
Fine Tone Control in Hardware Hatching
Matthew Webb Emil Praun Adam Finkelstein Hugues Hoppe
Princeton University Princeton University Princeton University Microsoft Research

Figure 1: Bunny rendered using color volume texture; globe rendered using threshold textures (modulated per-pixel).

Abstract

Recent advances in NPR have enabled real-time rendering of 3D
models shaded with hatching strokes for use in interactive
applications. The key challenges in real-time hatching are to
convey tone by dynamically adjusting stroke density, while
controlling stroke size and maintaining frame-to-frame coherence.
In this paper, we introduce two new real-time hatching schemes
that leverage recent advances in texture mapping hardware. Both
schemes provide enhanced control of tone, thereby avoiding
blending or aliasing artifacts present in previous systems. The
first scheme, which relies on volume rendering hardware, admits
the use of color. The second scheme, which uses pixel shaders,
allows per-pixel lighting operations such as texture modulation.
Both schemes run at interactive rates on inexpensive PC graphics
cards.

1. Introduction

A variety of non-photorealistic rendering styles use hatching
strokes to convey tone (through stroke density), suggest material
(through stroke arrangement), and reveal shape (through stroke
orientation). Interactivity presents a number of challenges for
applications using non-photorealistic rendering: (1) limited run-
time computation, (2) frame-to-frame coherence among strokes,
(3) control of stroke size and density under dynamic viewing
conditions. Two recent algorithms have leveraged advances in
hardware texturing capabilities to enable the use of hatching
strokes in interactive applications [2][7]. However, to achieve
fine tone control, these systems have suffered from a tradeoff
between temporal aliasing and blending artifacts.

In this paper we present two new real-time hatching schemes that
extend our previous work on tonal art maps (TAMs) [7]. By
providing greater control over the introduction and removal of

strokes in the image plane, both schemes offer finer control over
tone. In addition, each new scheme exploits features of modern
texture mapping hardware to enable stroke-based rendering
effects that were unavailable with previous methods (Figure 1):

• The first scheme exploits volume texturing hardware to permit
finer tone control, as well as use of color hatching strokes.

• The second scheme extends the texture thresholding method of
Freudenberg [2], by using multiple thresholds to reduce aliasing
artifacts while permitting per-pixel lighting operations.

The remainder of this paper is organized as follows. Section 2
offers a brief survey of related work. Section 3 describes in detail
the implementation of the two new schemes, and offers some
comparisons. Section 4 describes a new method for creating
TAMs with color as well as more tonal and character variation
than in our previous method. Finally, Section 5 presents results
and Section 6 concludes with areas of future work.

2. Related work

There have been a number of systems for NPR using hatching.

Off-line hatching. Several systems address the problem of
generating high-quality hatching for static scenes in an off-line
process. Saito and Takahashi [8] describe a method for post-
processing the framebuffer to overlay image-space strokes.
Winkenbach and Salesin [12], and Salisbury et al. [9] introduce
prioritized stroke textures, which map tone values to
arrangements of strokes, and present impressive examples of
computer-generated hatching. Sousa and Buchanan [10][11]
concentrate on the technical aspects of physically simulating real
media such as pencil, crayon, blenders, and erasers. Hertzmann
and Zorin [3] create high-quality silhouettes, and describe an
image-space stroke placement scheme for cross-hatching.



2

Real-time hatching. A few recent systems have addressed real-
time hatching. Markosian et al. [5] introduce a simple hatching
style indicative of a light source near the camera, by scattering a
few strokes on the surface near (and parallel to) silhouettes.
Elber [1] shows how to render line art for parametric surfaces in
real time; he renders objects by choosing a fixed density of
strokes on the surface. Lake et al. [4] describe an interactive
hatching system with stroke coherence in image space (rather than
in object space). Freudenberg’s approach [2] consists of coding a
stroke texture as a halftone pattern. To shade a pixel, the “height”
of the corresponding location in the pattern is compared to the
pixel’s target tone, using a “soft” threshold function (a clamped
linear function with high slope, instead of a step function). This
approach inspired our own thresholding scheme in Section 3.2,
which encodes multiple thresholds per texel for anti-aliasing.

