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In this section of the class, we will look at mathematical definitions 

of linear features on surfaces.  This is an important component in 

our study of line drawings, since it serves to formalize the intuitions 

we get from looking at art.  Moreover, the mathematical definitions 

can be turned into algorithms for producing candidate line locations 

on surfaces or images; this serves as the backbone of NPR line-

drawing systems.  Finally, as we will see later, we can ask questions 

about what shaped is perceived, given each different line definition.
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Here’s a hand-drawn illustration by John Flaxman that illustrated a 

19th century translation of the Odyssey.  Notice how there are a 

variety of lines illustrating various effects, including things like 

shading, but in particular there are many lines that convey shape.  

When a viewer looks at these lines, these lines are naturally 

interpreted as indicating shape: they are not perceived as lines drawn 

on the surface!

In studying these shape-conveying lines, people have proposed three 

categories of mathematical definitions.  First, there are “image-

space” lines corresponding to features extracted from an image.  In 

the case of lines from 3D models, the images are usually renderings 

with Lambertian reflection, in most cases using a headlight as the 

only light source.  Next, there are “object-space” features computed 

directly on the 3D surface.  Finally, there are object-space features 

whose definition depends on the view position.



Image-space lines have a very intuitive motivation and a strong 

connection to art: artists are frequently taught to “draw what they 

see”.  Another big advantage is that they translate into efficient CG 

algorithms, because they can often be implemented in graphics 

hardware.  On the other hand, such GPU-computed lines can be 

difficult to stylize, since they are often extracted as collections of 

pixels rather than as complete curves.

As an example of image-space lines, isophotes are curves of 

constant illumination, which also correspond to toon shading 

boundaries.
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Another definition for image-space lines is edges.  Using the definition of the 

popular Canny edge detector, these are locations where the image gradient 

magnitude has a local maximum, when looking in the gradient’s direction.  

(In practice, the gradient direction is sometimes quantized to 45-degree 

increments, to simplify finding the local maxima.)  Canny’s algorithm also 

includes a sophisticated system of hysteresis thresholding, to keep the most 

important lines.

A final very important class of image-space lines are the image intensity 

“ridges” and “valleys”.  These are curves on the surface of locally 

maximal/minimal intensity, and are very naturally drawn in white/black on a 

mid-tone color, as in this example from Lee et al.  There are several different 

definitions of image ridges and valleys, many of which were originally 

developed in the course of analyzing watercourses on terrain (see, for 

example, Rieger’s paper).  The definition used by Lee et al. looks for local 

maxima/minima of intensity, in a direction determined by fitting a paraboloid 

locally and looking for the direction of highest curvature.  In other words, the 

direction is the eigenvector corresponding to the largest-magnitude 

eigenvalue of the image Hessian (matrix of second partial derivatives).
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For the next class of lines, we consider “object-space” definitions 

that look directly at the 3D shape of a surface.  View-independent 

lines are those that are defined only based on the shape, without 

considering the viewer’s position.  This is somehow intuitively 

satisfying, since these lines depend only on the surface shape, and a 

view-independent definition means that these lines can be 

precomputed and then re-used for multiple viewer positions.

However, it has been observed that, under changing view, these 

lines are more naturally interpreted as markings on the surface, 

rather than as lines depicting the shape of the surface.  We believe 

that further perceptual studies will certainly be necessary to 

investigate this.
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One example of view-independent lines are the constant-altitude 

lines found on topographic maps.  They certainly are effective at 

conveying shape, both through the shape of the lines and their 

density.
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Another example, appropriate for objects with sharp folds (i.e., 

discontinuities in the normal), is lines at those creases of the 

surface.  This works well for polyhedral objects, and is a frequent 

ingredient in technical drawings.  The definition is very simple: just 

look for a dihedral angle (that is, the angle between two faces 

connected along an edge) smaller than a threshold.



