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Abstract

Collections of objects such as images are often presented visually in a grid because it is a compact representation
that lends itself well for search and exploration. Most grid layouts are sorted using very basic criteria, such
as date or filename. In this work we present a method to arrange collections of objects respecting an arbitrary
distance measure. Pairwise distances are preserved as much as possible, while still producing the specific target
arrangement which may be a 2D grid, the surface of a sphere, a hierarchy, or any other shape. We show that
our method can be used for infographics, collection exploration, summarization, data visualization, and even for
solving problems such as where to seat family members at a wedding. We present a fast algorithm that can work
on large collections and quantitatively evaluate how well distances are preserved.

Categories and Subject Descriptors (according to ACM CCS):
I.3.3 [Computer Graphics]: Picture/Image Generation—Display algorithms I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction techniques

1. Introduction

Web services like Flickr, Facebook, and Google+, as well
as desktop applications like Lightroom, iPhoto and Aperture
arrange images in grids. One natural benefit of tiling images
into a grid is that it makes efficient use of screen real
estate. In addition, it provides natural orderings, such as left-
to-right, top-to-bottom. Often the images themselves can
be sorted trivially by some numeric quality, e.g. date or
search rank. However, for some applications a good ordering
is not so obvious. For example, it may be desirable to
arrange photos of one’s Facebook friends, organized such
that people who are friends with each other are near each
other. Or one might like to arrange a group of natural images
such that pictures with similar colors are near each other.
Research like that of Schoeffmann and Ahlstrom [SA11]
shows that similarity-based placement of images is useful,
and improves retrieval tasks. Their study indicates that even
a simple similarity metric based on color can improve a
retrieval task by 20%.

In the design world, such as page layouts for magazines,
webpages, and photo albums, it is important to support ar-
bitrary arrangements of content on the page. Currently, the
designer must assign images to locations by hand, balanc-
ing a complex set of goals that may be difficult to formalize.

However, the process can be time consuming and difficult to
fully optimize. Moreover, this approach is not amenable to
automation, which would be necessary for online contexts
like Facebook. A standard automatic way to organize ob-
jects by similarity is to use dimensionality reduction algo-
rithms such as principle component analysis or multidimen-
sional scaling [LV07] to arrange the objects continuously in
two dimensions. While arbitrary placement can optimally
reproduce pairwise distances, many applications have hard
requirements about explicit, discrete positions for the final
arrangement. For example, creating a regular 2D grid of im-
ages or placing photos in a predefined page layout—these
applications specify the exact target positions as an input
and therefore a continuous arrangement algorithm is insuffi-
cient. Likewise, the layout method of Reinert et al. [RRS13]
which beautifully packs items tightly in the plane while ar-
ranging according to two major dimensions is inappropriate
for such applications. In contrast, recent methods such as the
kernelized sorting approach of Quadrianto et al. [QKTB10]
provide automatic layout of designs where a specific set of
target locations is known in advance.

Taking inspiration from these methods, this paper presents
IsoMatch, a fully-automatic method for arrangement of im-
ages (or other items) on a grid (or other pre-established ar-
rangement). The input is a set of items to be arranged, to-
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Figure 1: Images of flowers from Flickr. Left: Random ordering makes image set hard to understand. Center: Isomap preserves
structure but is poor for page layouts. Right: Arranged by our algorithm using the L2 distance between mean RGB values. Note
that good results are obtained even with such a simplistic feature (three values per image).

gether with pairwise distances between them (e.g., mean
color difference, or distance in a social network), and an
arbitrary set of target locations. Our goal is to arrange the
items while preserving their pairwise distances as much as
possible in the output locations.

The key contributions of our work are: (1) a general objec-
tive function that can be used to evaluate solutions to the dis-
tance preserving layout problem, with validation via a user
study, (2) the IsoMatch algorithm which efficiently arrives at
an approximate optimization of the objective function, with
quantitative evaluation, and (3) a number of layout and vi-
sualization applications for images, audio, and 3D models,
demonstrating that IsoMatch unifies and extends the major
features of previous approaches.

2. Related Work

Dimensionality Reduction. One line of research addresses
the task of mapping high dimensional data to lower dimen-
sion while preserving the original data as much as possible.
This goal is the same as ours, with one major distinction—
we add the constraint that the result should lie only on pre-
defined, discrete locations. The seminal methods Isomap
[TdSL00] and Locally Linear Embedding (LLE) [RS00] re-
construct low dimensional manifolds that reside in a higher
dimensional space. We use Isomap as the first step of our
algorithm, though its output cannot be directly used for lay-
out (Figure 1). Our algorithm, IsoMatch, is more similar to
Dwyer’s constrained graph layout [Dwy09], which fits into
the clutter reduction taxonomy of Ellis and Dix [ED07] as
a “space-filling” approach. However, these approaches gen-
erally only allow relative constraints between points in the
output arrangement, as opposed to IsoMatch, which restricts
to assignment on discrete locations.

Grid Arrangements. Graph visualizations sometimes place
vertices in discrete locations, for readability and aes-
thetics. Illustrating biological networks, the work of Ko-
jima et al. [KNJ∗07] uses a force-based method that places
each vertex in the closest empty grid location. Likewise, Li
and Kurata [LK05] visualize biochemical networks using a
sparse placement of labels on a grid. Inoue et al. [ISYK12]

propose a two-phase approach to the graph layout problem.
The first step performs standard (fast) graph layout without
the grid constraint, and the second phase aligns vertices onto
grid points. The planar graph layout problem differs from
ours as edge crossings are avoided and because a sparse lay-
out is desired. Fried et al. [FJOF14] arrange sound samples
on a grid to improve search performance. They used kernel-
ized sorting [QSST10] as the underlying algorithm, against
which we show favorable results (Section 7).