Real-time hatching with TAMs. In previous work [7], we
described how prioritized stroke textures could be rendered
efficiently using texture hardware by precomputing a tonal art
map (TAM). The images in a TAM capture hatching at various
tones and scales. For visual continuity in an interactive system,
we used multitexturing to blend the TAM images over each
triangle. Due to hardware limitations, our system could support
TAMs with only 6 different tone textures, and these textures were
constrained to be grayscale. In this paper we propose two new
rendering schemes that are able to utilize TAMs with finer
resolution in the tone dimension, and one of the schemes naturally
supports colored hatching.

3. New rendering schemes

We now present our two new rendering schemes, and compare
their benefits and drawbacks.

3.1 Volume texture scheme

Recent graphics cards support volume textures, whereby a third
texture coordinate r is added to the traditional (s,t) to perform
lookup within a 3D texture space. Our first rendering scheme
uses this third dimension r to encode tone. At load time, TAM
images are simply stacked up along the tone axis of the texture
volume.

On polygons with large tone variation, our previous scheme [7]
would only do linear blending between the 2D textures
corresponding to the extreme tone values to be represented,
producing many gray strokes. The volume texture method,
however, more effectively reproduces all the intermediate tones,
since the 3D texture lookup can access all tone levels of a dense
TAM. If the set of TAM images is sufficiently dense, the
resulting rendering will give the illusion that strokes are added
independently, rather than added in blended groups as in [7]. For
this versatility however, we pay the price of larger texture
memory consumption.

Another advantage of volume texturing is the support of color.
Both our original scheme [7] and our texture threshold scheme
(Section 3.2) maximize the number of reference tone images by
packing them into the R,G,B,A channels of 2D textures. This
packing limits the one-pass version of the schemes to grayscale
strokes, requiring multi-pass implementations to render color.

Since we are using volume textures in a non-standard way, we
need to take into account several aspects related to mipmapping.
For our application, the ideal filtering behavior would treat the
spatial dimensions separately from the tone dimension, i.e.
maintain full tonal resolution even as spatial resolution decreases.
Unfortunately, current hardware does not offer this behavior.

(Disabling filtering altogether is not acceptable since it leads to
aliasing.) There are two effects of letting the mipmapping in the
tone dimension be influenced by spatial resolution: at coarse
mipmap levels we lose both tone resolution and tone range.

The loss of tone resolution is not necessarily detrimental, as long
as we start with enough resolution at the finest level. As the
object takes up less screen space, it is harder to notice tone
variation, so reducing the tone resolution is quite natural. In our
examples, we used a 256×256×64 volume. The coarsest spatial
level that we generate in our TAM is 32×32 (as strokes are not
discernible in coarser levels), corresponding to a resolution of 8 in
the tone dimension.

The loss of tone range is caused by the relationship between
texture coordinates and texture samples: the first and last samples
in a dimension do not correspond to coordinates 0 and 1
respectively, but to 1/2l+1 and 1 – 1/2l+1, for a mipmap level of
resolution 2l. For coordinates 0 and 1, texturing returns a 50%
interpolation between the first (and respectively, last) sample and
the border. Therefore, the range of tones that we can represent
without border interpolation is different for each mipmap level.
Using a texture with border compresses the overall range of tones
available to us, and forces software rendering in our graphics
driver. Instead, we perform a border interpolation correction
using register combiners. This interpolation uses 100% border
contribution for the texture coordinates extremes (0 and 1), rather
than the default 50%.

When filling up the volume we need to follow the standard
mipmapping sampling pattern. Consider the example where we
want 64 levels at the finest resolution. We generate a TAM as
in [7] with 128 columns. The finest level planes are assigned the
256×256 images with tones 1/128, 3/128, 5/128, … 127/128. The
next resolution level are assigned the 128×128 images with tones
2/128=1/64, 3/64, 5/64, … 63/64, and so on (see Figure 2). Thus,
each tone level appears in exactly one mipmap resolution level.

Figure 2: Tonal art map (TAM) pyramid.



3

3.2 Texture threshold scheme

Our second rendering scheme extends the method presented by
Freudenberg [2] to produce better anti-aliasing. His method uses
a halftoning approach: it stores a texture containing, for each
texel, the threshold tone at which a screen pixel should change
from white to black. To provide some antialiasing, the method
uses a “soft” threshold function (clamp(1-4(1-(I+T))) for an input
intensity I and a threshold value T). This soft threshold function
works well when the change in tone is achieved by varying the
width of the stroke. However, when modulating tone by adding
or removing strokes, aliasing artifacts become visible, particularly
with thin or overlapping strokes, and in animations. In [7], we
experimented with thresholding the framebuffer to generate a
traditional pen-and-ink style, but encountered similar aliasing
artifacts.