9

Unfortunately, the natural generalization for smooth surfaces, ridge 

and valley lines, leads to mixed results.  For example, the ridge 

lines on the rounded cube at left successfully convey its shape.  If 

you look at the picture on the right, you can see that some of the 

ridge and valley lines, such as those around the eyes, do a good job 

of marking features.  However, other lines look like surface 

markings and no good artist would include them in a hand-made 

drawing.

The definition of ridge and valley lines is slightly complex: they are 

local maxima of principal curvature, in the corresponding principal 

direction.  (There will be a description of differential-geometry 

principles later, which should clarify what this means!)



This brings us to the third class of mathematical line definitions, 

and the one on which we will spend the most time.  These are lines 

defined on the 3D surface, but taking the view position into 

account.  (To be precise, sometimes we think of an orthographic 

viewer, and so talk about a view direction rather than a viewer 

position.)

These are the lines that appear to be most effective at conveying 

shape, and lend themselves naturally to many stylization 

techniques.  On the other hand, they do have to be recomputed 

whenever view changes, so they aren’t necessarily the most 

efficient (though there has been some progress in GPU-based 

implementations).
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First, we start with the silhouette: the boundary between the object 

and the background.  Here, we draw the silhouette on the right, 

superimposed over a contrast-reduced version of the photograph on 

the left (just so we can see what’s going on).  Silhouettes are 

obviously very important, and are an essential ingredient in any line 

drawing.  However, as you can see here, they’re clearly not enough.
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Another common definition is a generalization of silhouettes called 

occluding contours (or sometimes “interior silhouettes”).  These 

mark any depth discontinuities, not just those against the 

background.  As seen on the right, this adds a lot of important detail 

to the drawing, but still does not convey shallow features, 

particularly those viewed head-on.  Still, these are a common 

component in NPR systems.
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So, to complement silhouettes and contours we need another line 

definition.  If we go back and look at a real line drawing, we see 

that there are, in fact, more lines that pretty clearly are not contours 

(and not ridges or valleys).
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For example, there’s this line on the chest that’s clearly on the right 

side of the torso, not in the middle of the “valley”.
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Another example is the line on the back of the horse.  See how it 

misses the ridges and valleys on the back of the horse.  Also, it’s 

certainly not a contour.

We hypothesize that these lines are “almost contours”: if you 

moved your head a bit to the left, this line would in fact become a 

contour.  We call these lines “suggestive contours”, and we’ll later 

see how to formalize what they are and how to find them on a 

surface.
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So, here’s what suggestive contours look like on the David.  You 

can see that they complement the contours nicely (in fact, you can 

prove that they line up with the contours in the image).  Also, they 

include a lot of the detail that’s missing in the contours-only 

drawing.
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It turns out that in order to formalize different families of 3D lines 

on a surface, we’ll need some math from a field called differential 

geometry.  This is the field that concerns itself with what it means 

to take “derivatives” of curves and surfaces.  You are already 

familiar with a first-order differential quantity of surfaces: the 

normal.  In fact, as has already been mentioned, occluding contours 

critically depend on the normal: they are zeros of the dot product 

between the normal and the view direction.  In a very similar way, 

different kinds of lines, like suggestive contours, will have 

definitions that depend on higher-order derivatives.
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So, let’s move on to exploring second-order derivatives, or 

curvatures.  To start with, let’s recall the familiar definition of the 

curvature of a curve: at each point, it is the reciprocal of the radius 

of a circle that best approximates the curve locally.  The sharper the 

bend in the curve, the higher the curvature.  Curvature has units of 

one-over-length: if you scale an entire curve up by a factor of two, 

all the curvatures are halved.
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For a surface, we can talk about the curves formed by intersecting 

the surface with any plane containing the normal.  These are called 

“normal curves”, and their curvature is “normal curvature”.  So, for 

each point on the surface, there are many different curvatures, 

corresponding to all the different normal planes passing through 

that point.
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There is something interesting that happens, though.  For a smooth 

surface, the variation of normal curvature with direction can’t be 

arbitrary – it has a very specific form.  Imagine setting up a local 

orthonormal coordinate system in the tangent plane at a point on a 

surface.  For any direction (s,t), expressed in terms of that 

coordinate system, we can find the normal curvature in that 

direction in terms of a simple formula involving a symmetric 

matrix II.  This matrix is known as the “second fundamental 

tensor”, and as we’ll see is related to how much the surface is bent.  

