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Figure 1: Comparing real photos taken with a far (a) or near (d) camera, one can observe the subtle effect of perspective on portrait photos.
We simulate this effect by warping (a)→ (c) to match the apparent distance of (d); and also (d)→ (b) to match the distance of (a). These
warps are guided by an underlying 3D head model. This framework can also generate stereo anaglyphs (e) and apparent head rotation (f).

Abstract

This paper introduces a method to modify the apparent relative pose
and distance between camera and subject given a single portrait
photo. Our approach fits a full perspective camera and a parametric
3D head model to the portrait, and then builds a 2D warp in the
image plane to approximate the effect of a desired change in 3D.
We show that this model is capable of correcting objectionable
artifacts such as the large noses sometimes seen in “selfies,” or
to deliberately bring a distant camera closer to the subject. This
framework can also be used to re-pose the subject, as well as to
create stereo pairs from an input portrait. We show convincing
results on both an existing dataset as well as a new dataset we
captured to validate our method.

Keywords: faces, portraits, perspective, image enhancement

Concepts: •Computing methodologies→ Image manipulation;
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1 Introduction

Photographers deal in things which are continually vanishing
and when they have vanished there is no contrivance on earth
which can make them come back again. –Henri Cartier-Bresson

In more than a century since the invention of the daguerreotype,
photographers have developed a set of conventions for effective
composition of a photo. For example, the combination of subject
pose, camera angle, and lighting can help define a jawline. Even
the camera distance to the subject impacts perception; the literature
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shows that portraits taken up close are associated with terms such
as “peaceful” and “approachable”, whereas headshots taken from
further away are perceived as “attractive”, “smart” and “strong”
[Bryan et al. 2012; Perona 2007; Perona 2013].

This paper introduces a method that can subtly alter apparent
camera distance and head pose after a portrait has been taken
(Figure 1). This system fits a virtual camera and a parametric
3D head model to the photo, then models changes to the scene in
the virtual camera, and finally approximates those changes using
a 2D warp in the image plane. Similar frameworks have been
used for a variety of applications including changing pose and
gender [Blanz and Vetter 1999], face transfer [Vlasic et al. 2005],
and expression transfer [Yang et al. 2011]. Our work specifically
builds on the FaceWarehouse approach of Chen et al. [2014b].
These prior methods all use a weak perspective camera model,
which is a reasonable approximation only when scene points are all
at a similar distance to the camera. In contrast, our approach uses a
full perspective camera model, which allows us to modify camera
distance and handle scenes that come very close to the camera.
In a full perspective camera model, the distance and field of view
parameters are nearly interchangeable, which makes optimization
challenging. Nevertheless, this model is necessary for several of
the effects that we show, especially treatment of “selfies.”

Today most photos are taken using mobile devices with fixed
focal length. This trend accounts for the sudden explosion of the
“selfie” – 2013 word of the year in the Oxford Dictionary – meaning
a portrait taken of oneself, often with a smartphone. Selfies are
typically shot at arm’s length, leading to visible distortions similar
to the fisheye effect but with their own characteristics, most notably
an enlarged nose. In some cases this selfie effect may be desired,
but professional portrait photographers often prefer to position
the camera several meters from the subject, using a telephoto
lens to fill the frame with the subject [Valind 2014]. Figure 2
shows two photos of the same subject, revealing the effects of this
tradeoff [Orlov 2016]. Our framework allows one to simulate a
distant camera when the original shot was a selfie, and vice versa, in
order to achieve various artistic goals – reducing distortion, making
a subject more approachable, or adapting a portrait such that it may
be composited into a group shot taken at a different distance.

We show that our framework can also create convincing stereo pairs
from input portraits or videos, rendered as anaglyphs. The approach
relies on the full perspective camera available in our 3D model.
Finally, our method is also capable of other applications shown in
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previous work using a weak perspective model, such as simulating
small rotations of the subject’s head. Our main contributions are:

• The ability to edit perceived camera distance in portraits.

• A robust head fitting method that estimates camera distance.

• A new image warping approach that approximates changes in
head or camera pose.

• A method to create stereo pairs from an input portrait.

• Evaluation of our approach using an existing dataset and a new
dataset captured for this purpose.