When drawing correctly antialiased strokes, most of the stroke
pixels should be black, but the few pixels at the stroke boundary
that receive only partial coverage should be drawn in gray. (Only
when a subsequent hatching stroke covers these pixels might they
change to full black.) To capture this behavior, we propose to
represent for each texel a piecewise constant function that maps
input tones into gray values for the texel. This function therefore
has several transitions, rather than a single transition as in
conventional halftoning. (See Figure 3.) To render a surface, for
each screen pixel we compare its tone (obtained from Gouraud
interpolation) with each of the transition X values (obtained from
texture lookup). We then take the sum of the heights of all the
transitions that pass their comparison tests: 1

Pixel value = ∑ 










 >−∆

−
i

ii xIy

otherwise0

)1(if
1

This scheme introduces strokes one by one, much like the
volumetric method. In fact, one can view these mapping
functions as run-length encodings of rows of texels parallel to the
tone dimension in the volume texture from the previous section.
The volume texture is rather coherent: a texel keeps its shade for
large tone intervals, between the events when different strokes
touch the same texel. Since one goal of TAM generation is spatial
uniformity, such events are placed as far apart as possible in the
tone dimension, leading to large spans of constant values in the
volume.

Since the value of I does not influence which xi and ∆yi texture
locations to address, I can in fact be a more complicated function.
For instance, we can modulate I per-pixel with a texture, to
produce effects such as the hatched earth globe shown in Figure 1,
without affecting the triangulation of the model (as would be
necessary in a scheme that could only compute I at vertices).

One problem to consider when representing such transfer
functions using textures is (tri-)linear interpolation. If two
neighboring texels have the same set of xi’s, interpolating the

1
This function can be implemented on a GeForce3 using register

combiners. Simultaneous thresholding of several values can be done by
multiplying the 8-bit fixed point colors with 256 (by chaining
scale_by_four()’s); while sum of products can be implemented efficiently
using dot products. The double inversion (1- intensity; 1-sum) is needed
because frame buffers represent “amount of white” while we want to be
adding “blackness” (corresponding to black strokes on white paper).
Without the inversions, our highlights (light regions on the models) will
appear drawn with many overlapping white strokes on a dark canvas,
rather than as a white canvas with no strokes.

corresponding ∆yi’s yields the correct result. Unfortunately, this
doesn’t hold for interpolating xi values. To reduce artifacts, we
try to only interpolate between close xi values: we divide the
intensity interval into several bins (not necessarily of equal
length), and for each texel only allow a single transition in each
bin. Consequently, when different xi’s from adjacent texels are
blended together, they can differ only by at most the bin width. In
our implementation we used 7 bins corresponding to at most 7
transitions, which we packed in the RGBA channels of 4 textures
(we reserve 4×4 - 7×2 = 2 channels for the modulate mask and the
splotch mask for a lapped parameterization [6]).

Figure 3: Transition diagram for a single texel.

Since strokes are placed uniformly across the TAM textures, it is
infrequent that a texel undergoes more than one transition in the
same bin. When that happens, we store ∆y to be the sum of the
transition heights, and randomly pick xi from among those in the
bin. Since more strokes are placed at the dark end of a TAM, we
make the bins smaller at the dark end of the spectrum than at the
light end. While this binning scheme tends to work well under the
assumptions stated, it can lead to banding artifacts when these
don’t hold. When the TAM is made of many small, thin strokes,
the average number of strokes touching a texel increases, and
therefore, the number of transitions increases as well. In the limit,
when trying to represent a continuous mapping function (no
strokes — just 256 gray levels), forcing a representation using
only 7 discrete transitions, spaced according to our bin
distribution, produces models shaded with only 7 levels of gray,
appearing in 7 bands. Choosing xi’s at random within each texel’s
bins helps make the band boundaries more rough than choosing
the mean or average.

3.3 Comparison of the two methods

Both methods presented in this paper offer an improvement over
our previous scheme [7], allowing fine control over tone
representation. Since we have many more TAM columns
(samples in the tone dimension), and since each pixel, rather than
each vertex, determines the samples to be blended, we can give
the illusion of adding (or growing) each stroke individually, rather
than fading in large waves of strokes. Figure 4 shows a



4

comparison of the three methods, using different representations
of the same 255-column TAM. Our previous method has large
areas of gray strokes. In the volume rendering approach there are
a few gray strokes caused by tri-linear interpolation (due primarily
to mipmapping rather than tone interpolation). The threshold
scheme has no gray strokes, only gray pixels around strokes for
anti-aliasing. This is due to the fact that interpolation happens on
the thresholds, before being compared to the tone. An artifact of
this is the presence of a few thin strokes that don’t get anti-
aliased, since their boundary pixels do not pass the test using the
interpolated thresholds.