Self organizing maps [Koh82] are a common method for
arranging high dimensional data (e.g. [SG11b]). However,
the input to SOMs are descriptors and not pairwise distances,
which make them unsuitable when only distances are avail-
able. Also, SOMs produce results with gaps and overlaps,
which are inadequate if we want exactly one image to ap-
pear in each grid cell.

The Self-Sorting-Maps (SSM) of Strong et al. [SG11a,
SG14] arrange images on a grid, using a hierarchical swap-
ping process that seeks to maximize normalized cross corre-
lation between the input images and the grid locations. This
approach only works on a regular lattice structure and does
not have an obvious extension to an arbitrary set of target
locations or densities (required, e.g., in Figures 9 and 10).
SSMs also need to be adjusted for each change in dimen-
sionality or grid structure (i.e. the algorithm changes slightly
from 2D to 3D and from rectangular to hexagonal grids).
Moreover, they appear to suffer the curse of dimensional-
ity, so it is unclear how they will behave for embeddings in
higher dimensions. Strong et al. [SJGE13] also describe an
alternative to SSMs that seeks a better global optimum for
the correlation, at the expense of decreased performance.

Treemaps (e.g. [BSW02, WD08]) require a tree structure
as input. They sort according to one attribute and typically
show one or two more attributes (i.e. area and color) decou-
pled from the ordering. Similarly, work based on “jigsaw
maps” [BHL05, Wat05, WFM∗12] use space filling curves
to partially fill discrete grids, but they cannot exactly match
arbitrary arrangements. Liu et al. [LHN∗13] use a two step
approach to arrange small sets. However, they cannot en-
force a bijection between sets and grid cells and they do not
support arbitrary layouts nor layouts in 3D.
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Reinert et al. [RRS13] show impressive results of placing
objects on a continuous domain. However, as they try to pack
objects together they cannot support specific target locations,
which makes their approach inappropriate for applications
which must constrain objects to discrete positions, such as a
photo album layout or graphic design template. They also do
not attempt to preserve pairwise distances in an objective and
quantifiable manner, focusing only on aesthetics. Frishman
and Tal’s physically based uncluttering [FT09] has similar
limitations.

Graph Matching. The work closest to ours is the Kernel-
ized Sorting (KS) method of Quadrianto et al. [QSST10]
and its derivatives, Convex Kernelized Sorting [DGV12] and
CDOM with Model Selection [YS11]). They aim to solve a
more general problem, matching two sets of objects while
intra-set distances are known but inter-set distances are not.
Our formulation is a special case of this problem where we
can take advantage of the metric nature of the target ar-
rangement’s distances, as well as the (potentially) metric dis-
tances of the set of objects to be arranged. Kernelized Sort-
ing (KS) involves maximization (not minimization) over a
convex function of the permutation matrix, thus is unstable
and highly sensitive to initialization values. Convex Kernel-
ized Sorting yields better results, but at the cost of greater
computational demands, with running times that exceed ours
by an order of magnitude (Section 7.2). Another limitation
of the above methods is that they require an equal number
of elements in the two sets (i.e. equal number of images and
target locations), while we can do a one to many matching
to produce a digest of a photo collection (Section 6.6). Also,
we believe our algorithm is simpler than KS, which enables
future work to more easily extend the technique. In Section 7
we show quantitative results of comparisons to these meth-
ods. The further work of Quadrianto et al. [QKTB10] uses
KS as its underlying method and produces several applica-
tions that overlap with ours. We discuss the drawbacks of
the 3D image layout in Section 6.2 and of their hierarchical
organization in Section 6.7.

Quality Metrics. The objective function we propose in Sec-
tion 3 is similar to those surveyed by Bertini [Ber11]. Those
metrics are more concerned with interactive refinement and
measuring higher level properties such as clustering and sep-
arability, while our function is more similar to the precision
measure of Schreck et al. [SvLB10], which estimates how
well distances are preserved by a projection. However, they
do not show a normalized result that is consistent across dif-
ferent contexts (different distance scales, numbers of sam-
ples, dimensions, etc.), and it is not shown how to use their
local function to automatically refine an arrangement.

3. Problem Formulation

Our general problem takes as input a set of items I together
with a distance matrix D, where each item is to be assigned
to a set of spatial locations L . Most of the applications

we consider involve placing images into a 2D grid, so for
the remainder of this section we will refer to I as images
and L as the grid. Our objective is to assign the images
into the grid such that, as much as possible, the pairwise
target distances di j in D are preserved by the corresponding
Euclidean distances d ′k` in the grid, up to some arbitrary
scaling factor c. That is, we seek the permutation π(i) =
k indicating that image i is assigned to location k, that
minimizes the error under norm p:

Ep(π) = min
c

(
∑
ω

∣∣∣cdω −d ′
π(ω)

∣∣∣p
) 1

p

(1)

where ω ranges over all pairs i, j of images and π(ω) =
{π(i),π( j)}. This problem is similar to multidimensional
scaling [LV07] with the constraint that images must be one-
to-one assigned to discrete locations.