2 Related Work

Despite a large body of work on face modeling, 3D face shape
estimation from a single image is still considered challenging, es-
pecially when the subject is captured under unconstrained con-
ditions (varying expressions, lighting, viewpoint, makeup, facial
hair). High quality face reconstruction methods often require the
subject to be scanned under controlled laboratory conditions with
special equipment such as lighting rigs and laser scanners [DeCarlo
et al. 1998; Weise et al. 2007; Alexander et al. 2009; Bradley et al.
2010]. Kemelmacher and Seitz [2011] showed it is possible to re-
construct a face shape from a large Internet collection of a person’s
photos using ideas from shape from shading. These methods are
not applicable in a single photo scenario.

In their seminal work, Blanz and Vetter [1999] fit a 3D face
morphable model to a single input image, texture-map a face
image onto a 3D mesh, and parametrically change its pose and
identity. Vlasic et al. [2005] extended their work using a multilinear
model to handle expressions and visemes. FaceWarehouse [Cao
et al. 2014b] extended the model from the face region to an
entire head shape. Other single-image reconstruction methods
include an approach based on patch-based depth synthesis from
a 3D dataset [Hassner and Basri 2006], photometric stereo with a
3D template prior [Kemelmacher-Shlizerman and Basri 2011] and
a 3D template corrected with a flow optimization [Hassner 2013].
Unlike morphable models, the latter do not allow changing the
identity and expression of the subject.

In order to edit 3D face properties in a photograph using any of the
above methods, the face has to be accurately segmented from the
background, texture-mapped onto the face mesh, and then projected
back to the image after the mesh is edited. The background, the
rest of the head, and the eyes and teeth must be adjusted – often
manually – to fit the pose change. This complex pipeline can result
in an unrealistic appearance due to artifacts of segmentation, color
interpolation, and inpainting.

An alternative approach uses the 3D model to generate a 2D warp
field induced from a change in 3D, and apply this warp directly on
the photograph [Yang et al. 2011; Yang et al. 2012a]. This approach
doesn’t support extreme edits, but it can be fully automated and
often leads to more realistic results. We adopt this approach,
driving our warp field with a multilinear morphable model with
parametrized pose, identity, and expression.

Existing morphable model methods typically have two main draw-
backs: First, the camera distance is given as input (or assumed to
be infinite) and remains fixed; and second, there are no annotations
near the top of the head, which we show poses a major problem
for fitting and altering the apparent camera distance. We extend
a multilinear model to incorporate camera distance, and present
an optimization algorithm for the more challenging fitting problem
that results. We also add a few annotations in some key locations
and show in Section 4 that these are critical for our application.

c©Anton Orlov, used with permission.

Figure 2: Compare focal lengths. Left: close-up using 90mm wide
angle lens with a large format camera (29mm equivalent on 35mm
film). Right: distant shot with 265mm telephoto lens (84mm equiv.)

The methods of Cao et al. [2013; 2014a] and Hassner et al. [2015]
estimate a perspective camera model similar to our approach.
Cao et al. drive a real-time animation with an input head video,
but their system uses multiple frames for accurate estimation of
model parameters, whereas our goal is to use a single input image.
We tested some of their underlying assumptions and found them
inapplicable to the case of single-image input (Section 3.3). Also,
Cao et al. reduce the intrinsic matrix to a single parameter estima-
tion (focal length), fixing the principal point offset to zero. In order
to support, for example, cropped images, our model estimates this
offset as well (2 extra parameters). Hassner et al. frontalize a face
given an input image. They estimate the intrinsic camera matrix
given a fixed 3D template model, since an accurate fit is not required
for their task. In contrast, our method addresses the harder problem
of jointly estimating camera and model parameters. Nonetheless,
some features of the method proposed by Hassner et al. are comple-
mentary to ours, for example “borrowing” features from one side of
the face to complete the other could be used to augment our system,
in the case where there are occlusions in the input.

The perceptual literature draws a direct connection between camera
distance, lens focal length, and the way we perceive people in
photos: Portraits taken from up close are associated with terms such
as “peaceful” and “approachable”, while those taken from further
away are “attractive”, “smart” and “strong” [Perona 2007; Bryan
et al. 2012; Perona 2013]. Cooper et al. [2012] further showed that
portraits taken using a 50-mm lens are most likely to be viewed
from a distance from which the percept will be undistorted.