Note that if you were to expand this formula you’d get terms 

quadratic in s and t: this whole expression is therefore just a fancy 

way of writing a quadratic form.
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What exactly is II?  What are its elements?  It turns out that there are 

many formulas for them, all involving some notion of the second 

derivative of the surface.  For example, they are precisely the second-

order terms in a Taylor series expansion of the surface (assuming that z 

is oriented along the surface normal).  Equivalently, they are the 

derivatives of the normal as you move along the surface.

Incidentally, if you look for formulas like this in various textbooks, 

there’s a good chance you may see them written with the opposite 

sign.  This is because when writing the formulas you need to establish 

the conventions of whether normals are considered to point into or out 

of the surface, and in addition whether convex surfaces are taken to 

have positive or negative curvature.  We assume that convex surfaces 

have positive curvature, and we use the usual graphics convention of 

outward-pointing normals, leading to the signs used here.



22

In many situations it is convenient to rotate the local coordinate 

system to make the matrix II diagonal.  It turns out you can always 

do this: the new coordinate axes are the eigenvectors of II.  (You 

might recall a neat theorem from linear algebra that the eigenvalues 

of symmetric matrices are guaranteed to be real: here’s a real-life 

application that relies on this fact.)

Once you’ve done this change of coordinates, the new axes are 

known as the principal directions, and the corresponding curvatures 

are the principal curvatures.  If we plug in the new form of II into 

the formula for normal curvature, we see that all normal curvatures 

have to lie between the principal curvatures.  So, the principal 

curvatures are the minimum and maximum curvatures for any 

direction (at that point on the surface).
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This leads to something called Euler’s formula for normal 

curvature, which expresses the curvature in any direction as a 

function of the principal curvatures.
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When talking about curvatures, there are a couple more terms that 

often crop up: Gaussian curvature and mean curvature.  These are 

equal to the product and average of the principal curvatures, and 

can also be computed directly from II (expressed in terms of any 

coordinate system), as the determinant and trace.  Notice one 

interesting feature about Gaussian curvature: it has units of 

“curvature squared”, which is different from all the other flavors of 

curvature we’ve talked about.

Gaussian and mean curvature are very useful for qualitatively 

talking about the shape of a surface.
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The most basic classification looks at the sign of Gaussian 

curvature.  If it is positive, then the principal curvatures are either 

both positive or both negative (and you can tell which one by 

looking at the sign of the mean curvature).  Points of positive 

Gaussian curvature are known as elliptic points, and are either 

convex or concave regions.
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If the Gaussian curvature is negative, we have what are known as 

hyperbolic points, at which the surface is saddle-shaped.  So, if you 

look in one direction the surface is convex, while in the 

perpendicular direction the surface is concave.
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Finally, we have parabolic points, at which one of the principal 

curvatures is zero.  The most basic shape with zero Gaussian 

curvature is a cylinder, but there are many more complex surfaces 

at which K=0 as well.  In general, except for degenerate cases like 

cylinders, the parabolic points will form curves on the surface 

(known as parabolic lines), separating regions of positive and 

negative Gaussian curvature.
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As long as we’re talking about parabolic lines in a course about line 

drawings, it would be remiss not to relate an anecdote about the 

mathematician Felix Klein, who thought that parabolic lines might, 

in fact, be interesting lines to draw on a surface.  He had them 

drawn (probably by some poor grad student) on the Apollo of 

Belvedere.

Unfortunately, the experiment didn’t turn out that great.

A little later, we’ll see that Klein wasn’t entirely wrong: it is 

possible to select a subset of the parabolic lines that look OK…
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Now that we have some math under our belts, let us look in more 

detail at the different types of lines.  We begin with occluding 

contours, sometimes also called “interior and exterior silhouettes.”  