3.1. Normalized Energy Function

The formulation in Equation (1) implies a simple way to
evaluate different solutions (assignments) for any given in-
put. We can treat the error as an “energy” that can be used to
compare different solutions, with lower energy correspond-
ing to better solutions, which leads to some straightforward
optimization techniques described below. In addition, we
normalize the energy by dividing by the sum of all pairwise
distances in the grid:

Ep(π) = min
c

(
∑
ω

∣∣∣cdω −d ′
π(ω)

∣∣∣p
/∑

ω

d ′
π(ω)

p
) 1

p

(2)

Of course Ep is minimized under the same permutation and
scale as in Equation (1), and for a “perfect” assignment like
assigning the output grid to itself, it yields energy Ep = 0.
For a given permutation π we are left with the task of
determining the scaling constant c. In the case of the 2-norm,
Equation (2) can be minimized with respect to c by setting
∂

∂c E2(π) = 0. The case of E1(π) is more subtle, because
the energy incorporates a sum of absolute values that have
derivative discontinuities in c. Nevertheless, examination
of this derivative reveals it to be piecewise-constant with
discontinuities at the

(n
2
)

locations where c = d ′
π(ω)/dω .

Thus, it suffices to evaluate Equation (2) at these locations
and choose the minimum. It is possible to consider only a
subset, achieving a final complexity of O(n2 logn); the proof
is outside the scope of this paper.

In our experiments we found the general behavior of
E1(π) and E2(π) to be similar, but we prefer E1(π) be-
cause it favors solutions which preserve smaller distances
more than larger distances. Intuitively, relative arrangements
of nearby elements (e.g. in the 1-neighborhood) are more
salient than more distant relationships. Therefore, for the
rest of the paper we use the energy E(π) = E1(π). Figure 2
shows typical E1 values for several arrangements.
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Figure 2: Energy values for various arrangements. We show
grids of colors arranged by RGB distance, along with the
corresponding E1(π) values (Equation 2). Notice how low
energy values correlate with a more ordered color grid.

3.2. Nonlinear Integer Programming

Having defined an energy function, a naive way to solve our
optimization problem is to generate random arrangements
and then randomly swap pairs until convergence. Such an ap-
proach is prone to get stuck in local minima, and converges
too slowly for practical applications.

A more principled approach is to set up the minimization
of Equation (2) as a nonlinear integer programming problem.
This formulation would normally be a quadratic integer
program but for the inclusion of the c term, which makes
it more complex. Even ignoring the optimization over c,
solving such a problem is generally NP-hard [PV91], and
therefore we are forced to seek heuristic solutions for any
reasonably large input. Note that this problem is similar to
the quadratic assignment problem which is also known to
be NP-hard, as discussed by Quadrianto et al. [QSST10].
While general-purpose functions exist to find approximate
solutions, our algorithm (Section 5) can take advantage of
known structure in the problem, by splitting it into two
easily solvable steps. Our approximation cannot guarantee
a globally minimal solution, but it does efficiently generate
reasonable approximations (Section 7).

4. Study Correlating Energy with User Performance

Schoeffmann and Ahlstrom [SA11] showed that similarity-
based placement improves image retrieval tasks, while
Fried et al. [FJOF14] had similar findings for audio retrieval.
Thus, we know that organization makes a difference in at
least some tasks. The normalized energy function Equa-
tion (2) provides a measure of the degree of organization
of any particular grid assignment. Even though this measure
was designed to match our intuition about what it means for
a grid to be organized, we would like to show that it con-
tains meaningful information relative to some human task.
Therefore, in this section we describe a study that shows a
correlation between the energy in a grid of images and the
ability to search for pictures of a particular person. We chose
this task as a surrogate for a variety of image searching tasks,
but it bears strong resemblance to activities like labeling in-
dividuals in photo collections in commercial software like
Picassa and iPhoto.

We ran this study on the Amazon Mechanical Turk, and
the interface for the task (called a “HIT”) is shown in

Figure 3: Face search. In this study we ask subjects to find
pictures of a person in a grid of photos.

Figure 3. For each of 6 pages in the HIT, the subject (a
“worker”) was shown a photo of a target person as well
as a 7× 14 grid of photos containing 9 other photos of
the same individual, mixed in among 89 photos of other
people selected randomly from the 40 individuals in the
face database of Samaria and Harter [SH94]. The pages had
a range of Equation (2) energies from about 0.28 to 0.45,
based on RMS distance in pixel luminance. Workers were
given 40 seconds per page to find as many of the 9 target
images as possible. In roughly half of the pages shown, the
worker found all 9 target images in 40 seconds, and in the
vast majority they found at least 5. Workers were allowed
to perform the task more than once and while most did it
just once or a few times, some worked on as many as 20
HITs. Nevertheless, they were never shown the same page
more than once. Any page where the worker failed to find 3
of the 9 target images was omitted from the dataset, under
the assumption that the worker was not trying or did not
understand the task well. In total 617 HITs were performed
by 236 unique workers, 3054 worker-pages were retained,
and each of 160 pages was viewed by 15 - 25 workers.

We measured the performance of each worker on each
page as follows. We found the integral over the 40 second
period of the number correctly identified, normalized to the
range [0,1] by dividing by 9× 40. Next, because we found
that some target individuals were easier to find than others
(for example wearing glasses or a beard) we found the “rel-
ative performance” as the difference between the mean per-
formance for any particular page and the mean performance
for that individual target. These values are plotted in Fig-
ure 4. They exhibit a strong correlation between energy and
relative performance – a Pearson’s product-moment correla-
tion of -0.52 with p-value < 10−10.