The Caltech Multi-Distance Portraits Dataset [Burgos-Artizzu et al.
2014] contains portraits of different subjects taken from various
distances. In their paper, the authors created a way to estimate the
camera distance from an input portrait photo. We use their dataset
to evaluate our method.

No previous method suggests changing the apparent camera dis-
tance in a photo. As far as we know, we present the first work to
address the task of fixing portrait distortions due to camera distance.

3 Our Method

To perform perspective-aware manipulation, first we formulate a
parameterized 3D model for a head and camera (Section 3.1),
automatically detect fiducials in a photo (Section 3.2), and fit the
model to the observed fiducials (Section 3.3). Next, we can alter
the parameters of the model (e.g., move the camera or head pose,
Section 3.4) and then approximate the resulting 3D changes as a 2D
warp to the input image (Section 3.5).
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Figure 3: Fitting procedure. Green dots are 2D fiducial points. Red dots are corresponding points on 3D mesh (shown in blue). Purple dots in
leftmost image are three manually annotated fiducials for top of head and ears. Images, from left to right: Initialization gives a rough fit, but
with some misalignments (e.g. eyes). Solving rotation and translation improves the silhouette fit (e.g. chin). Solving identity and expression
fixes the eye and mouth misalignment. Solving the full camera model improves, in this case, the top of the head. After 3D landmark update
the alignment is worse, but landmark locations on the 3D mesh are more accurate. Repeating the process produces a good final fit.

3.1 Tensor Model

Our head model builds on the dataset collected by
Chen et al. [2014b]. This dataset contains scans of 150 individual
heads, each in 20 poses. Each head has 11,510 vertices in 3D
(34,530 DOF). Expressions are represented by a blendshape model
using 47 shapes.

Let us denote the average of all heads in the dataset as A ∈
R34530×1. We calculate the difference of each head from the
average and arrange the data in a tensor Z ∈ R34530×150×47, with
dimensions corresponding to vertices, identities and expressions,
respectively. We use high order SVD (HOSVD) [Tucker 1966] to
calculate a core tensor C ∈ R40×50×25. Here our approach differs
from that of Chen et al. [2014b], who do not perform SVD on
the vertex dimension. We find that our compact representation
still produces good results. Given the core tensor we use an
identity vector β ∈ R1×50 and an expression vector γ ∈ R1×25,
together with the original vector expansion calculated by HOSVD
v ∈ R34530×40 to generate a head with a specific expression and
identity F ′ via:

F ′ = (C ⊗1 v ⊗2 β ⊗3 γ) +A (1)

Here ⊗i is the standard tensor-vector multiplication in the i-th
dimension. Let us denote F ′′ ∈ R4×11510 as the natural reshape of
F ′ such that each row contains x, y, and z coordinates respectively,
with an added row of ones to create homogeneous coordinates. In
order to generate a head in a specific location and orientation, as
seen by a camera, we need to multiply the head vertices (which are
in the model coordinate system) with translation T = [13| − t] ∈
R3×4, rotation R ∈ R3×3 and the upper-triangular intrinsic matrix
K ∈ R3×3. Thus, our full model (omitting the perspective divide
for simplicity) is:

F = K ·R · T · F ′′ (2)

We found that a general intrinsic matrix K with five parameters
leads to bad shape estimation. Instead we constrain the skew to
be zero and the horizontal and vertical focal length parameters to
be the same – reasonable assumptions for unaltered photos from
modern cameras. This intrinsic matrix constrained to three DOFs
significantly improves the fit.

We contrast this full perspective model with previous work that uses
weak perspective (e.g. [Vlasic et al. 2005; Yang et al. 2011; Yang
et al. 2012b; Cao et al. 2014b]) – essentially using orthographic
projection, followed by non-uniform scaling. With weak perspec-
tive camera distance is represented by scaling, so there is no way to
adjust distortions due to nearby cameras, e.g., as seen in selfies.

