Non-Rigid Range-Scan Alignment Using Thin-Plate Splines

Benedict J. Brown Szymon Rusinkiewicz

Princeton University {bjbrown,smr}@cs.princeton.edu

9 September 2004

Some Large Scanning Projects

Digital Michelangelo

Stanfod Graphics Group

Great Buddha

CVL, University of Tokyo

Forma Urbis Romae

Stanford Graphics Group

Florentine Pietà

IBM Research

Acquisition

 Scanners acquire data from a single viewpoint

Alignment Problems

- Existing alignment algorithms fail
- Non-rigid calibration error

Digital Michelangelo Project [Levoy00]

- Scan Michelangelo's statues in Florence using a laser range finder
- .25mm precision over entire statue
- David is 5m high
- Gantry is 7.6m high
- Extreme requirements cause unavoidable calibration errors

Paul Debevec

Stanford Graphics Group

Overview

Previous Work

- Iterative Closest Points (Rigid-Body Alignment)
- Hierarchical ICP
- Non-Rigid Alignment
 - Thin-Plate Splines
- Feature Correspondences
 - Piecewise ICP
- Pairwise Non-Rigid Alignment
- Results & Future Work

Rigid-Body Alignment

- Range scans are of a single, rigid object
 - Rigid-body transormation should yield exact alignment

Rigid-Body Alignment

- Range scans are of a single, rigid object
 - Rigid-body transormation should yield exact aligment
- Not possible even with a perfectly calibrated camera
 - Noise and irregular sampling

Rigid-Body Alignment

- Range scans are of a single, rigid object
 - Rigid-body transormation should yield exact aligment
- Not possible even with a perfectly calibrated camera
 - Noise and irregular sampling
- Instead find least squares fit

Iterative Closest Points [Besl92]

- To fit two meshes, need correspondence between points
 - Assume points correspond to closest points on other mesh
 - Compute best fit on a subset of all points
- If starting point was good, result should be better
 - Iterate until fit converges to minimum error

Advantages of ICP

Efficient (seconds per pair of meshes)

Advantages of ICP

- Efficient (seconds per pair of meshes)
- Robust and stable, especially with advanced sampling
 - Select samples which constrain ICP [Gelfand03]
 - Sample features heavily

Advantages of ICP

- Efficient (seconds per pair of meshes)
- Robust and stable, especially with advanced sampling
 - Select samples which constrain ICP [Gelfand03]
 - Sample features heavily
- Instead of point-to-point distance, use point-to-plane [Chen92]
 - Features lock onto each other, while flat areas can slide freely
 - Convergence is both more stable and faster

Hierarchical ICP [Ikemoto03]

- Dice meshes into small pieces
 - Do global alignment on all pieces
- Neighboring pieces must contain some overlap
 - Too little overlap leads to discontinuities
 - Too much overlap prevents freedom in warping
- Not smooth, slow (hours per alignment)

Overview

Previous Work

- Iterative Closest Points (Rigid-Body Alignment)
- Hierarchical ICP
- Non-Rigid Alignment
 - Thin-Plate Splines
- Feature Correspondences
 - Piecewise ICP
- Pairwise Non-Rigid Alignment
- Results & Future Work

Non-Rigid Alignment

- Calibration error is
 - low-frequency \Rightarrow smooth, slowly-varying function
 - hard to characterize, so need flexible function
- Use non-rigid warp to compensate for calibration error
- Represent with thin-plate splines [Bookstein89] [Wahba90]

Chui & Rangarajan

• Maps source point set *X* to target set *Y*: $f(x_i) = y_i$

- Maps source point set *X* to target set *Y*: $f(x_i) = y_i$
- Minimizes bending energy:

$$J = \iiint f_{xx}^2 + f_{yy}^2 + f_{zz}^2 + 2(f_{xy}^2 + f_{yz}^2 + f_{zx}^2) \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z$$

- Maps source point set *X* to target set *Y*: $f(x_i) = y_i$
- Minimizes bending energy:

$$J = \iiint f_{xx}^2 + f_{yy}^2 + f_{zz}^2 + 2(f_{xy}^2 + f_{yz}^2 + f_{zx}^2) \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z$$