There are a few different ways of defining these, of which a very 

straightforward definition is simply those locations at which, from 

the current viewpoint, there is a depth discontinuity.  Note that 

these are view-dependent lines, which implies both benefits and 

drawbacks.  On the plus side, the view dependence makes it much 

more likely that these lines are interpreted as conveying shape, 

rather than as surface markings.  On the other hand, this means that 

the lines will have to be recomputed for each frame, and potentially 

makes it harder to do things like line drawings in stereo.
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On smooth surfaces, there is another definition of contours that is 

useful: contours are those surface locations where the surface 

normal n is perpendicular to the viewing direction v.  That is, places 

where n dot v is equal to zero.
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We can apply the same principles to polyhedra (i.e., polygonal 

meshes), but there’s a problem.  With only a tiny bit of noise, we 

can run into a situation where polygons along the boundary are 

“just barely” front- or back-facing, and the boundary between them 

is not a simple curve: it can entirely surround certain faces.  This 

isn’t necessarily a problem if the only thing you’re doing is drawing 

the curve, since it will be viewed edge-on.  However, if you are 

doing any further processing on the curve, such as trying to draw 

them with stylization, this can lead to big problems.
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So, there’s a frequently-used alternative for polygonal meshes that 

tends to produce much nicer curves.  It is a bit similar to Phong

shading, in that it involves starting with per-vertex normals and 

interpolating them across a face.  Once you know n at each point, 

you can find n dot v, and locate the curve on the face that 

corresponds to n · v = 0.  A slightly simpler variant of this is to just 

compute n dot v at the vertices, interpolate across the face, and 

figure out where the zero crossing is.
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We can apply the same principles to polyhedra (i.e., polygonal 

meshes), but there’s a problem.  With only a tiny bit of noise, we 

can run into a situation where polygons along the boundary are 

“just barely” front- or back-facing, and the boundary between them 

is not a simple curve: it can entirely surround certain faces.  This 

isn’t necessarily a problem if the only thing you’re doing is drawing 

the curve, since it will be viewed edge-on.  However, if you are 

doing any further processing on the curve, such as trying to draw 

them with stylization, this can lead to big problems.
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Here is your brain on contours.  Here is your brain on suggestive 

contours.  Any questions?
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Now that we’ve seen contours, let’s move on to defining suggestive 

contours.  Here’s the first definition: contours in nearby views.  

What happens if we start with the viewpoint at top (which produces 

a contour), then move the viewpoint down a little bit?  First, the 

contour slides along a surface to a new location where its surface 

normal is perpendicular to the new view direction.  But something 

else happens here too.  A new contour appears that does not 

correspond to any in a closer viewpoint.  This is a suggestive 

contour from the original viewpoint.  The other contour 

corresponds to that in the original viewpoint, and is not a 

suggestive contour.  Adding this qualification to our definition 

completes it.
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While intuitive, the first definition doesn’t really lead to efficient 

algorithms for computing suggestive contours.  So, let’s look at a 

second definition (which can be proven equivalent to the first one).  

The idea is that suggestive contours are places where n dot v 

doesn’t quite make it to zero (at which point we’d have a contour), 

but is a local minimum on the surface.  That is, the location of a 

suggestive contour from this viewpoint (assumed to be distant) is 

where the normal is locally closest to perpendicular to the view 

direction, as you consider points along this normal slice of the 

surface.  This involves moving in the direction “w”, which we 

define to be the projection of v, the view direction, into the local 

tangent plane of the surface.
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While definition 2 is better from the point of view of computation, 

we can transform it into yet another form that is still more 

convenient.  The basic idea is that we’re looking for local minima, 

so we use the usual definition that minima are places where the 

derivative is zero, and the next higher-order derivative is positive 

(which distinguishes them from maxima).  Now, it turns out that 

derivatives of n dot v are related to curvature.
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In particular, the derivative of n dot v has the same zeros as a 

quantity called “radial curvature”, which is just the curvature in the 

direction w (which, you’ll recall, is the projection of the view 

direction).
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So, our third definition of suggestive contours is that they are zeros 