3.2 Fiducial Detection

The method of Saragih et al. [2009] automatically detects 66
fiducial points on faces: chin (17), eyebrows (10), nose stem
(4), below nose (5), eyes (12), and lips (18). Unfortunately,
these locations (which are also common for other detectors) are
not sufficient for our purposes because they lack points above
the eyebrows and on the ears. Since our system manipulates
perspective, such points are crucial to model the effects on apparent
head shape.

Rather than invent a new fiducial detector, which we leave for
future work, we use an existing detector [Saragih et al. 2009], and
manually annotate three extra points on top of the head and ears.
We chose a small number of points to facilitate quick annotation
(less than five seconds).

3.3 Fitting

Given an input image and the 69 fiducial point locations (Sec-
tion 3.2) we would like to fit a head model to the image. Since
all models in our dataset share the same vertex ordering, we know
the location of the corresponding fiducial points on the 3D mod-
els. Armed with Equations (1) and (2) the task is now to find the
best parameters β, γ,K,R, t (50 + 25 + 3 + 3 + 3 = 84 in total)
such that the Euclidean distance between the fiducial points and the
projection of the 3D landmarks is minimized.

Many fitting strategies are possible. We experimented with several
and discuss them before describing our proposed approach. A naı̈ve
approach is to treat the problem as one large non-linear least square
optimization. However, we found this approach gets stuck in local
minima. Using coordinate descent, as described in Algorithm 1,
obtained lower global error. Other works [Yang et al. 2011;
Yang et al. 2012a; Cao et al. 2014b] also used coordinate descent.
However our optimization problem is much harder due to the
inherent non-linearity of the camera projection model (Algorithm 1
Line 6), which introduces ambiguity between the camera distance,
focal length and the expression and identity parameters. We also
tried adapting this naı̈ve approach by using even more fiducial
points, and achieved sub-par results. Our experience suggests that
merely adding more points does not completely solve the problem.

We also experimented with the approach of Cao et al. [2013; 2014a]
for focal length estimation. It assumes that the fitting error taken
as a function of focal length is convex. We tested this convexity
assumption in the context of our global optimization, by repeating
their experiments using un-cropped images from the Caltech Multi-



Distance Portraits (CMDP) Dataset [Burgos-Artizzu et al. 2014],
and found that convexity does not hold when calculated using a
single image. Moreover, the global optimum of the focal length
was off by an average of 35% and up to 89% from the EXIF value.
In contrast, Cao et al. were able to obtain errors below 2% using
multiple frames.

The aforementioned experiments led to a more deliberate design
of the initialization and of the gradient descent order (e.g. adding
Line 2 as a precursor to the optimization loop). All the results
shown in this paper use a total of 3 iterations. The following
sections explain the different subparts of the optimization. Figure 3
contains an overview of the fitting procedure.

Algorithm 1 Fit model to image

1: Initialize camera, identity and expression parameters (§3.3.1)
2: Solve rotation and translation (§3.3.2)
3: for i in 1..num iterations do
4: Solve identity (§3.3.2)
5: Solve expression (§3.3.2)
6: Solve camera (§3.3.2)
7: Update 3D landmark location (§3.3.3)
8: end for

3.3.1 Initialization

We extract the focal length fE from the EXIF data of the image as
an initial guess. We allow this value to change during optimization,
to account for EXIF inaccuracies and the uncertainty of the exact
location of the focal plane. We also use the distance tc between
camera and subject if it is known (e.g. in the dataset of Burgos-
Artizzu et al. [2014]). We initialize our camera parameters to be:

K0 =

fE 0 0
0 fE 0
0 0 1

 , t0 =

0
0
tc

 , rx = ry = rz = 0 (3)

Here, rx, ry and rz are the x, y and z rotation, respectively. If
distance tc is unknown we use a default value of 1m. Initializing β0
and γ0 to the average of all identity and expression vectors in our
dataset, respectively, we solve for initial parameters β, γ,K,R, t
using an interior-reflective Newton method [Coleman and Li 1996],
minimizing the Euclidean distance between 2D fiducial points and
the 2D projections of corresponding 3D landmarks. Specifically, let
L = {li} be the 2D fiducial locations (Section 3.2) and H = {hi}
be the corresponding 3D head vertices projected to the image plane
by Equation (2). Our objective is then:

min
β,γ,K,R,t

N∑
i=1

‖li − hi‖22 (4)

whereN is the number of fiducial points (69 throughout this paper).