Thus we conclude that Equation (2) does correlate with
human performance on at least one search task, and this
provides evidence that it is suitable as a measure of the

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



O. Fried & S. DiVerdi & M. Halber & E. Sizikova & A. Finkelstein / IsoMatch: Creating Informative Grid Layouts

energy
0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

re
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Pearson correlation -0.5234

Human Performance vs. Energy (Eq. 2)

energy
0 50 100 150 200 250 300

re
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Pearson correlation 0.5039

Human Performance vs. KS Objective

energy
-1000 0 1000 2000 3000 4000

re
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Pearson correlation 0.4991

Human Performance vs. SSM Objective

Figure 4: Human performance correlated with grid energy.
Above: Our study shows better search performance for low
energy grids (more organized, as measured by equation 2).
Below: Our study also shows strong correlation with (left)
the goal function used in kernelized sorting and (right) the
normalized cross-correlation used in SSMs. For these goal
functions, larger values correspond to more organized grids.

degree of organization of items in a grid. We use this
measure in the remainder of the paper as a mechanism to
evaluate various organization strategies.

Figure 4 also shows that the user performance from our
study is correlated with the objective functions used in two
previous methods: kernelized sorting (KS) [QSST10] and
self-sorting maps (SSM) [SG14]. Each of these shows a
Pearson’s correlation of 0.50, similar to that of Equation (2)
albeit slightly weaker. Note that for these objective func-
tions, larger values are better, and that the scores are not fit to
a standard range but vary with the experiment. SSM uses a
normalized cross-correlation related to the vector inner prod-
uct, and is of the form ∑Add′+Bd+Cd′; KS uses the trace
of the product of the kernel matrices which has a similar final
form. Conversely, our energy function is related to a scaled
Minkowski distance and is of the form ∑Dd +Ed′. The im-
pact of the product term dd′ is that SSM may be overly sen-
sitive to outlier distances. KS avoids this problem using the
kernel transform, whereas we address it by selecting the 1-
norm for Equation (2).

5. Our Algorithm: IsoMatch

In this section we describe the algorithm used to align
images in a specific formation, according to a given distance
matrix. The inputs to IsoMatch are a set of images I such
that |I |= n, a symmetric pairwise distance matrix D of size
n×n such that di j denotes the distance between the images
Ii and I j, and a desired output spatial arrangement which
is usually a 2D grid but can take an arbitrary form. Note that
the distance matrix can be built using an arbitrary distance
measure between the images, such as 2-norm in Rm, some
m-dimensional feature space, or from a non-metric set of
graph edge weights, such as affinity in a social network. This
flexibility allows our visualization to convey many different
types of relationships through arrangement.

Our core algorithmic contribution is, rather than attempt-
ing to solve the distance-preserving arrangement problem as
a single optimization, we approximate the solution in two
main steps. First, we use nonlinear dimensionality reduction
to project the set of images onto 2D (we will limit our dis-
cussion to 2D for now, and revise it later on). Once we have a
2D arrangement, we transform it so that it will roughly fit our
desired output pattern (Section 5.2). After the coarse align-
ment has been established, we construct a bipartite graph
and find a bipartite matching in order to solve a minimal
movement goal (Section 5.3). From the bipartite matching
we infer the output arrangement.

5.1. Step I: Dimensionality Reduction

There are many options for algorithms in nonlinear di-
mensionality reduction, including Multidimensional Scal-
ing [LV07], Isomap [TdSL00], and Locally-Linear Embed-
ding [RS00]. Succinctly stated, the goal is to represent an n-
dimensional set of points in m-dimensions, where m� n, by
discovering underlying structure to the data. Each algorithm
has its strengths, but we use Isomap specifically because of
its ability to handle input datasets that are defined by a dis-
tance matrix. Conversely, techniques such as Locally-Linear
Embedding require the input dataset to have a metric dis-
tance function defined. This requirement is acceptable when
arranging, e.g., images by RGB histograms (or any other de-
scriptor) because the feature transform converts the images
into points in a high dimensional space which can then be
characterized by euclidean distance. However, a non-metric
dataset such as affinity in a social network may not actu-
ally define a valid distance metric in some dimension – for
instance, the triangle inequality may not hold for graph dis-
tances. These datasets are still interesting to arrange though,
so we need an algorithm that can support them. Ultimately,
we do not depend specifically on Isomap, and other dimen-
sionality reduction algorithms can be trivially swapped in if
they can process the input dataset type.
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Figure 5: Bipartite matching example. Isomap output points
are hollow circles, while target positions are filled circles,
and dotted lines indicate the minimum distance-moved as-
signment determined by bipartite matching.

5.2. Step II: Coarse Alignment

We use the output of Section 5.1 to generate a bounding box
for the target arrangement, while reducing the impact of out-
liers. We convolve a Gaussian with the locations given by
Isomap and use a threshold to find connected components.
The largest component of the result is considered the impor-
tant area of our point distribution. Its bounding box is set to
be the bounding box for the target arrangement.

