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Abstract

The goal of this paper is to investigate a new shape analysis method
based on randomized cuts of 3D surface meshes. The general strat-
egy is to generate a random set of mesh segmentations and then to
measure how often each edge of the mesh lies on a segmentation
boundary in the randomized set. The resulting “partition function”
defined on edges provides a continuous measure of where natural
part boundaries occur in a mesh, and the set of “most consistent
cuts” provides a stable list of global shape features. The paper de-
scribes methods for generating random distributions of mesh seg-
mentations, studies sensitivity of the resulting partition functions to
noise, tessellation, pose, and intra-class shape variations, and inves-
tigates applications in mesh visualization, segmentation, deforma-
tion, and registration.
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1 Introduction

Shape analysis of 3D surfaces is a classical problem in computer
graphics. The main goals are to compute geometric properties of
surfaces and to produce new representations from which important
features can be inferred.

In this paper, we investigate a new shape analysis method based
on randomized cuts of 3D surface meshes. The basic idea is to
characterize how and where a surface mesh is most likely to be cut
by a segmentation into parts.

Our approach is to compute multiple randomized cuts, each of
which partitions faces of the mesh into functional parts (Figure 1b).
From a set of random cuts, we derive: 1) a partition function that
indicates how likely each edge is to lie on a random cut (Figure 1c)
and 2) a set of the most consistent cuts.

These structures provide global shape information useful for vi-
sualization, analysis, and processing of 3D surface meshes. For
example, the partition function provides a continuous function for
visualization of “chokepoints” (Section 7.1), deformation at joints
(Section 7.4), and selection of stable features for surface registra-
tion (Section 7.3). The most consistent cuts are useful for finding
part boundaries in surface segmentation (Section 7.2).

The paper makes the following research contributions. First, it
introduces two new structures for characterization of 3D surface
meshes: the partition function and the consistent cuts. Second, it
describes three alternative methods for computing them, based on
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Figure 1: Shape analysis with randomized cuts. Given a 3D mesh as
input(a), we sample segmentations from a distribution (b) to gener-
ate a partition function that estimates the likelihood that an edge lies
on a segmentation boundary. This function provides global shape
information that is useful for mesh visualization, analysis, and pro-
cessing applications.

randomized K-means, hierarchical clustering, and minimum cut al-
gorithms. Third, it provides an empirical analysis of the properties
of the partition function, focusing on sensitivity to surface noise,
tessellation, pose, and shape variations within an object class. Fi-
nally, it demonstrates applications of randomized cuts in mesh vi-
sualization, registration, deformation, and segmentation.

2 Related Work

Our work is related to prior work in a diverse set of areas, includ-
ing shape analysis, mesh segmentation, and randomized algorithms.
The following discussion reviews the most relevant previous work.

Shape Analysis: Our goals are motivated by recent work in com-
puter graphics on defining geometric properties for analysis, visual-
ization, and processing of 3D surface meshes. Some classic exam-
ples of local shape properties include curvature, slippage [Gelfand
and Guibas 2004], accessibility [Miller 1994], saliency [Lee et al.
2005a], multiscale analysis [Mortara et al. 2003], and electri-
cal charge distribution [Wu and Levine 1997]. Recent exam-
ples of global shape properties include shape diameter [Shapira
et al. 2008], ambient occlusion [Zhukov et al. 1998], spectral
analysis [Zhang et al. 2007], and average geodesic distance [Hi-
laga et al. 2001]. These properties have been used for visualiza-
tion [Zhukov et al. 1998], segmentation [Shapira et al. 2008], skele-
tonization [Katz and Tal 2003], matching [Hilaga et al. 2001], and
several other applications. Our partition function adds to this list:
it is a global shape property that measures the probability that a
surface point lies on a segmentation boundary.

