York, parked cars line the
streets more often than in other cities.

Despite all these differences, we find that our algorithms
have similar behaviors on all four cities (Figure 8). Al-
though the initial alignment provided for Paris and Rome
was better than New York (where accurate GPS and SfM
are very difficult), alignment using semantic features with
our algorithms still improves the results; and, the combina-
tions of semantic features that work best in New York also
work best in all other cities.
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Figure 8: Alignment results using semantic features on Google Street View scans of three different cities.

Comparison Results. As a final experiment, we compared
the results of the proposed method with several strawman
alternatives to investigate whether traditional, non-semantic
features could replicate our results.

Specifically, we first considered what would happen if
we did not use semantic features, but instead matched clos-
est scan points directly. To make this comparison feasible,
we had to run the test on a small portion of New York (a few
city blocks) because otherwise the time to find closest points
among hundreds of millions in a full data set was beyond the
capacities of our computers. For this reduced test set, we
sampled scan points at approximately 1 meter spacing and
then paired it at each ICP iteration with the closest among
all points on each other scan within a distance threshold that
decreased according to the same schedule as used in our al-
gorithm. The optimization algorithm and closest point code
was the same as in our algorithm – the difference was that
matches were between scan points rather than between se-
mantic features. The results shown in Figure 9(a) confirm
that alignment with semantic features (black curve) is sig-
nificantly better than with direct alignments of points (green
curve).

Second, we considered what would happen if we had
used only the “Segment” features for the ICP algorithm
(without coarse-to-fine refinement). Figure 9(b) shows the
result, confirming that the Structural Infrastructure and Spe-
cific Object features used by our algorithm are indeed nec-
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Figure 9: Comparison. (a) compares to ICP baseline. (b)
compares our method to using segments directly.

essary for correct alignments and that the coarse-to-fine
strategy is effective.

These and all other results also confirm that the pro-
posed methods can improve the initial alignments provided
by Google (blue curve in Figure 7 and 8). Although the
methods used to produce the initial alignments are not pub-
lished and predate their most recent work [25], they do rep-
resent the result of many man-years of work on alignment
with GPS, inertia sensors, and SfM. Hence, they represent
the type of result typical of these methods on this data set.

We conclude from the significant improvements in our
results that matching semantic features detected in LiDAR
is preferable to these alternatives.

7. Conclusion
This paper has described a method for global alignment

of LiDAR data collected with Google Street View cars in
urban environments. The main research contribution is the
detection of semantic features to be used at different stages
of an all-to-all ICP algorithm. Experimental results suggest
that this approach is effective for the data sets tested. They
also show that the semantic features considered in this study
contribute to the overall alignment results, as the accuracy
of solutions achieved with heterogeneous combinations of
features out-performs that of any single feature type, and
significantly exceeds alternative solutions.

This work has several limitations and could be extended
in several ways. First, it considers only some of the many
types of possible semantic features, only in urban environ-
ments, and only for car-mounted scanners – investigating
how semantic features can be used in other contexts is an
obvious and important next step. Second, this paper consid-
ers only alignment of LiDAR data – it may be possible to
use semantic features for other data types (images) and/or
for heterogeneous data types. Finally, our work provides a
globally consistent alignment of LiDAR scans over a large
region but does not provide a fully textured reconstruction
of a full city – this work provides just the first step towards
that long-term goal.
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