

Where Do People Draw Lines?

Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros, Adam Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz Princeton University

CGRAPH2008

Project Goals

- Study what lines artists are likely to draw
- Describe these lines mathematically

Prompt

Prompt

Drawings

Prompt

Drawings

Average Drawing

Overview

Background

- Books on drawing
- Algorithmic line drawing
- Evaluation studies
- Study Design
- Analysis and Results
- Conclusion
- Dataset Demo

Books on Drawing

- Many, many books on principles of drawing
- Tend to focus on high level issues
- Some describe and suggest good lines
 - Particular lines on the nose [Peck 1982]

SIGGRAPH2008

- Contours and ridges [Smith 1997]
- Not particularly formal

Algorithmic Line Drawing

- Well-known lines
 - Occluding contours [Hertzmann 2000]
 - Geometric ridges and valleys [Ohtake 2004]
- New ideas for lines
 - Suggestive contours, highlights [DeCarlo 2003, 2007]
 - Apparent ridges [Judd 2007]
 - Lines via abstracted shading [Lee 2007]
- Informally compared with artists' drawings

Studies of Artists' Drawings

- Qualitative comparison with CG [Isenberg 2006]
- Analysis of texture statistics [Maciejewski 2008]
- Line depiction of 3D shapes [Phillips 2005]
 - Correlated lines with shading and curvature
 - Measured how accurately artists draw contours

SIGGRAPH2008

Deliberately used ambiguous shapes

Overview

- - Background
 - Study Design
 - Artistic Style
 - Drawing Prompts
 - Study Protocol
 - Analysis and Results
 - Conclusion
 - Dataset Demo

Artistic Style

Prompt Image

Artistic Style

Prompt Image

Solid, Smooth Feature Lines

Artistic Style

Prompt Image

Solid, Smooth Feature Lines

Disallow:

Hatching and Shading Sketchy Lines

Prompt Models

vertebra

cervical

tooth

femur

lumpcloth twoboxcloth Tablecloths -

screwdriver

rockerarm flange Mechanical Parts -

Bones -

pulley

cubehole bumps - Abstract Shapes -

Steps:

Steps: 1.Fold

Prompt Page

Drawing Page

Steps: 1.Fold 2.Draw

Prompt Page

Drawing Page

Steps: 1.Fold 2. Draw **3.** Unfold

SIGGRAPH2008

Steps: 1.Fold 2.Draw 3.Unfold 4.Trace

1_A_2 0 0

Drawing Page

Steps: 1. Fold 2. Draw 3. Unfold 4. Trace 5. Scan

Prompt Page

Drawing Page

Protocol Trade-offs

- Benefits
 - Artists draw freely
 - Results are registered
- Limitations
 - Takes extra effort
 - Possible to change drawing

Collection Results

- 29 artists, art students and some professionals
- 208 drawings collected
- 170 "precise" drawings
 - Traced 90% of exterior silhouette within 1mm

Overview

- - Background
 - Study Design
 - Analysis and Results
 - How similar are the artists' drawings?
 - Can known CG lines explain artists' lines?
 - What about other possible definitions?
 - Conclusion
 - Dataset Demo

Averaged Drawings

Quantifying Similarity

- For each pixel, find closest pixel in the other drawings of the same prompt
- ~75% of distances fall within 1mm (6 pixels)

Describing with CG Lines

- Find fraction of artists' lines matched by CG lines
- Object-space lines
 - Occluding contours [Hertzmann 2000]
 - Suggestive contours [DeCarlo 2003]
 - Ridges and valleys [Ohtake 2004]
 - Apparent ridges [Judd 2007]
- Image-space lines
 - Image edges [Canny 1986]

Categorization of Lines

- Contours explain 50-65% of all lines
- Other object-space lines explain 15-30%
- Image features alone explain ~5%

Other Object-Space Lines

- Ridge and valley lines very important
- Suggestive contours important for smooth models
- No definition dominates

Artist A

Artist B

Artist A

Artist B

Artist A

Artist B

Artist A

Artist B

Artist A

Artist B

Results for Known Lines

SIGGRAPH2008

- Can confidently explain 80-90% of lines with known definitions
 - Exact coverage values vary with thresholds
 - Qualitative results remain the same
- What about other possible definitions?