Gives the "minimal" deformation from an affine transformation necessary to map X onto Y

- Maps source point set *X* to target set *Y*: $f(x_i) = y_i$
- Minimizes bending energy:

$$J = \iiint f_{xx}^2 + f_{yy}^2 + f_{zz}^2 + 2(f_{xy}^2 + f_{yz}^2 + f_{zx}^2) \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z$$

- Gives the "minimal" deformation from an affine transformation necessary to map X onto Y
- Calculate by minimizing energy functional

$$E_{TPS} = \sum_{i=1}^{n} |y_i - f(x_i)|^2 + n\lambda J$$

for a fixed λ .

$$E_{TPS} = \sum_{i=1}^{n} |y_i - f(x_i)|^2 + n\lambda J$$

- Interpolates control points while minimizing warp
 - Reduces to affine transformation when that is sufficient
- \triangleright *E_{TPS}* is minimized by a linear system of equations
- > λ provides tradeoff of warp smoothness and interpolation
 - λ corresponds to the measurement variance
 - To achieve good alignment, we must have low variance

 $\blacktriangleright \Rightarrow \lambda \approx 0$

Overview

Previous Work

- Iterative Closest Points (Rigid-Body Alignment)
- Hierarchical ICP
- Non-Rigid Alignment
 - Thin-Plate Splines
- Feature Correspondences
 - Piecewise ICP
- Pairwise Non-Rigid Alignment
- Results & Future Work

Finding Correspondences for TPS

Thin-plate splines can interpolate their control points exactly, regardless of the amount of warp, so iterative correspondences don't work.

• Progressively anneal λ

Finding Correspondences for TPS

Thin-plate splines can interpolate their control points exactly, regardless of the amount of warp, so iterative correspondences don't work.

- Progressively anneal λ
- Fuzzy correspondences [Chui03]

Piecewise ICP

- Record ICP alignment errors for each piece
- Dice piece with highest error
- Stop when alignment becomes unstable

Target scan

Diced source scan

Pairwise Alignment Pipeline

- Piecewise ICP
 - Diced 15 times, 42.47 sec (first 5 shown)

Pairwise Alignment Pipeline

- Piecewise ICP
 - Diced 15 times, 42.47 sec (first 5 shown)
- TPS Warp
 - 250 points, .06 sec to compute warp, 6.92 sec to apply it to 323,098 vertices

Pairwise Alignment Pipeline

- Piecewise ICP
 - Diced 15 times, 42.47 sec (first 5 shown)
- TPS Warp
 - 250 points, .06 sec to compute warp, 6.92 sec to apply it to 323,098 vertices
- VRIP volumetric merging step [Curless96]

Overview

Previous Work

- Iterative Closest Points (Rigid-Body Alignment)
- Hierarchical ICP
- Non-Rigid Alignment
 - Thin-Plate Splines
- Feature Correspondences
 - Piecewise ICP
- Pairwise Non-Rigid Alignment
- Results & Future Work

Pairwise Alignment Results

right_shoulder_chest_a 295.012 vertices

face4_e 323.098 vertices

Alignment Quality No overlap
Good ICP alignment
Good TPS alignment
Good ICP & TPS alignments

Pairwise Alignment Results

ICP Alignment

TPS Alignment

Merged Mesh

Current Work: Global Alignment Results

16 meshes after global alignment

VRIP merged output

Future Work and Acknowledgments

Global Registration

Stability and Performance Improvements

- Better ICP sampling heuristics
- Improve dicing heuristic to reduce number of iterations
- TPS feature point selection improvements

Thanks to

- National Science Foundation
- Princeton Graphics Group
- Prof. Ken Steiglitz
- Natasha Gelfand and Leslie Ikemoto (Hierarchical ICP)

End

Pairwise Alignment Results

Thin-plate splines always take the form

 $4 \times n$ non-affine warping parameters ($WX^t = 0$)

y = Ax + WK(x)

 4×4 affine transformation $n \times 1$ control point influence vector

where $K(x) = (|x - x_1|, ..., |x - x_n|)^t$ in 3-D

Thin-plate splines always take the form

 $4 \times n$ non-affine warping parameters ($WX^t = 0$)

y = Ax + WK(x)4 × 4 affine transformation $n \times 1$ control point influence vector where $K(x) = (|x - x_1|, ..., |x - x_n|)^t$ in 3-D

The warping coefficients A and W are computed by the equation

$$\left(\begin{array}{c|c} A \mid W \end{array}\right) \left(\begin{array}{c|c} X \mid 0 \\ \hline K + n\lambda I \mid X^t \end{array} \right) = \left(\begin{array}{c|c} Y \mid 0 \end{array} \right)$$

where $K_{ii} = |x_i - x_i|$.