3.3.2 Parameter Update

As introduced in Algorithm 1, we solve for rotation R and trans-
lation t once. Next holding these parameters fixed, we repeatedly
solve for identity β, expression γ, and camera parameters K,R, t.
As with initialization (Section 3.3.1), these optimizations use the
interior-reflective Newton method to minimize Equation (4). We
find it critical to solve first for rotation and translation only: Solving
first for expression or identity results in a distorted face that over-
compensates for bad pose. Solving first for the full camera matrix
occasionally results in erroneous focal length.

3.3.3 3D Landmark Update

Some landmark locations are expected to remain fixed on the 3D
model, regardless of view angle. For example, the corner of the eye
should be the same vertex for any pose. However, other landmarks
are pose-dependent. Specifically, the chin and the top of the head
are entangled with pose. Of course, the chin doesn’t actually change
location; rather our fiducial detector detects contour points along
the chin, and these contours are view-dependent. Thus, after initial
calculation of a face shape and location, we need to recalculate the
location of these “soft” landmarks. This step needs to be reasonably
efficient because it is iterated many times in Algorithm 1. We
follow an approach similar to that of Yang et al. [2011], with two
modifications: First, we add the top of the head as a movable
landmark. Second, their work used a face model, rather than a full
head model. Because the projected shape is nearly convex, they
described an approach that iteratively projects towards the convex
hull in 2D to find the contour. Since we have a full head (including
protruding ears) our projected shape is far from convex. We address
this problem by a one time preprocessing step in which we find
a restricted set of “valid” chin and head points (omitting ears and
neck, for example) and then restrict the landmark update to consider
only these valid points.

3.4 Changing Distance and Pose

Given a good fit between the input image and the head model,
we can now manipulate the model. We move the virtual camera
towards or away from the subject by changing the translation t.
To rotate the head we adjust both translation t and rotation R,
since translation is applied before rotation. Rotation is achieved
by translation in a diagonal direction (relative to the line between
camera and subject), followed by a rotation to place the head back
in the visible frustum. These modifications result in a new projected
head shape, which will guide the warp described next.

(a) initial field (b) with Laplace operator

(c) smoothed (d) with image

Figure 4: Generating the dense warp field. (a) Initial dense field,
with discontinuities in background and around face. (b) Improved
background via discrete Laplace operator. (c) Smoothed using an
averaging filter. (d) Overlay of the final warp field and input image.



Input Fit (single) Fit (full) Output (single) Output (full)

Figure 5: Using a single head model vs. our full model that allows expression and identity variation. Dot colors as in Figure 3. The single
model yields a bad fit, especially near the smile, thus resulting in an unnaturally narrow chin.

Input Fit (66 fiducials) Fit (69 fiducials) Output (66 fiducials) Output (69 fiducials)

Figure 6: Using the standard 66 fiducial points vs. adding 3 points for top-of-ear and top-of-head. Dot colors as in Figure 3. Fitting to 66
points produces inaccurate alignment near the ears and the top of the head, thus resulting in unnatural proportions and skew.

3.5 Warping

After manipulating distance or pose we now have two sets of points:
First, the original 3D face vertices that match the input image, and
second, the manipulated vertices representing a change of distance,
pose, expression or any other 3D manipulation. Given these two
sets, we find a 2D image warp to produce the output image.
However, some points are “occluded” for the purpose of the warp.
For example, our head model includes back-facing areas, but such
areas move in the direction opposite from the front-facing areas
when changing camera distance. Therefore we remove occluded
vertices before calculating the warp.

Given a sparse set of before and after points, we need to extrapolate
the vector field to the entire image. We use triangulation-based
cubic interpolation to get an initial estimate of the dense vector
field. Although correct in 3D, strong discontinuities in the vector
field may cause artifacts in the output. Consider, for example, an
extreme rotation of the head. Cheek points that had the same x and
y values (but different z values) need to be stretched to different
x locations, causing a shear. Note that the vector field in this
case is correct in 3D, but cannot be approximated well by a 2D
warp. Therefore, we smooth out large gradients in the warp field,
as follows: We first replace all values outside the face region with a
smooth interpolation of the valid values, by computing the discrete
Laplacian and solving a Neumann boundary condition. We next
blur the vector field by convolving with a disk with radius 1

20
of the

photo diagonal. Finally with the smooth warp field we use reverse
mapping to calculate the origin of each pixel in the output image.
We use linear interpolation since it is simple, fast, and produces
satisfactory results. Figure 4 shows a breakdown of these steps.