5.3. Step III: Bipartite Matching

The inputs to the bipartite matching step are some object
arrangement given by the dimensionality reduction step
(Section 5.1) and a target arrangement scaled and translated
to match the calculated bounding box (Section 5.2). We
would like to assign images at starting locations si = (xi,yi)
to the target locations ti = (x′i,y

′
i) while minimizing the total

distance moved. Formally, we are looking for a permutation
π of [n] such that ∑

n
i=1 d(si, tπ(i)) is minimized, where d()

denotes Euclidean distance.

In order to solve the problem and find a globally minimal
solution, we construct a bipartite graph. On one side of
the graph we have a vertex for each starting location, on
the other side we have a vertex for each target location (a
total of n vertices on each side). We construct a complete
bipartite graph such that edge ei j is given a weight d(si, t j).
By construction, finding a minimal bipartite matching on
this graph will minimize our objective function. We use the
Hungarian algorithm [Kuh55]) to solve the minimal bipartite
matching problem.

5.4. Optional: Random Refinement

In Section 3.2, we discussed that random swapping is not
an effective overall strategy. However, it is often able to im-
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Figure 6: Performance of random swaps. The x-axis is the
number of random swap iterations, and the y-axis is the
energy (Eq. 2). Eight runs of random swaps (each starting
from a random permutation) show the aggregate behavior,
which is outperformed by our algorithm. Adding random
swaps to refine our output improves it further (dash-dot line).

prove arrangements at least a small amount in a reasonable
amount of time. We leave it as an optional refinement step to
run some number of random swaps, as time allows (where
swaps are only kept if they improve the objective function).
Figure 6 compares the performance of random swaps as the
sole solution strategy, vs. as a refinement on IsoMatch. No-
tice that IsoMatch’s initial result (left part of dashed line) is
comparable to 105 swaps starting from a random permuta-
tion (right part of solid lines) while being much faster. Start-
ing from an IsoMatch arrangement, further improvement is
possible via swapping (right part of dashed line).

5.5. Optional: Location Constraints

For an additional level of user control, specifying fixed
locations for some images is an easy extension to our current
formulation. Assume we want to fix image i in location j.
In the bipartite graph construction step, we assign ei j = 0.
This defines that placing i in location j incurs zero cost, but
it does not yet guarantee the placement. We also multiply
all other edges with some large constant α , which ensures
that the assignment of i to location j will indeed take
place. The softness of these constraints can be varied with
α , allowing the assignments to be more preference than
requirement. This variation could be the result of some
other fitness function, for example if a single image in a
target arrangement was to be presented larger than the other
images, the edge weights in the bipartite graph could be
modulated by the quality (sharpness, resolution, clarity, etc.)
of the images, to preferentially place a more suitable image
in the special position.
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Figure 7: Grid layouts can convey additional information,
complementing a photo album. Here we arrange 100 images
of animals using either average colors (left) or word similar-
ity using WordNet (right). Note how animals on the right are
clustered according to taxonomy: insects (top-left), horned
animals (middle-right), small birds (lower-left).

6. Applications

In this section we consider a variety of applications of the
algorithmic framework introduced in Section 5.

6.1. Photo Grids

Finding an image within a large collection can be like
searching for a needle in a haystack. Sorting the images
according to some intuitive measurement like overall colors
or semantic content can assist in these tasks. Studies such
as that of Schoeffmann and Ahlstrom [SA11] and the one
described in Section 4 demonstrate that such arrangements
can improve image retrieval tasks. A simple way to arrange
images is by color similarity; we found that mean RGB value
differences yield the best arrangements (Figure 1).

Some datasets have an inherent structure in them, such
as taxonomy information regarding objects in the images.
Figure 7 presents a collection of animals. We show two grid
layouts: one by color and one according to taxonomy. The
taxonomy layout was created using WordNet [Fel98]. For
each pair of animals we calculate the inverse of the number
of edges in the path between these two words in the WordNet
hierarchy. Feeding these distances to our system produces a
10x10 grid in which similar animals are clustered together.
Such a grid can be useful, for example, as an index page
for a website with information about the different animals.
Another example for this type of arrangement would be an
online shopping catalog, where items are sorted according to
their similarity or according to peoples’ purchasing habits (a
seamless integration of the ubiquitous feature “people who
bought x also bought y” into the main layout of the website).

6.2. Spherical Grids

As mentioned previously, our algorithm is not limited to 2D
arrangements. We demonstrate this by placing the images on
a 3D sphere (we can actually support a manifold of arbitrary

Figure 8: 3D layouts. Left: A view from inside a sphere
of images arranged by color. Right: An external view of a
sphere of 3D models from the Princeton Shape Benchmark,
arranged by shape.

topology). The user is placed within the sphere, such that she
sees an apparent 2D grid of images that extends infinitely
in both the horizontal and vertical directions (Figure 8).
The user can scroll in any direction and see a continuous,
smoothly varying arrangement of images (where neighbors
are similar). Our pipeline stays the same for 3D layouts. We
use Isomap to project into 3D and the bipartite matching
weights are euclidean distances between Isomap’s output
and 3D points on the surface of the sphere. The locations on
the sphere were obtained by iteratively trying to minimize
the energy, given repulsion forces between the points. The
uniform arrangement prevents “squeezing” artifacts at the
poles (as opposed to Quadrianto et al. [QSST10]). For this
application, the descriptors are as follows: for each image
we calculate its average HSL value and project that value
to the outside of the HSL cone. The distance between a
pair of images is defined to be the arc-length between these
projections. This type of distance encourages a spherical
output from the Isomap step.