of radial curvature, subject to a derivative test.  This test needs to 

enforce that the “directional derivative” of radial curvature, in the 

direction w, is positive.  To figure out what that is, we’ll need to go 

back and look at the next higher order of surface differentials.
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So, to recap, the most computationally convenient definition of 

suggestive contours involves finding the zeros of radial curvature, 

which you compute by multiplying II by w twice, then checking the 

sign of the directional derivative of radial curvature, which you get 

by multiplying the C tensor by w three times (there’s also an extra 

term due to the chain rule, which accounts for the change of w itself 

as you move in the w direction).
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Once we know about curvatures, derivatives of curvature are really 

nothing special.  The only really interesting thing is that, as 

opposed to the normal (which was a vector) and the second 

fundamental matrix II, the derivative of curvature is now a three-

dimensional tensor, which can be thought of as a vector of matrices 

or as a “cube of numbers”.  In order to get the derivative of 

curvature in a particular direction, you multiply this tensor by that 

direction three times.
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So, to recap, the most computationally convenient definition of 

suggestive contours involves finding the zeros of radial curvature, 

which you compute by multiplying II by w twice, then checking the 

sign of the directional derivative of radial curvature, which you get 

by multiplying the C tensor by w three times (there’s also an extra 

term due to the chain rule, which accounts for the change of w itself 

as you move in the w direction).
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Here is your elephant on contours…  (rest of not-a-joke omitted in 

the interests of good taste)
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Here’s another example…
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It turns out that suggestive contours have some nice properties that 

let them complement contours very nicely.  First, they can either 

“anticipate” contours by showing up in nearby viewpoints (i.e., 

definition 1), or “extend” contours in one view.  Here we use the 

color convention that contours are green while suggestive contours 

are drawn in blue.
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Moreover, in the case of extension, the suggestive contours line up 

(with G1 continuity) with contours in the image.



The above property is useful, because in real-world images it can in 

fact be difficult to tell exactly where a contour ends.  The fact that 

suggestive contours extend contours smoothly means that there is a 

single line that corresponds well to the behavior visible in such cases.
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Another property that becomes apparent from definition 3 is that 

contours show up at inflections (of normal curves) on the surface, 

but only when viewed from the convex side.  In this case, the 

derivative test eliminates the suggestive contour at the rightmost 

viewpoint.
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So, considering an inflection on a surface, there is some region of 

viewpoints from which suggestive contours get drawn, a region 

where they don’t, and a threshold direction at which you start 

getting contours.
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Moving the viewpoint out of the plane, we see that suggestive 

contours can only happen when a surface is viewed from a very 

particular direction such that the curvature is zero.  If you rotated 

the viewpoint one way, you’d get positive curvatures, and negative 

curvatures if you rotated the other way.  Note also that having a 

direction for which the curvature is zero implies that the principal 

curvatures (which are the minimum and maximum limits for 

normal curvature) can’t be both positive or both negative.  This, in 

turn, implies that in order to get a suggestive contour, the Gaussian 

curvature must be negative (or at worst zero).
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This property can be illustrated empirically as well.  Here we’ve 

taken a model and plotted a histogram of how many views have 

suggestive contours at each point on the surface.
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Comparing this to regions of negative Gaussian curvature, we see 

complete agreement.  We also see the surprising fact that suggestive 

contours tend to hug the lines of zero Gaussian curvature (i.e., our 

friends the parabolic lines).  We’ll see later how to show this 

mathematically, but meanwhile let’s think back to Klein’s 

experiment.  Even if the suggestive contours were always close to 

the parabolic lines, there’s still a big difference between drawing 

them and our definition of suggestive contours: the derivative test.
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In fact, if we didn’t apply the derivative test, the lines of zero radial 

curvature would look pretty bad: just as bad as drawing all the 

parabolic lines.  (Here we also show zeros of mean curvature for 

the sake of completeness.)
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If we add a derivative test, you can see that parabolic lines 

suddenly don’t look so bad, though in general the suggestive 

contours still look better (and have the other properties of lining up 

with contours, etc.)
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We also need to consider what happens with suggestive contours on 

backfacing parts of the object; such lines are an effective ingredient 

in transparent renderings.  In fact, this was worked out in a paper 

on volumetric line drawings at Siggraph 2005.