4 Evaluation

In this section we evaluate our method. Section 4.1 demonstrates
the importance of different parts of the pipeline by showing results
with various stages disabled. Section 4.2 and 4.3 compare our
results against ground truth photos of synthetic and real heads,
respectively, taken at known distances. Section 4.4 discusses the
impact of our warp on the background of the portrait.

4.1 Pipeline Evaluation

For a face with neutral expression and common proportions, a
single average head model might suffice (Section 4.3). However,
when the input image is expressive, it is important to use the full
face model. Figure 5 shows results using an average face model,
instead of optimizing a specific identity and expression to our
image. Clearly a single face cannot be a catch-all solution, resulting
in artifacts due to bad alignment.

Fiducial point based matching from a 3D head to a 2D image
is sensitive to the choice of landmarks. Many existing works
use 66 standard points spread across the chin, eyebrows, nose,
eyes and lips [Yang et al. 2011; Yang et al. 2012a; Cao et al.
2014b]. This choice is motivated mostly by ease of recognition.
When fitting a face model and manipulating only the face internals,
such landmarks might suffice. However, we found that full head
manipulation, especially one where the camera location is changed,
requires more fiducial points. Adding three points (top-of-head and
ears) leads to significantly better results for our scenario. Figure 6
shows failure cases when these additional landmarks are not used.

Our warping procedure (Section 3.5) uses well established methods
(such as triangulation and sampling). However, we use a specific



Figure 7: Warp comparison. L-to-R: PiecewiseLinearTransforma-
tion2D (Matlab), LocalWeightedMeanTransformation2D (Matlab),
our result without smoothing, our result. Input image in Figure 13.

Real (0.9m) Real (1.2m) Real (4.8m)

Real 0.9 v. 1.2 Our result (1.2m) Our result (4.8m)

Real 0.9 v. 4.8 Real 1.2 v. Ours 1.2 Real 4.8 v. Ours 4.8

Figure 8: Ground truth evaluation. We use a mannequin to make
sure no pose or expression changes occur in the ground truth
images. Our results closely match the ground truth, both in overall
head shape and the location of internal face features.

procedure with added steps to reduce potential artifacts. Figure 7
compares our warping results to results obtained by standard image
warping techniques.

4.2 Synthetic Heads

Numerically evaluating our method is hard. Photos of real people
taken from different distances at different times have slight varia-
tions in illumination, expression and pose, thus the “ground truth”
image does not match exactly a warped version of the input. To
tackle this issue we perform evaluation on two types of data: man-

nequin heads and real people. The mannequin heads provide a
controlled environment, for which we can get accurate ground truth.

Figure 8 shows several results with mannequin heads. Our input
image is taken from a distance of 90cm. We warp it to simulate
a range of distances between 120cm and 480cm. We compare
each warped result to the ground truth by calculating the absolute
difference of the gray-scale pixel values (black indicates equality;
white indicates the largest difference.) Note that the method
manages to simulate both the head shape and the location of internal
features such as eyes and ears.

4.3 Real Heads

To obtain a similar evaluation of real-world cases, we use the
CMDP dataset [Burgos-Artizzu et al. 2014], which contains por-
traits of people captured from a few controlled distances. We evalu-
ate the process of changing the camera distance from an image shot
at 60cm to 480cm and then compare to a real image captured at that
distance. This is the harder direction of manipulation, as features in
the close-up image (e.g. ears) are not always visible.