While our main goal was to arrange images, the system
is general purpose and can arrange any type of data for
which we can supply pairwise distances. We demonstrate
this by arranging a grid of 3D models. Models from the
Princeton Shape Benchmark [SMKF04] are placed on a
sphere such that similar models are next to each other.
The pairwise distance is defined to be the reciprocal of the
number of edges in the path that connects the models, using
the Princeton Shape Benchmark hierarchy as our graph
(Figure 8).

6.3. Infographics

Infographics (short for information graphics) are graphical
illustrations representing some underlying data. These il-
lustrations are extremely useful in conveying information
and explaining data in an instantaneous way, especially for
hard to grasp numerical or quantitative differences. There
are many tools that support the creation of infographics, and
these usually come in two flavors: manual and task-specific.
The manual tools are more traditional vector art manipu-
lation tools, and require the artist to create the infographic
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Figure 9: Infographics. US congress members arranged atop
the liberty bell by voting record similarity and colored by
party affiliation to illustrate partisanship. Notice that party
affiliation was introduced after the fact, and was not part
of the data given to our algorithm. The two parties were
automatically detected from voting records.

from basic primitives such as shapes and lines. The task spe-
cific tools automatically create very rich infographics from
data, but the data has to be of specific type (for example: a
LinkedIn profile or some measured quantity for each of the
50 United States). The work of Reinert et al. [RRS13] makes
pleasing infographics, but cannot support use cases where
specific target locations are required, or where the arrange-
ment may have holes. We handle the more general case.

Our system can automate placement aspects of the cre-
ation process for infographics based on pairwise distance
data. For example, consider a visualization that aims to show
US members of congress. The artist may have a specific lay-
out in mind, such as a rectangular grid, a circle, or the shape
of the liberty bell. On top of such a layout, the artist wishes
to convey an extra layer (or layers) of data. Figure 9 shows
US congresspeople, placed by their voting records, onto an
arrangement in the shape of the liberty bell. The pairwise
distance between two individuals is defined as the number
of instances in which the pair voted in the same way for the
113th congress. The frame around each portrait is either red
or blue, according to party affiliation (republican or demo-
crat). Note that the two distinct groups emerge automatically,
visualizing US partisanship.

6.4. Sound Layout

Musicians with many audio samples usually manage their
library alphabetically by filename or in folders according
to some manual classification, which is difficult to maintain

and navigate. We followed the work of Fried et al. [FJOF14]
and created an interface for browsing a collection of snare
drum audio samples (shown inset). Our interface is a grid of
colored rectangles each of
which plays a different sam-
ple upon mouse hover. The
grid is arranged in a meaning-
ful way that aids exploration
and retrieval, and the colors
are a visual cue as to the similarities between samples. To
compute the sound descriptors we first apply a threshold on-
set detector on a normalized time domain signal. Then, we
take the first two 2048-sample (46ms) windows and compute
their Mel-frequency Cepstral Coefficient (MFCC) [Log00].
We further refine the feature space through metric learn-
ing [XNJR03] by labeling 61 (different) sound samples and
using them to learn a good mapping from initial descriptors
to refined descriptors that respect the labeling. We refer the
reader to the accompanying video to see (and hear) this ap-
plication.

6.5. Data Layout

A difficult part of planning formal events such as weddings
is seating assignments, in which family and friends are ar-
ranged by social affinity. A similar problem is room assign-
ment in a college dormitory setting. These problems can be
viewed as arrangements of people on arbitrary grids (seat-
ing charts / floor plans), using social affinity as a distance
function. Social affinity could be computed using informa-
tion from a social network such as Facebook or Google+,
though quantifying these relationships is an open area of re-
search.

We demonstrate a simplified form of the problem: arrang-
ing family members onto wedding seat charts. We define our
distance function based on the combined family tree of the
bride and groom for 111 people total, where edge weights
are based on the nature of the relationship (e.g. parent-child
has a weight of 1.0 while marriage has a weight of 1.3 and
sibling has a weight of 1.6). Distances between people are
the reciprocal of the path length between them on this graph,
while distances between available seats are euclidean. To
visualize the seating assignments, family members are as-
signed colors based on their position in the family tree rel-
ative to the bride (blue to purple) and groom (green to red),
though these colors do not impact the arrangement.

Figure 10 shows three possible seating arrangements,
around rectangular tables, circular tables, or in concentric
arcs. It demonstrates that our algorithm is able to ensure
that close relatives sit near one another across a variety of
scenarios. Additionally, the final energy computed for each
arrangement can be used to select the best layout of seats
among the available options.
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Figure 10: Seating assignments. Guests are colored accord-
ing to their family tree graph distance from the bride (blue-
purple) and groom (green-red). We show three different
venue layouts. Note that we can generate assignments for
many such layouts and automatically select the one with the
best score (Eq. 2).

6.6. Photo Album Digests

We extended our system to create photo album “digests,”
where a representative subset of the album’s photos are
selected. Given a collection of photos of size n, we would
like to extract a subset of size k (k < n), such that the subset
is comprised of representative images. While representative
images are hard to define, we want to achieve the intuitive
goal of having the smaller collection “tell the same story” as
the larger superset.

In its simplest form, we can create a digest with no
modification to our algorithm. Instead of matching n target
locations to n images, we match k target locations (k < n)
to n images. We create a digest by selecting the closest
point to each grid cell as the representative image for that
cell. We rely on the fact the similar images will be close,
thus the probability that two similar images get picked
as representatives is small. This simple implementation is
demonstrated in Figure 11.