Mesh Segmentation: The methods in this paper leverage recent
work on segmentation of 3D meshes into parts. A wide variety of
algorithms have been proposed for this problem, based on convex
decomposition [Chazelle et al. 1997], watershed analysis [Mangan
and Whitaker 1999], K-means [Shlafman et al. 2002], hierarchi-
cal clustering [Garland et al. 2001; Gelfand and Guibas 2004; In-
oue et al. 2001], region growing [Zuckerberger et al. 2002], mesh
simplification [Li et al. 2001], spectral clustering [Liu and Zhang
2004], fuzzy clustering and minimum cuts [Katz and Tal 2003],



core extraction [Katz et al. 2005], critical point analysis [Lin et al.
2004], tubular primitive extraction [Mortara et al. 2004], primitive
fitting [Attene et al. 2006b], random walks [Lai et al. 2008], Reeb
graphs [Antini et al. 2005], snakes [Lee et al. 2005b], and other
methods (see [Agathos et al. 2007] or [Shamir 2006] for a recent
survey). Our randomized cuts approach is synergistic with these
methods in two ways. First, it uses (randomized versions of) ex-
isting mesh segmentation algorithms to make cuts when computing
the partition function. Second, it utilizes the partition function to
score candidate cuts in a new hierarchical segmentation algorithm.
As such, our work benefits from improvements to mesh segmenta-
tion algorithms and vice-versa.

Random Cuts: Our approach follows a vast amount of prior work
on randomized algorithms for graph partitioning in theory and other
subfields of computer science. Perhaps the most relevant of this
work is the algorithm by Karger and Stein [Karger and Stein 1996],
which utilizes a randomized strategy to find the minimum cut of
a graph. The main idea is to generate a large set of randomized
cuts using iterative edge contractions, and then to find the minimum
cost cut amongst the generated set. Our paper differs in that we use
randomized cuts to produce a partition function and to generate a
set of scored cuts (rather than finding a single minimum cut).

Typical Cuts: Other authors have used randomized algorithms for
graph analysis. For instance, [Gdalyahu et al. 2001] generated mul-
tiple cuts in a graph representing an image with randomized itera-
tions of hierarchical clustering to produce a similarity function indi-
cating the probability that two nodes reside in the same cluster. The
probabilities were used to segment the image with “typical” cuts, by
constructing connected components of the graph formed by leaving
edges of probability greater than 0.5. The result is both a pairwise
similarity function for pixels and an image segmentation. Our work
takes a similar approach in that we use randomized clustering to
explore the likelihood that nodes lie in the same cluster (more pre-
cisely, that edges lie on the boundaries between clusters). However,
we investigate a several randomized clustering strategies (finding
that the hierarchical algorithm of [Gdalyahu et al. 2001] does not
perform best in our domain), produce a partition function and a set
of consistent cuts for 3D meshes, and investigate applications for
3D mesh visualization, analysis, and processing.

3 Overview of Approach

In this paper, we investigate the use of random cuts for shape anal-
ysis of 3D meshes. The general strategy is to randomize mesh seg-
mentation algorithms to produce a function that captures the prob-
ability that an edge lies on a segmentation boundary (a cut) and to
produce a ranked set of the most consistent cuts based on how much
cuts overlap with others in a randomized set.

This strategy is motivated by three factors. First, no single algo-
rithm is able to partition every mesh into meaningful parts every
time [Attene et al. 2006a]. Second, existing segmentation algo-
rithms often have parameters, and different settings for those pa-
rameters can significantly alter the set of cuts produced. Third, seg-
mentations produced by different algorithms and parameter settings
often cut many of the same edges [Attene et al. 2007]. Thus, it could
be useful to combine the information provided by multiple discrete
segmentations in a probabilistic framework, where the output is not
a single discrete segmentation, but rather a continuous function that
captures the likelihood characteristics of many possible segmenta-
tions.