However, a naı̈ve pixel difference will not suffice here, due to
slight pose, expression and illumination changes in the ground truth
images. Therefore to compare two images we:

1. Register the images using a rigid transform, to avoid penalizing
simple rotations or translations.

2. Use Large Displacement Optical Flow [Brox and Malik 2011]
to calculate optical flow between the images.

3. Mask out the background regions, since we are only interested
in the head warp.

4. Calculate the median optical flow magnitude in the head region.
To normalize, we multiply by 100 / image diagonal.

Figure 9: Score comparison with the 45 images from CMDP
dataset that have EXIF data. We warp images taken from 60cm
to appear like 480cm away, comparing to ground-truth photos
from that distance. Energies are shown for: (1) input images, (2)
radial distortion, (3) warping with a face only (4) warping using an
average head, and (5) our full model. Top: median values of our
energy function, where lower is better (Section 4.3). Boxes are 25th
to 75th percentile and red line is median of medians. Bottom: we
rank each method vs. all others, counting how often a method had
each rank. Our method outperforms all others.



←input ground truth→

radial face only mean head ours

Figure 10: Comparing methods. Top: input and ground truth at
target distance. Middle compares alternate approaches to ours:
optimal radial distortion, fiducials on face only, mean head model,
and ours. Bottom: visualizing error from ground truth.

Figure 9 numerically compares our method to the following four al-
ternatives: 1) Compute an optimal radial distortion correction given
known ground truth (giving maximal advantage to this method to
test its potential); 2) Use only the fiducials and the vertices of
the face to drive the warp, simulating the fitting done by methods
like [Yang et al. 2011; Cao et al. 2014b] and many others; 3) Fit
an average head instead of the multi-linear deformable model and
warp using our method, representing methods like [Kemelmacher-
Shlizerman and Basri 2011; Kemelmacher-Shlizerman et al. 2011;
Hassner et al. 2015] that use a single model; We use a mean full
head model, averaged from the dataset in [Cao et al. 2014b] as
apposed to just a face model as was done in previous methods, to
explore a full potential of this approach for our task. 4) Fit our full
model. Figure 10 shows representative results.

Figures 5 and 13 show our results for input images with a non-
neutral pose and expression. We compare against a static model,
showing that a deformable model is important.

4.4 Background Preservation

Most of the examples shown so far had a rather uniform background
that might hide warp artifacts if they exist. While some works in
the area are limited to these types of inputs, we would like to have a
system that works in the wild. Moreover, we cannot expect the user
to mask the area around the head, since we aim for a fully automatic
method.

Thus, we require minimal distortion in the background, which we
achieve by using a 2D warping approach (Section 3.5) rather than a
3D texture mapping approach requiring perfect head segmentation.
In Figure 12 we show several examples of our warp result on noisy
backgrounds.

4.5 Runtime

Our method is implemented in Matlab, and can be further opti-
mized. Typical runtime is around 5 seconds to fit the model to the
input image, and less than 1 second for warp field generation and

warp calculation. To support real-time interactivity, we also created
a WebGL viewer that can adjust warps on the fly (Section 5.3). We
pre-calculate warp fields for a few predefined distances or other pa-
rameters such as pitch and yaw. The pre-calculation takes 3 seconds
for 4 samples of the distance parameter. After pre-computing these
warp fields, the interpolated warp is rendered in the web browser in
real time (more than 60 FPS).

5 Applications

Our primary application is to adjust camera distances (Section 5.1).
We also discuss other applications including stereoscopic portraits
(Section 5.2) and pose adjustment (Section 5.3).

5.1 Distance Correction

Our main motivating application is to adjust camera distance in
portraits. Figure 11 shows distance manipulation results for seven
subjects from the CMDP dataset. In each case the 60cm portrait
was warped to match the 480cm one, and vice versa, so they can
be compared to ground truth. Note that the changes are subtle but
noticeable. Moreover, these changes are more prominent when the
subject is known (yourself, family or a friend). We refer the reader
to the accompanying video as well as the interactive viewer in the
supplemental materials for more examples.

All the above results are from a controlled dataset, for comparison
to ground truth. However, our system also works well on images “in
the wild.” Figure 12 shows distance manipulation on real images
tagged as #selfie on Twitter and Flickr. Our system works across
a variety of expressions and poses despite cluttered backgrounds
and complex lighting. Figure 13 and Figure 5 further illustrate the
robustness of our method to exaggerated expressions and poses.
More examples are in the supplementary materials.