6.7. Hierarchical Visualization

The downside of the digest method is that it relies on
Isomap’s output being spread (roughly) evenly in the 2D
space. Recognizing that, we enhance the method with an ex-
tra clustering step and add support for hierarchical visualiza-
tions. Given a set of images of size n, and a target arrange-
ment of k images in each level of the hierarchy, the enhanced
algorithm is as follows:

1. Use Isomap to transform distances between image de-
scriptors to n 2D coordinates.

2. Use bipartite matching to match k of those images to grid
locations.

3. Use the k images as an initialization to a clustering
algorithm that produces equally sized clusters {ci}k

i=1.
4. In each cluster, pick the closest point to the centroid as its

representative (for a total of k representatives).
5. Match the k representative images to the k grid points

using bipartite matching.
6. Repeat recursively for each cluster {ci}k

i=1.

Figure 11: A photo album digest. The input collection of 16
images (left) is reduced to 4 representative images (right).
We extend our bipartite matching algorithm to allow n-to-
k matching, such that n > k. Middle: the input images, as
placed by Isomap (transparent images) and the four selected
images in their target grid locations (opaque images). Note
our method keeps one image from each group of four similar
images.

We have introduced a new step of clustering images into
equally sized sets (±1 if n 6≡ 0 (mod k)). That step can be
implemented with our current infrastructure. Given n points
and k centroids we duplicate the centroid so that we will
have n centroids, and now we calculate a minimal bipartite
match. Since every centroid was duplicated dn/ke or bn/kc
times, we will match that number of points to each centroid,
thus creating clusters of equal size. This approach finds the
global minimum in terms of total distance from centroid.
It is, however, impractical for very large datasets, and for
those we use an iterative approach similar to K-means,
while selecting equal number of points for each cluster per-
iteration (assigning greedily to centroids in increasing order
of distances).

Note that an alternative approach to creating a hierarchy is
to directly assign images to a pyramidal 3D grid, as done by
[QKTB10]. However, this does not create a strict hierarchy
– e.g. an image in layer li does not necessarily represent the
children images below it in layer li+1. This approach is more
akin to arranging images in a 3D volume that happens to be
pyramid-shaped. Our algorithm on the other hand, strictly
enforces parent-child relationships between images, thereby
creating a true hierarchical visualization in which parent
images represent child images in aggregate.

We tested our hierarchical visualization using a subset of
the SUN database [XHE∗10]: 4096 images from 256 differ-
ent categories. The distance between images was calculated
using the Extended Gloss Overlaps measure (lesk) [BP03]
between the image categories, using the WordNet database
[Fel98] (the lesk distance calculates overlaps in the glosses
of words). In lower levels of the hierarchy (i.e. when n = k
and we no longer create a digest) we used differences in
mean RGB values. Some results can be seen in Figure 12.
The interactive browser is demonstrated in the accompany-
ing video.
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Figure 12: Hierarchical image collection visualization. Left:
the upper (root) level of the hierarchy. Note how images
differ and none of them belong to the same SUN category,
providing an overview of the database. Rest: three examples
from the lowest level of the hierarchy. Notice how the
depicted scenes are very similar within a cluster and very
different across clusters.

7. Evaluation

Ideally applications like those in Section 6 would all be eval-
uated by user studies like that of Sections 4. However, such
studies are task-specific and do not necessarily generalize
to other applications. Furthermore, just because a particu-
lar method (such as IsoMatch) achieves a particular perfor-
mance on one or a few grids does not mean that other in-
put data would yield similar results; studies need to involve
many data sets in order to provide confidence in the out-
comes. Therefore, because the studies themselves cost time
and effort, evaluating a set of methods across a range of ap-
plications with high confidence is prohibitive. Fortunately,
our energy function (Equation (2)) provides an objective
measure of success that is consistent across different dis-
tance functions, different problem sets, different algorithms,
and different applications, which makes it an ideal means of
evaluation. Figure 2 suggests that our energy function is in-
tuitively correlated with an aesthetic sense of arrangements
for aesthetic distance functions such as mean RGB differ-
ence. Moreover, in section 4 we validated the function via a
user study with respect to a fairly generic image searching
task. Thus, in this section we use our energy function as a
proxy for evaluating the performance of the IsoMatch algo-
rithm with respect to naive and previous solutions.

7.1. Distance Preservation

Table 1 shows distance preservation results as evaluted by
Equation (2). We compare a baseline measurement to our
method and to our method with random refinement (Sec-
tion 5.4), on four datasets. The “Animals” database con-
sists of 100 animal names and images arranged by word
distance. “KS-DB” are the 320 images used in kernelized
sorting [QSST10], arranged using the descriptors given in
their paper (down-sampled 40x40 L*a*b* images). “Flow-
ers” is a set of 580 photographs of flowers, arranged using
L2 distance between mean RGB values. “3D Models” are
907 polygon models from the Princeton Shape Benchmark
arranged by tree distance in the shape hierarchy. For more
information regarding these datasets and our results, see Sec-
tions 6.1 and 6.2. The baseline results in Table 1 establish a

Dataset

Method Animals KS-DB Flowers 3D Models
(100) (320) (580) (907)

RandPerm 0.442 0.453 0.566 0.354
(σ=0.006) (σ=0.005) (σ=0.004) (σ<0.001)

Ours 0.349 0.317 0.259 0.309
Ours-RS 0.264 0.290 0.243 0.300

Table 1: Scored results, as computed by Eq. 2. We test four
datasets with the size of each set indicated. We arrange
each set using three algorithms: random permutations, our
algorithm, and our algorithm plus 10,000 random swaps.
For random permutations, we show the mean and standard
deviation of 1,000 trials. The best result for each dataset is
marked in bold, lower is better.

lower bound on performance that shows the difficulty of the
problem (via the standard deviation σ ). Our results signifi-
cantly out perform the baseline in all datasets, sometimes by
more than 50x standard deviations. Additional refinement is
able to further improve the results, mostly limited by the run-
time allotted to it.