The first definition of suggestive contours still applies: contours in 

nearby viewpoints.

We need to change definition 2 a little bit.  When looking at how 

values of n dot v change across the surface, we are still looking for 

places where n dot v is almost but doesn’t quite reach zero.  The 

difference is that we’re now looking for maxima of n dot v: 

negative maxima.
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For the third definition, we are now looking for places where the 

radial curvature is zero where the radial curvature is increasing 

AWAY from the camera.  So the sign of our derivative test gets 

flipped.

Perhaps a good way of thinking about this is that for backfaces, 

we’re just considering what the inside-out version of the surface 

looks like (where the normals and curvatures are negated).

Of course, these suggestive contours still smoothly extend 

transparently rendered contours.
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So, here’s an example of contours and suggestive contours 

(together with cutting-plane intersections) produced from volume 

data.



58

Although (it is our belief that) suggestive contours are useful, there 

are shapes for which even this is not enough.  For example, convex 

surfaces such as this rounded cube have no suggestive contours, yet 

probably need some more lines to be conveyed clearly.



Another situation in which it is not clear that suggestive contours 

provide the right answer are two-tone comics, such as this example 

by Frank Miller.
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Zooming in, we see that the black line in the white region, which 

might be a suggestive contour, does not line up with the white line 

in the black region.  Therefore, we hypothesize that there is 

something else going on with those white lines.
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To see how to add more lines, it is useful to step back a moment 

and compare suggestive contours with some image-space lines.  For 

example, starting with the head-lit diffuse-shaded view at left, we 

see that there is a remarkable match between the valleys of 

illumination and the drawing containing contours and suggestive 

contours.

(Incidentally, there isn’t a perfect match, especially where the 

surface is twisting in weird ways, and there is ongoing research to 

characterize the exact conditions under which these two families of 

lines match.)
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So, in looking for more families of lines to complement contours 

and suggestive contours, it makes sense to look at the other flavor 

of image intensity extrema: ridges of illumination.
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Unfortunately, even if we set up the problem in a restricted way 

(headlight, diffuse shading), the answer turns out to be very 

“messy” mathematically.
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Instead, we will look for simpler line definitions, which 

nevertheless qualitatively match intensity ridges well (just as 

suggestive contours qualitatively match intensity valleys).  To do 

this, we will look at local maxima of n dot v, in the projected view 

direction w and its perpendicular.  This corresponds to the 

definition of suggestive contours as local minima of n dot v in the 

direction w.

(Incidentally, we have also examined local minima of n · v in the 

direction perpendicular to w – they don’t appear to be especially 

interesting…)
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To review, w is just the projection of the view direction into the 

tangent plane of the surface. w is also in the tangent plane, and 

perpendicular to w.  In the above drawing, w would be pointing 

towards you.
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Now we can define the two families of “highlight” lines 

corresponding to the above definitions.  Suggestive highlights are 

local maxima of n dot v (corresponding to image intensity under a 

headlight) in the w direction, while principal highlights are the local 

maxima in the w direction.

The styles that we will examine draw principal highlights in white 

(as opposed to the contours and suggestive contours, which are 

drawn in black).  We find that this makes it easier for the visual 

system to interpret them.
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Let’s look at suggestive highlights.  These are just the inflections 

we threw away (with the derivative test) when finding suggestive 

contours.



Principal highlights are another matter entirely.  If we go through 

the math, we find that just as the derivatives of n · v in the w 

direction were related to the radial curvature, the derivatives in the 

w direction are related to another quantity called “radial torsion”.  

Intuitively, torsion represents the “twisting” of the normal direction 

as we move along the surface.  Surfaces of zero radial torsion 

(corresponding to the maxima of n · v) are the ones that don’t 

exhibit this twist, in the view direction.