For instance, consider the example shown in Figure 1. The im-
ages in Figure 1b show discrete segmentations of a kangaroo pro-
duced by a randomized hierarchical clustering algorithm (as de-
scribed in Section 5.2). Although every segmentation is different,

some boundaries are found consistently (e.g., along the neck, cut-
ting off the legs, arms, tail, etc.). These consistencies are revealed
in the partition function in Figure 1c, which shows for each edge
the probability that it lies on a segment boundary. We believe that
this continuous function reveals more information about the part
structure of the kangaroo than does any one of the discrete segmen-
tations.

More formally, we define the partition function P(e,S) for edge e
of a 3D mesh with respect to a distribution of segmentations S to
be the probability that e lies on the boundary of a random segmen-
tation drawn from S. From this partition function, we define the
consistency, P(Si), of a cut, Si, within a distribution S as the length-
weighted average of the partition function values of its edges, and
we define the most consistent cuts as the set of cuts with highest
consistency.

This formulation is similar to the one used to find typical cuts for
image segmentation [Gdalyahu et al. 2001], but generalizes it in
five main ways. First, the construction combines multiple seg-
mentation algorithms (not just hierarchical clustering) and it allows
randomization of any variable guiding those algorithms (not just
which edge to contract). Second, it produces a partition function on
edges (rather than a similarity function on pairs of nodes). Third,
it produces a continuous score for every random cut (not just a dis-
crete set of cuts whose edges all have probability greater than 0.5).
Fourth, it provides a natural way to measure the consistency of cuts.
Finally, it suggests a number of applications that utilize continuous
functions on meshes (not just segmentation). Our main contribu-
tions are investigating the space of randomization strategies and
mesh processing applications within this general formulation.

4 Process

The input to our processing pipeline is a 3D surface mesh, M (Fig-
ure 1a), and the outputs are: 1) a randomized sampling of segmen-
tations, Ŝ (Figure 1b), 2) a partition function estimate, P(e, Ŝ), for

every edge e of the mesh with respect to Ŝ (Figure 1c), 3) a con-
sistency score for every segmentation indicating how consistent its
cuts are with others in Ŝ, and 4) a ranked set of most consistent cuts.
The processing pipeline proceeds in four main steps:

1. Graph construction: The first step produces an edge-weighted
graph G representing the input mesh. We follow a standard ap-
proach to this problem, building the dual graph of the input mesh,
where nodes of the graph correspond to faces of the mesh, and
arcs of the graph correspond to edges between adjacent faces in
the mesh. Because some algorithms seek to minimize traversal dis-
tances across a graph, while others minimize graph cuts, we asso-
ciate two weights to each graph arc: a traversal cost, and a cut cost.
The weights are created such that low-cost cuts in the graph corre-
spond to favorable segmentation boundaries in the mesh, and low-
cost traversal paths in the graph occur between points on the mesh
likely to be in the same functional parts. Similarly to [Funkhouser
et al. 2004], we assign a concavity weight to each mesh edge as fol-
lows: if θ is the exterior dihedral angle across an edge, we define a
concave weight w(θ) = min((θ/π)α ,1), which is low for concave
edges, and 1 for convex ones (we use α = 10 in all experiments and
examples in this paper). We form cut costs by multiplying the mesh
edge length by w(θ), and traversal costs by dividing the distance be-
tween face centroids by w(θ). The cut cost of a mesh segment then
is its perimeter, weighted to encourage concave boundaries, and the
traversal costs represent geodesic distances on a mesh, weighted to
make travel through concave edges longer.



2. Random cuts: The second step generates a randomized set of K-
way segmentations, where each segmentation partitions faces of the
mesh into disjoint parts. For this step, we investigated several algo-
rithms (including K-means, Hierarchical clustering, and Mincuts),
and we randomized them with several different strategies. This step
is the main focus of our study, and thus we defer details to Section 5.
For the purpose of this section, it suffices to say that the output of
this stage is a scored set of segmentations, where each segmenta-
tion Si provides a set of edges C that are “cut” by the segmentation
(lie on the boundary between segments), and the score indicates the
“quality” of the segmentation (e.g., the normalized cut value).