We found that the variance in results can be quite large,
depending on the specific dataset (e.g. not all collections of
100 animals will yield similar results). For this reason we
performed an experiment with 500 data sets and report ag-
gregate behavior. For each experiment, we randomly select
100 images from the SUN database [XHE∗10], which con-
tains 108,754 images. We arrange them on a 10x10 grid us-
ing five methods: kernelized sorting (KS) [QSST10], ker-
nelized sorting with random swaps (RS, using the same ran-
dom refinement step as in our algorithm), self-sorting maps
(SSM) [SG14], IsoMatch, and IsoMatch with random swaps.
For each arrangement, we compute the energy in Eq. 2,
shown in aggregate in figure 13 using Matlab’s “boxplot”
function. In the plot, two medians are significantly differ-
ent (p < 0.05) if their notches do not overlap. This shows
with statistical significance in aggregate for this task that: (1)
adding random swaps after KS outperform KS alone; (2) Iso-
Match without swaps outperforms KS improved by swaps;
(3) random swaps improves the raw output of IsoMatch; and
(4) IsoMatch without swaps also outperforms SSM, which
we do not refine with random swaps because it is already a
swap-based algorithm.

In Figure 14 we evaluate the same data sets from Fig-
ure 13 using the objective functions of KS and SSM. We find
that KS out performs both IsoMatch and SSM with respect to
its own objective function, but that IsoMatch and SSM both
outperform KS as measured by normalized cross-correlation
(the objective used in SSM) with IsoMatch slightly ahead of
SSM (with statistical significance). Finally we note that in
these plots as well as those of 13 the variance of energies for
KS is substantially higher than those of the other methods,
which may be a drawback in some application areas.
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Energy (Eq. 2)
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Figure 13: Algorithm comparison. We sampled 500 ran-
dom subsets of 100 images each from the SUN database
[XHE∗10]. We show results for 5 algorithms, from top
to bottom: kernelized sorting [QSST10], kernelized sort-
ing with random swaps, self-sorting maps [SG14], IsoMatch
and IsoMatch with random swaps. Lower values are better.
Notice that IsoMatch outperforms kernelized sorting, even
when adding random swaps to the latter (which is not part of
the original implementation).

7.2. Runtime

Our algorithm’s time complexity can be calculated by look-
ing at its two major parts: Isomap and bipartite match-
ing. Assuming a constant number of nearest neighbors and
constant input and output dimensions, Isomap’s runtime is
bounded by O(n2 logn) due to the Dijkstra phase, where n is
the number of elements. The Hungarian algorithm [Kuh55]
used for bipartite matching takes O(n3). Other parts of the
algorithm are negligible. Putting it all together we get O(n3)
runtime.

For comparison, we note that Kernelized Sorting
[QSST10] also solves an assignment problem, thus incur
O(n3). The improved method of Convex Kernelized Sort-
ing [DGV12] tries to solve a non-linear system, and is the
slowest algorithm. As an example, when running the respec-
tive algorithms on the 320 KS-DB images, the runtimes of
convex kernelized sorting, kernelized sorting and our algo-
rithm are 10721, 5, and 3 seconds, respectively. On the same
dataset, 10000 random swap iterations take 76 seconds. Self
sorting maps [SG14] are faster than both kernelized sorting
and IsoMatch.

All the above experiments were run on a MacBook Pro,
2.3 GHz Intel Core i7 with 8 GB of RAM and an SSD. We
used the KS Python implementation, CKS Matlab imple-
mentation and SSM GPU accelerated Java implementation
given by their respective authors, and our own Matlab im-
plementation.

8. Conclusion

There are limitations worth considering as potential future
work. It would be helpful to support additional types of
constraints in the arrangements, such as requiring two items
to be adjacent in the output arrangement. Our algorithm
does not provide an obvious mechanism to support this

Kernelized sorting objective
400 450 500 550 600 650

IsoMatch

SSM

KS

Better   

Normalized cross correlation

0 500 1000 1500 2000 2500 3000 3500 4000

IsoMatch

SSM

KS
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Figure 14: Objective function comparison. Using the same
methodology as Figure 13, we compare the results as
measured by the objective functions for kernelized sort-
ing (above) and normalized cross-correlation used by self-
sorting maps (below). Higher values are better.

type of constraint. In another direction, our performance on
large sets is currently limited by computing the minimum
bijection. It is interesting to consider if there are effective
approximations that may be applied to improve the runtime
and enable collections orders of magnitude larger. Until then,
we have demonstrated a novel method to place a collection
of objects onto a dense grid, or any other arrangement, while
respecting pairwise distances between objects. By utilizing
various distance functions, we have shown the usefulness of
our method for infographics, photo and model exploration,
beautification and photo summarization. Our method has a
simple formulation and compares well against other state of
the art methods.
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