Examining Local Features

- All CG line definitions based on 1-2 local features
- Could we combine more?
- Which are most important?

Image-Space	Object-Space		
	View-Dependent	View-Independent	
ImgGradMag	N ·V	SurfMaxCurv	
ImgMaxCurv	ViewDepCurv	SurfMaxCurvDeriv	
ImgMinCurv	ViewDepCurvDeriv	SurfMinCurv	
ImgLuminance	RadialCurv	SurfMeanCurv	
	RadialCurvDeriv	SurfGaussianCurv	
	RadialTorsion		

Individual Local Features

Compare pixels near artists' lines to remainder

Features in Combination

Regression Tree Model:

```
ImgGradMag > 2433.08
 ImgGradMag > 4706.19
    0.181
    0.0341
 RadialCurvDeriv > 0.02
   ViewDepCurvDeriv > 0.044
      0.0455
      0.0175
   SurfGaussianCurv > -0.004
    ViewDepCurv > 0.076
      | N dot V > 0.782
          0.0113
          0.0252
        SurfMaxCurvDeriv > 0.014
          SurfMinCurv > 0.022
            0.0044
            0.0125
          0.0023
```


Predicted Probability

Feature Importance

Estimated via Random Forests [Breimann 2001]

SIGGRAPH2008

- Overall, image gradient is most important
- Importance by category:
 - Image space
 - View-dependent object space
 - View-independent object space

Image Edges vs. Others

- Most lines match both image edge and other
- Image edges best single predictor of placement

Overview

- - Background
 - Study Design
 - Analysis and Results
 - Conclusion
 - Summary of Results
 - Future Work
 - Dataset Demo

Summary of Results

- Artists' lines overlap heavily with other artists'
- Best predictors
 - Image edges: best coverage
 - Occluding contours: most commonly drawn
- All CG lines together explain 80-90% of all lines

SIGGRAPH2008

Unexplained Lines

- How to explain remaining lines?
 - Artistic license
 - Need better local feature definitions
 - Choices based on global features

Unexplained Lines

- How to explain remaining lines?
 - Artistic license
 - Need better local feature definitions
 - Choices based on global features

Maximum Curvature

Composite Drawing

Future Work

SIGGRAPH2008

- New studies
 - Shading and stylization effects
 - Perception of shape in artists' drawings
- Data-driven line drawing synthesis

Synthesis Future Work

Artists' Composite

Individual Drawing

Probability Image

Synthesized Lines

Dataset Plug

You can download the full dataset at:

www.cs.princeton.edu/gfx/proj

Viewer demo

Viewer Demo

Filter Drawings

Model:		two	boxcloth	÷
View:	a 🛊	Light:	any	+
Date: any	\$	Subject:	any	+
Precise: 🗹		Sloppy:	•	
< Prev Moo	del/View	Next M	odel/View	>
Drawing Style				
Binary 📃	Colored			
Distance Threshol	d		2px	*
Background			White	*
Overlay CG Li	ines			
Occluding Contour	s			
Suggestive Contou	urs		10	+
Apparent Ridges			10	*
Ridges and Valleys	S		10	*
Canny Edges			10	*
Distance Threshol	d		2px	+
Selected Drav	vings			

Acknowledgements

 Big thanks to the artists from Art Collaborations and Princeton University

- Thanks to Doug DeCarlo, Maneesh Agrawala, Frédo Durand, Eitan Grinspun, and the PGG
- Support from NSF and Google

 CNS-0406415, IIS-0612231, CCF-0702672, CCF-0702672, IIS-0511965, and CCF-0347427
- Models courtesy of Aim@Shape, VAKHUM, and Cyberware