3. Partition function: The third step estimates the partition func-
tion for each edge. Given a set of K-way segmentations, Ŝ, ran-
domly sampled from S, this can be done trivially for each edge e
by summing the weights of all segmentations in Ŝ that contain a
boundary on e and dividing the sum by the total weight of all seg-
mentations in Ŝ. If all segmentations have equal weight, then the
result is an estimate of the probability that an edge is cut by a seg-
mentation in S.

4. Cut consistency: The final step provides a consistency score for
every segmentation Si in Ŝ. It is computed by taking a weighted av-
erage of the partition function values along edges on the boundaries
of segments in Si (where averaging weights are proportional to edge
lengths). The M segmentations with highest scores (possibly all of
them) form a set that we call the most consistent cuts.

The main focus of our project is on methods for generating random
segmentations, analyzing properties of the resulting partition func-
tions, and demonstrating applications in computer graphics. The
following sections address these three issues, respectively.

5 Methods

The key step of our process is to define a randomized process that
creates a distribution of mesh segmentations and to sample that pro-
cess to compute properties of the distribution (the partition func-
tion). Several strategies are possible. First, random variables could
determine which algorithmic strategy should be used to generate
segmentations (e.g., K-means vs. hierarchical clustering). Second,
they could determine parameters for specific algorithms (e.g., the
number of segments in K-means). Third, they could guide choices
made within a segmentation algorithm (e.g., the order of hierarchi-
cal edge contractions [Karger and Stein 1996]). Finally, they could
provide randomized variation to the input graph (e.g., randomized
edge weights). Of course, combinations are possible as well. Each
combination of random variables produces a distribution of cuts,
and therefore a different partition function and set of most consis-
tent cuts. In this section, we investigate a range of strategies for
randomizing cuts and describe details of our implementations.

5.1 K-Means

K-means is a popular algorithm for clustering, and its variants have
been used for graph partitioning and mesh segmentation. For ex-
ample, [Shlafman et al. 2002] used K-means to decompose faces
of a mesh into parts as follows. First, K seed faces were chosen to
represent segment centers with a deterministic greedy process that
maximizes their pairwise distances. Then, the algorithm alternated
between assigning faces of the mesh to the segment represented by
the closest seed face (according to traversal costs) and recomputing
the seed faces to minimize the sum of distances to faces in their
segments.1 This process was iterated until convergence.

1In our implementation, seed faces are updated to be the ones furthest

from their segment boundaries, a slight change from [Shlafman et al. 2002]

(a) Random Segmentations (b) Partition Function

Figure 2: Sample randomized segmentations produced with K-
means (a) and the resulting partition function (b).

We have experimented with this approach within our framework by
randomizing the set of seed faces chosen during the first step of
the algorithm. That is, for each new segmentation sampled from
the random distribution, we simply select K faces randomly from
the mesh and then iterate K-means to convergence. After many
randomized segmentations, we generate the partition function value
for each edge by computing the fraction of segmentations for which
that edge lies on a segment boundary.

Figure 2 shows an example partition function produced for the Stan-
ford Bunny with this randomized K-means algorithm. The left im-
age shows 4 of 1200 segmentations generated with K-means ini-
tialized with random sets of 10 seeds. The right image shows the
resulting partition function. Note the dark lines indicating strong
consistency in the cuts along the neck and front of the legs, while
the cuts at the base of the ears and back of the legs do not always
agree, and therefore appear lighter.

Since the value of K given as input to the K-means algorithm dic-
tates the number (and therefore size) of parts generated in each
segmentation, there is a family of possible partition functions that
could be produced by this algorithm. For simplicity, we provide
results for only one setting, K = 10, as it provides a good trade-off
between parts that are too big and ones that are too small. Alter-
natively, it would be possible to randomize K for different segmen-
tations. However, we expect that approach would provide worse
results (it would add poor segmentations to the distribution).

