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Some Large Scanning Projects

Digital Michelangelo Forma Urbis Romae

Stanfod Graphics Group Stanford Graphics Group

Great Buddha Florentine Pietà

CVL, University of Tokyo IBM Research
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Range Scanning Pipeline

Acquisition

I Scanners acquire data
from a single viewpoint
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Alignment Problems

I Existing alignment algorithms fail
I Non-rigid calibration error
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Digital Michelangelo Project [Levoy00]
I Scan Michelangelo’s statues in

Florence using a laser range finder
I .25mm precision over entire statue
I David is 5m high
I Gantry is 7.6m high
I Extreme requirements cause

unavoidable calibration errors

Paul Debevec Stanford Graphics Group
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Overview

I Previous Work
I Iterative Closest Points (Rigid-Body Alignment)
I Hierarchical ICP

I Non-Rigid Alignment
I Thin-Plate Splines

I Feature Correspondences
I Piecewise ICP

I Pairwise Non-Rigid Alignment

I Results & Future Work
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Rigid-Body Alignment

I Range scans are of a single, rigid object
I Rigid-body transormation should yield exact aligment

I Not possible even with a perfectly calibrated camera

I Noise and irregular sampling

I Instead find least squares fit

rot, trans
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Iterative Closest Points [Besl92]
I To fit two meshes, need correspondence between points

I Assume points correspond to closest points on other mesh
I Compute best fit on a subset of all points

I If starting point was good, result should be better
I Iterate until fit converges to minimum error
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Advantages of ICP

I Efficient (seconds per pair of meshes)

I Robust and stable, especially with advanced sampling
I Select samples which constrain ICP [Gelfand03]
I Sample features heavily

I Instead of point-to-point distance, use point-to-plane [Chen92]
I Features lock onto each other, while flat areas can slide freely
I Convergence is both more stable and faster
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Hierarchical ICP [Ikemoto03]
I Dice meshes into small pieces

I Do global alignment on all pieces
I Neighboring pieces must contain some overlap

I Too little overlap leads to discontinuities
I Too much overlap prevents freedom in warping

I Not smooth, slow (hours per alignment)

Ikemoto et al.
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Non-Rigid Alignment

I Calibration error is
I low-frequency ⇒ smooth, slowly-varying function
I hard to characterize, so need flexible function

I Use non-rigid warp to compensate for calibration error
I Represent with thin-plate splines [Bookstein89] [Wahba90]

Chui & Rangarajan
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Thin-Plate Splines

I Maps source point set X to target set Y: f (xi) = yi

I Minimizes bending energy :

J =

∫∫∫
f 2
xx + f 2

yy + f 2
zz+ 2(f 2

xy + f 2
yz + f 2

zx) dxdydz

I Gives the “minimal” deformation from an affine transformation
necessary to map X onto Y

I Calculate by minimizing energy functional

ETPS =
n∑

i=1

|yi − f (xi)|2 + nλJ

for a fixed λ.
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Thin-Plate Splines

ETPS =
n∑

i=1

|yi − f (xi)|2 + nλJ

I Interpolates control points while minimizing warp
I Reduces to affine transformation when that is sufficient

I ETPS is minimized by a linear system of equations
I λ provides tradeoff of warp smoothness and interpolation

I λ corresponds to the measurement variance
I To achieve good alignment, we must have low variance

I ⇒ λ ≈ 0
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Finding Correspondences for TPS

Thin-plate splines can interpolate their control points exactly,
regardless of the amount of warp, so iterative correspondences
don’t work.

I Progressively anneal λ

I Fuzzy correspondences [Chui03]

Big λ Small λ
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Piecewise ICP
I Record ICP alignment errors for each piece
I Dice piece with highest error
I Stop when alignment becomes unstable

Target scan Diced source scan
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Pairwise Alignment Pipeline
I Piecewise ICP

I Diced 15 times, 42.47 sec (first 5 shown)

I TPS Warp
I 250 points, .06 sec to compute warp, 6.92 sec to apply it to

323,098 vertices
I VRIP volumetric merging step [Curless96]
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Pairwise Alignment Results

right shoulder chest a
295,012 vertices

face4 e
323,098 vertices

Alignment Quality

■ No overlap
■ Good ICP alignment
■ Good TPS alignment
■ Good ICP & TPS alignments
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Pairwise Alignment Results

ICP Alignment TPS Alignment Merged Mesh
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Current Work: Global Alignment Results

16 meshes after global alignment VRIP merged output
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Future Work and Acknowledgments

I Global Registration
I Stability and Performance Improvements

I Better ICP sampling heuristics
I Improve dicing heuristic to reduce number of iterations

I TPS feature point selection improvements

Thanks to
I National Science Foundation
I Princeton Graphics Group
I Prof. Ken Steiglitz
I Natasha Gelfand and Leslie Ikemoto (Hierarchical ICP)
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Pairwise Alignment Results

Affine Warp Full Warp Alignment Quality

■ No overlap
■ Good ICP alignment
■ Good TPS alignment
■ Good ICP & TPS alignments

0 mm 5 mm
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Thin-Plate Splines

I Thin-plate splines always take the form

4 × 4 affine transformation

4 × n non-affine warping parameters ( WXt = 0)

n × 1 control point influence vector

y = Ax+ WK(x)︸︷︷︸
where K(x) = (|x− x1|, . . . , |x− xn|)t in 3-D

I The warping coefficients A and W are computed by the
equation

(
A W

) (
X 0

K + nλI Xt

)
=

(
Y 0

)
where Kij = |xi − xj|.
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Previous Work: Softassign and Deterministic Annealing

I Maintain probability that each point in X maps to each other
point in Y (Softassign)

I Probability of two points corresponding has Gaussian fall-off
with respect to distance

I Fall-off narrows at each iteration until we reach exact
correspondence (Deterministic annealing)

Chui & Rangarajan
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Current Work: Global Alignment
I Error accumulates over successive alignments
I Distribute error

I across warping function (ICP)
I across positions of global feature points in space
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Current Work: Global Alignment

I Perform best global ICP alignment

I For each range scan S

I Randomly select features at constant sampling rate
I For each overlapping range scan S′

I Align S′ to Sand find feature correspondences
I Record position of each feature point on S′

I Record mean position of each feature point across all scans on
which it falls as its canonical position

I For each range scan S

I Warp all features on S to their canonical positions

I O(nm) for m overlapping scans
I At most two scans in memory at a time
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