While the threshold scheme uses less memory, it is actually
slightly slower to render than the volume approach, since it
involves accessing more textures per pixel. However, it gives us
the opportunity for interesting per-pixel effects, such as
modulating tone using a different texture. With fewer threshold
bins or additional texture accesses on future hardware, one could
integrate more complicated effects such as bump mapping and
Phong shading. Using these effects with the volume texture
rendering approach may be possible in the near future, on
graphics cards that allow more complicated dependent texture
accesses. Another feature that is likely to be available soon is
anisotropic filtering of volume textures; its absence causes the
slightly blurrier regions near the silhouettes in Figure 4b.

One of the advantages of the volume rendering approach is the
ease of integrating color. This opportunity raises an interesting
artistic question: what can we convey with color that we cannot
convey with tone alone? While we do not offer a substantial
answer to this question, we have experimented with choosing a
path through the color cube, parameterized by luminosity (tone).
We have chosen the hues for the colors along this path from
compatible color palettes.

(a) Praun’01 [7] (b) volume (c) 1 threshold (d) 7 thresholds

Figure 4: Comparison of rendering schemes.

4. Fine-level TAM generation

Both rendering schemes require the construction of a TAM that is
much denser along the tone axis than in [7] (as many as 255
tones 2 instead of 6 tones). This can be constructed using the
algorithm described in our previous paper. Obtaining more tone
levels does not require any more pre-processing time, since the
same number of candidate strokes are still added; we simply
“snapshot” more TAM images during the process.

In the remainder of this section, we present an alternative method
for TAM generation that allows the user more control and more
expressive power. We generate the finest levels of the TAM
using a high-quality drawing package, by placing strokes in an
image to achieve gradually darker tones. An automated process

2 The number 255 is due to the precision currently available in commodity
graphics hardware.

then replays the sequence of strokes, and selects images
corresponding to the tones we want to represent at the finest TAM
level. From this, we then construct the coarser levels of the TAM.
This scheme works particularly well as it leverages the strengths
of the artist and computer to compensate for the other’s weakness.
The artist need not be overly concerned with the mechanics of
TAM generation; he or she simply works on a single texture,
drawing a sequence of strokes until satisfied with the range of
tones. The computer then handles the task of selecting subsets of
strokes to form each image in the volumetric TAM (a task that is
prohibitively tedious for a user to undertake).

In order to maintain coherence and tone at each level of the
mipmap volume, it is important to select correlated sets of strokes.
The image at a given level and tone (l, t) should consist of the set
of strokes in the next lightest tone at the same resolution (l, t-1)
plus some subset of the strokes used in the same tone at the next
highest resolution (l+1, t). Since the resolution decreased for the
new level, the strokes are relatively larger, so fewer of them will
be needed for the same coverage, or tone difference. For
grayscale TAMs, we can simply select a prefix of the stroke
sequence. However, for color TAMs representing a path
parameterized by tone through the color space, taking the prefix
that produces the desired tone difference will very likely give us
the wrong hue. In this case, we first decimate the stroke sequence
(throw out a constant fraction of randomly selected strokes), and
then take the prefix. In theory, one could do a binary search to
find the right fraction for each TAM or even for each image (this
fraction depends on stroke properties such as aspect ratio), in
practice though we have found that choosing a constant fraction
works well, given that the tone steps we are trying to sample are
small.

5. Results

Figure 5 shows several stills produced with our system. The
accompanying video shows short animations of these models.

The hand image is drawn using a style reminiscent of chalk and
charcoal. Following artistic conventions, the highlight strokes are
hatched in a single direction whereas the shading also employs
crosshatched strokes. The fruit bowl image uses an ink texture in
which overlapping strokes combine to increase darkness. This
differs from the hand image in which overlapping strokes do not
darken the surface. The color stipple pattern used on the gargoyle
model was an interesting artistic experiment, since it produced the
widest range of reactions from the people we have shown it to. It
lessens the illusion of a growing front of strokes, since the length
of the stroke is short enough that new strokes are distinct from
existing strokes. Finally, for the rocker arm, we tried to achieve a
look evocative of mechanical sketch.