5.2 Hierarchical Clustering

Hierarchical clustering is another popular segmentation algorithm.
In the context of surface meshes, the process starts with every face
in a separate segment, and then merges segments iteratively in order
of a cost function until a target number of segments (K) has been
reached or some other termination criterion is met. Typical cost
functions include the minimum cut cost of any edge between two
segments (single-link clustering), the total cost of the cut between
two segments [Gdalyahu et al. 2001; Karger and Stein 1996], and
the Normalized Cut cost [Shi and Malik 2000].

In our work, we use a slightly modified Normalized Cut cost to
guide the random order in which segments are merged. Specif-
ically, for every pair of adjacent segments, we compute an area-
weighted version of the Normalized Cut cost2 for the segmenta-
tion that would result if the segments were merged. Then, we set

that we found gave better results for our graphs.
2The area-weighted cost function sums for all segments the ratio of the

segment’s cut cost to its area. We chose this cost function over the traditional

Normalized Cuts (which divides by the cost of all edges in a segment) to

avoid dependence on mesh tessellation.
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Figure 3: Sample randomized segmentations produced with Hier-
archical Clustering (a) and the resulting partition function (b).

the probability of selecting every pair to be a function of that area-
weighted Normalized Cut cost. Specifically, to select a pair of seg-
ments to merge at each iteration, we map the differences in area-
normalized cut associated with contracting each graph arc to [0, 1],
raise each value to the power of (1/r) where r is a randomization
parameter, and choose an arc to contract with that probability. This
way, as r approaches 0, this algorithm approaches its determinis-
tic version. We found that values on the order of r = .02 produce
a reasonable tradeoff between quality and sufficient randomness in
the resulting segmentations. As in K-means, the desired number of
segments is an input and controls the size and scale of the parts.

Figure 3 shows the partition function produced by running the ran-
domized hierarchical clustering algorithm while greedily minimiz-
ing the area-weighted Normalized Cut cost to produce K = 10 seg-
ments. As in Figure 2, the left image shows four example segmen-
tations, while the right image shows the resulting partition function.
Note that boundaries at the top of the legs and front of the tail are
sharper than they are for K-means (in Figure 2). Since the hierar-
chical algorithm based on area-weighted normalized cuts explicitly
favors segmentations with boundaries on concave edges, it is more
likely to produce consistent cuts in those areas. Note also that that
K does not have to match the “natural” number of segments to pro-
duce a quality partition function: the randomized nature of the al-
gorithm alternates between cuts with similar costs, such as cutting
off one leg versus another, and therefore both are reflected in the
partition function.

5.3 Min Cuts

Finding minimum cuts is a third possible segmentation strategy.
The general approach is to select a set of K seed nodes and then to
find the minimum cost cut (mincut) that partitions the seeds. This
is a classical network flow problem with well-known polynomial
time solutions for K = 2, and approximation algorithms for K > 2.
However, in order to avoid trivial cuts that partition one face from
the rest of the mesh and similar small-area segments, the mincut
problem must be modified with constraints and/or penalties to fa-
vor nearly equal-area segments. Towards this end, [Katz and Tal
2003] constrained cuts to lie within a “fuzzy” area, where the rela-
tive geodesic distance, d = min(dist(e,A),dist(e,B))/(dist(e,A)+
(dist(e,B)) between an edge e and seeds, A and B, was greater than
0.5− ε . While this approach avoids the main problem of making
trivially small cuts, it can produce cuts that lie on the boundaries
of the fuzzy area (e.g., both examples in Figure 3 of [Katz and Tal
2003]), which may do not lie on natural seams of the mesh.