5.2 Headshot Stereoscopy

We can create stereoscopic images using our framework. Given
the distance from the subject and the average human interpupillary
distance, we can modify the viewpoint to obtain two new images —
one for each eye. Those images can then be displayed on devices
such as VR headsets. Figure 14 shows 3D anaglyphs automatically
created from 2D photos using this approach. These can be viewed
using a standard pair of red/cyan glasses (red eye left).

5.3 Other Applications

Our 3D fitting pipeline is based on the multi-linear morphable
model framework. As such, we can replicate some of the face ma-
nipulation tasks shown in previous work using similar models [Vla-
sic et al. 2005; Yang et al. 2011; Cao et al. 2014b]. These include
pose and expression manipulation, and animating a moving face
from a still image (see Figure 1f and the accompanying video).

Our WebGL based user interface supports interactive photo manip-
ulation. The user is presented with the image and sliders to ma-
nipulate camera distance and head pose (Figure 15). We calculate
warp fields for predefined parameter values (4 distances, 5 pitch
values, 5 yaw values). When the user selects a specific parameter
combination, we use trilinear interpolation to generate a warp field.
Then, we use the warp field to create the output via reverse map-
ping. Output images are rendered at real-time rates, allowing users
to adjust parameters to their liking.
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Figure 11: Fixing/generating selfies. Legend in upper-left corner shows arrangement of each quadruplet. Input ground truth “near” photos
were taken at 60cm, whereas “far” photos were taken from 480cm (CMDP Dataset [Burgos-Artizzu et al. 2014]). Synthetic images were
warped from near to far and vice versa, and are arranged and color matched for ease of comparison. When evaluating, compare the head
shape and the location of internal face features. These results are selected from a larger set available in supplemental materials.

Figure 12: In-the-wild selfie correction. We use Twitter and Flickr images tagged as #selfie. Left: original, right: our result. Results shown
for various head shapes. Background remains largely undistorted. c©Flickr users Justin Dolske, Tony Alter, Omer1r, and Christine Warner Hawks.



Figure 13: Manipulating distances for expressive faces. Each pair contains: original (60cm, left image), our output (480cm, right image).

6 Limitations and Future Work

We present a unified framework for altering the camera and subject
pose in a portrait photo. This method can be used to improve
selfies, make a subject look more approachable or adapt the camera
distance to match a different shot for compositing. We display
results for various scenarios and compare with ground truth data.
Our editing operations remain in the realm of “plausible” – they
do not create new people, rather they show the same people under
different viewing conditions. In that sense, they are the post-
processing equivalent of a portrait photographer making a different
decision about the composition. Our framework also supports
creating stereoscopic views from portraits and video, as well as
making video with apparent camera and subject motion from a still
portrait. More results, video and demos may be seen on our project
page http://faces.cs.princeton.edu/.

Our approach has several weaknesses that suggest opportunities for
future work. First, the pipeline relies on a good fit between input
and model, and if the fit fails, the results will be distorted. While our
optimization has proved robust in many cases, occasional failures
remain. Future approaches might build on larger, more varied head
shape datasets, or rely on 2.5D sensor data emerging in new camera
rigs. Second, we only warp the data that exists in the original
image. This produces convincing results in many cases, but will not
handle significant disocclusions such as can arise from significant
head rotations. One way to address this might be by filling missing
regions via, e.g., texture synthesis with a strong face prior [Hassner
et al. 2015]. Third, the way we currently treat hair is by a smooth
extrapolation of the warp field outside of the head region. This is
often insufficient, and could be improved with a specialized hair
model. Fourth, our method does not handle eye gaze correction
and extreme expression change which may be desired in some
scenarios. One could experiment with existing techniques for
editing gaze [Giger et al. 2014] and expression [Yang et al. 2011].
Finally, while the accompanying video shows a couple speculative
applications for video (stereoscopic video and a “moving portrait”)
a proper investigation of such applications remains for future work.
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Figure 14: 3D anaglyphs created from a single image. To view,
wear red-cyan 3D glasses and zoom the image to fill your screen.

Figure 15: Interactive editing, in which sliders control the resulting
warp field. (See video and demo on the project page.)

http://faces.cs.princeton.edu/
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