The bottom row of Figure 5 shows two examples of objects
rendered using threshold textures. When these objects rotate, the
strokes give the appearance of growing into the highlight regions.
The crisp black and white aspect of the strokes is reminiscent of a
hand drawn pen-and-ink style.

The Earth image in Figure 1 shows the integration of threshold
textures and per-pixel modulation with a map texture. The bunny
of Figure 1 is drawn using short arcs with random orientations.
When animated, these strokes provide a different impression from
the other models: since they grow in different directions, there is
no illusion of an advancing front of strokes.



5

All these models render at around 30-40 frames per second on our
GeForce3 card. This includes time spent extracting the
silhouettes and drawing the background. The original models
have between 7,500 and 15,000 faces. For all models except the
Earth globe and the fruit bowl, we created a lapped texture
parametrization. The objects in the fruit bowl were created using
spline patches, and we used their intrinsic u,v parametrization.

The 6-column TAM used in [7] required 800KB of texture
memory. By comparison, the volume texture requires 15MB (or
20MB when keeping alpha for border correction), and the
threshold textures take up 1.8MB.

6. Conclusions and future work

We have presented two methods to improve the quality of
interactive hatch renderings. Both methods provide fine tone
control. Volumetric textures allow for greater user expression by
adding the ability to render color hatchings. Threshold textures
store a discrete set of tone transitions per texel, supporting hatch
rendering with fine tone control and anisotropic filtering with far
less memory consumption. This is at the cost of restricting the
hatched models to grayscale images.

We have found that harsh polygonal silhouettes are often the
largest factor in associating the rendering with a 3D model. We
would like to investigate methods draw smooth stroke-based
silhouettes that complement the volumes textures.

The current implementation of volume TAMs utilizes a large
amount of texture memory. Since volume TAMs have an
extremely high degree of coherence by definition, it may be
possible to greatly reduce the amount of memory consumption.

We would also like to investigate methods that provide a provable
error bound on tone and hue among the different mipmap levels.

Furthermore, we are interested in rendering entire scenes instead
of single objects. This introduces new opportunities to explore
other artistic techniques as haloing and shadowing.

References
[1] ELBER, G. Interactive line art rendering of freeform surfaces.

Computer Graphics Forum 18, 3 (September 1999), pp. 1–12.

[2] FREUDENBERG, B. Real-Time Stroke Textures. (Technical Sketch)
SIGGRAPH 2001 Conference Abstracts and Applications, p. 252.

[3] HERTZMANN, A., AND ZORIN, D. Illustrating Smooth Surfaces.
Proceedings of SIGGRAPH 2000, Computer Graphics, Annual
Conference Series, pp. 517–526.

[4] LAKE, A., MARSHALL, C., HARRIS, M., AND BLACKSTEIN, M.
Stylized rendering techniques for scalable real-time 3d animation.
Proceedings of NPAR2000, pp.13–20.

[5] MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D.,
GOLDSTEIN, D., AND HUGHES, J. F. Real-time nonphotorealistic
rendering. Proceedings of SIGGRAPH 97, pp. 415–420.

[6] PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. Lapped Textures.
Proceedings of SIGGRAPH 2000, Computer Graphics, Annual
Conference Series, pp. 465-470.

[7] PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. REAL-TIME
HATCHING. Proceedings of SIGGRAPH 2001, Computer Graphics,
Annual Conference Series, pp. 579-584.

[8] SAITO, T., AND TAKAHASHI, T. Comprehensible rendering of 3D
shapes. Proceedings of SIGGRAPH 90, pp. 197–206.

[9] SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND SALESIN, D.
H. Orientable textures for image-based pen-and-ink illustration.
Proceedings of SIGGRAPH 97, pp. 401–406.

[10] SOUSA, M. C., AND BUCHANAN, J. W. Observational model of
blenders and erasers in computer-generated pencil rendering.
Proceedings of Graphics Interface ’99, pp. 157–166.

[11] SOUSA, M. C., AND BUCHANAN, J. W. Computer-generated
graphite pencil rendering of 3d polygonal models. Computer
Graphics Forum 18, 3 (September 1999), pp. 195–208.

[12] WINKENBACH, G., AND SALESIN, D. Computer-generated pen-and-
ink illustration. Proceedings of SIGGRAPH 94, Computer Graphics,
Annual Conference Series, pp. 91–100.



6

Figure 5: Results. Top two rows: volume texture rendering. Bottom row: thresholds rendering.