- Maintain probability that each point in X maps to each other point in Y (Softassign)
- Probability of two points corresponding has Gaussian fall-off with respect to distance
- Fall-off narrows at each iteration until we reach exact correspondence (Deterministic annealing)

- Maintain probability that each point in X maps to each other point in Y (Softassign)
- Probability of two points corresponding has Gaussian fall-off with respect to distance
- Fall-off narrows at each iteration until we reach exact correspondence (Deterministic annealing)

- Maintain probability that each point in X maps to each other point in Y (Softassign)
- Probability of two points corresponding has Gaussian fall-off with respect to distance
- Fall-off narrows at each iteration until we reach exact correspondence (Deterministic annealing)

- Maintain probability that each point in X maps to each other point in Y (Softassign)
- Probability of two points corresponding has Gaussian fall-off with respect to distance
- Fall-off narrows at each iteration until we reach exact correspondence (Deterministic annealing)

- Error accumulates over successive alignments
- Distribute error
 - across warping function (ICP)
 - across positions of global feature points in space

Perform best global ICP alignment

- Perform best global ICP alignment
- For each range scan S

- Perform best global ICP alignment
- ► For each range scan *S*
 - Randomly select features at constant sampling rate

- Perform best global ICP alignment
- For each range scan *S*
 - Randomly select features at constant sampling rate
 - For each overlapping range scan S'

- Perform best global ICP alignment
- For each range scan *S*
 - Randomly select features at constant sampling rate
 - ▶ For each overlapping range scan S'
 - ► Align *S*′ to *S* and find feature correspondences

- Perform best global ICP alignment
- ► For each range scan *S*
 - Randomly select features at constant sampling rate
 - ▶ For each overlapping range scan S'
 - Align S' to S and find feature correspondences
 - Record position of each feature point on S'

- Perform best global ICP alignment
- ► For each range scan *S*
 - Randomly select features at constant sampling rate
 - ▶ For each overlapping range scan S'
 - Align S' to S and find feature correspondences
 - Record position of each feature point on S'
 - Record mean position of each feature point across all scans on which it falls as its canonical position

- Perform best global ICP alignment
- For each range scan *S*
 - Randomly select features at constant sampling rate
 - For each overlapping range scan S'
 - Align S' to S and find feature correspondences
 - Record position of each feature point on S'
 - Record mean position of each feature point across all scans on which it falls as its canonical position
- ► For each range scan S

- Perform best global ICP alignment
- For each range scan *S*
 - Randomly select features at constant sampling rate
 - For each overlapping range scan S'
 - Align S' to S and find feature correspondences
 - Record position of each feature point on S'
 - Record mean position of each feature point across all scans on which it falls as its canonical position
- ▶ For each range scan S
 - Warp all features on S to their canonical positions

- Perform best global ICP alignment
- ► For each range scan *S*
 - Randomly select features at constant sampling rate
 - For each overlapping range scan S'
 - Align S' to S and find feature correspondences
 - Record position of each feature point on S'
 - Record mean position of each feature point across all scans on which it falls as its canonical position
- ▶ For each range scan S
 - Warp all features on S to their canonical positions
- ► *O*(*nm*) for *m* overlapping scans

- Perform best global ICP alignment
- ► For each range scan *S*
 - Randomly select features at constant sampling rate
 - For each overlapping range scan S'
 - Align S' to S and find feature correspondences
 - Record position of each feature point on S'
 - Record mean position of each feature point across all scans on which it falls as its canonical position
- ▶ For each range scan S
 - Warp all features on S to their canonical positions
- ► *O*(*nm*) for *m* overlapping scans
- At most two scans in memory at a time