This turns out to happen precisely when the view direction is 

aligned with one of the principal directions.
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We now move to a test in the principal highlight definition designed 

to keep only the strong intensity maxima in the w direction.  

The intuition is that when the view direction is aligned with the 

higher-curvature principal direction e1, the surface is not curving 

very quickly in the perpendicular direction.
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The opposite case, when we are looking along the ridge (and w is 

aligned with e2, the weaker principal direction), leads to strong 

intensity maxima in the perpendicular direction, because that’s the 

direction in which the normal is changing quickly.
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So, we keep the locations where w is along e2, which means that it 

is perpendicular to e1.  So, instead of  basing our definition for 

principal highlights on torsion, we adopt w · e1 = 0 as the primary 

definition of principal highlights.  As with suggestive highlights, 

there is a derivative test necessary to keep only local maxima, not 

minima.
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Here’s what the different definitions look like for a simple model.

At left, we see all zeros of radial torsion.  At center, we keep only 

those locations where w lines up with e2, and at right we apply a 

derivative test (with a small but non-zero threshold).



It is possible to show that principal highlights correspond exactly to 

converting the depth map to a range image, then looking for 

extrema (illumination ridge and valley lines) according to a 

particular definition due to Saint-Venant.  In other words, they are 

one possible view-dependent analog to the view-independent crest 

lines.  (Another possible view-dependent analog is apparent ridges, 

which we will see later.)

By looking at the sign of the first principal curvature, it is possible 

to classify these lines as ridge-like or valley-like, and use this 

additional information to stylize them differently or omit one or the 

other family.
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Here are some examples with both suggestive contours and 

suggestive and principal highlights.  (Drawn together with a gray 

background and subtle toon shading.)
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Here is a slightly different style, where we still draw the lines in 

black and white, but draw the shape with a black/white toon shader 

(so that only suggestive contours are visible in the white regions, 

and only suggestive highlights are visible in the dark regions).  This 

corresponds to the style of the Frank Miller comic we saw earlier, 

as well as this painting of a golf ball by Roy Lichtenstein.

Looking at this painting, we note that the direction of the half-

round strokes in the dark region corresponds well with our 

suggestive-highlight rendering.  In contrast, simply inverting the 

suggestive contours in the black toon region (as shown at right) 

gives lines that face the wrong way, and don’t match the 

Lichtenstein painting any more.
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There is one final recently-introduced family of lines that we will 

look at, namely apparent ridges.  These were motivated by some 

drawings, such as this one by Matisse, that seem to combine ridge-

like features with contours.

The approach of apparent ridges is to apply the standard ridge and 

valley line definition (local maxima of principal curvature, in the 

corresponding principal direction), but replace the use of standard 

surface curvature with a view-dependent quantity that takes 

foreshortening into account.  Specifically, the curvatures in the 

projected view direction are divided by n · v, to account for the fact 

that normals vary more rapidly with respect to screen-space 

location where the surface is tilted away from the viewer.
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Here is a visualization of view-dependent curvature, as compared to 

standard curvature.  It is obvious that view-dependent curvature 

grows quickly near occluding contours, leading to a strong 

tendency for the technique to place lines near those locations.
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Here is a comparison of apparent ridges (right) to renderings with 

suggestive contours and view-independent ridge/valley lines.
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Looking at the qualitative behavior of apparent ridges, we see that 

they match standard ridges and valleys when viewed head-on.
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As the view becomes more oblique, they smoothly slide along the 

surface until they reach the contours.  In fact, they connect up to the 

contours smoothly (just like suggestive contours).
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In summary, we have seen three classes of mathematical line 

definitions: image-space, view-independent object-space, and view-

dependent object-space.  Although the jury’s still out, it appears that 

the latter category is the most interesting because it yields shape-

conveying lines, while being amenable to sophisticated NPR 

stylization algorithms.

This table classifies the lines we’ve seen according to the order of 

derivatives used in their definition.  (Incidentally, we don’t think

there are especially interesting line definitions in the empty boxes, 

but we certainly could be wrong…)
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