To address this problem, we make a small modification to the min-
imum cut algorithm of [Katz and Tal 2003]. For every set of seeds,
X, we adjust the weights on edges of the graph with a penalty func-
tion, W (e,X), that gradually falls off with distance from the closest
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Figure 4: Sample randomized segmentations produced with the
MinCut algorithm (a) and the resulting partition function (b).

seed. In our current implementation, W (e,X) is a piecewise linear
function that has a constant high value of Whigh for d <= x1, de-
creases linearly to 1 at d = x2, and then remains 1 for d >= x1. This
approach encourages cuts at larger distances from seeds, but does
not enforce hard boundaries on the fuzzy area (within our frame-
work, the method of [Katz and Tal 2003] is equivalent to setting
x1 = x2 = .5− ε). For simplicity sake, we control the coefficients
and cutoffs for the distance penalty function with a single parame-
ter, s (Whigh = 400s+1, x1 = s, and x2 = 3s), which roughly controls
the “size” of parts to be generated by the segmentation.

We use this MinCut algorithm to generate a set of cuts by random-
izing the selection of seed faces. In our current implementation, we
consider only cuts between two seeds at a time in order to leverage
fast polynomial algorithms for finding s− t mincuts. In each ran-
domized iteration, our algorithm proceeds by randomly selecting
two faces, s and t, modulating the original weights on edges of the
graph by W (e,s, t), and then finding the minimum cut separating
s and t in the modified graph using the Edmonds-Karp algorithm
for finding maxflows [Edmonds and Karp 1972]. This process is
iterated to generate a sampled set of cuts from which the partition
function and most consistent cuts structures are derived.

Figure 4 shows the partition function produced by this process for
400 iterations of the MinCut algorithm with s = 0.05. As in Fig-
ures 2 and 3, the left image shows four random segmentations pro-
duced by the MinCut algorithm when randomly seeded with differ-
ent sink and seed faces (for example, the bottom-right segmentation
came from a source on the face and a sink on the body, while the
bottom-left came from a source on the ear and a sink on the face).
Even though the randomized segmentations produced only two seg-
ments each, and not all of the 2-way segmentations find meaningful
parts (e.g., the top-right segmentation cuts off only part of the ear),
they cumulatively reveal the decomposition of the bunny into its
natural set of parts, as shown in the partition function shown on the
right. As you can see, the cuts produced with the MinCut algorithm
are even more consistent (darker and sharper lines in the partition
function) than the ones generated with Normalized Cuts.

Figure 5 shows how the partition function reveals features of differ-
ent size as s is varied: the ears of the dog and mouth of the horse
are revealed for s = 0.01, and large-scale features such as the cuts
through the bodies are revealed at s = 0.05. For some applications,
it may be useful to created a collection of partition functions for
a range of values of s, and treat them as a feature vector for each
edge. For others, it may make sense to randomize s within a range.
For the experiments in this paper, however, we simply use s = 0.05.
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Figure 5: Comparison of partition functions generated with the
MinCut algorithm using different settings of the s parameter, which
loosely controls the “sizes” of parts cut off in random segmenta-
tions.

6 Experimental Results

We have implemented the algorithms of the previous section and in-
corporated them into the pipeline for computing the partition func-
tion and consistent cuts described in Section 4. In this section, we
show examples for many types of meshes, analyze compute times,
and investigate sensitivities to noise, tessellation, articulated pose,
and intra-class variation. Our goal is to characterize the speed, sta-
bility, and practicality of the partition function as a shape analysis
tool.

Due to space limitations, it is not possible to do a detailed analysis
for all the possible randomized cut strategies described in the previ-
ous section. So, in this section, and for the remainder of the paper,
we will only discuss results generated with the MinCut algorithm
using s = 0.05. These results are representative of what is possible
with randomized cuts, but possibly not as good as what could be
achieved by tuning the algorithm for specific applications.

6.1 Compute Time

Our first experiment investigates the compute time and convergence
rates of our randomized process for computing partition functions.
We performed a timing test on a Macintosh with a 2.2GHz CPU and
2GB of memory using 5 meshes from Figure 7 (screwdriver, mask,
human, pronghorn, and bull). For each mesh, we first decimated it
to 4K triangles with QSlim [Garland and Heckbert 1997], and then
generated random segmentations using the MinCut algorithm until
the partition function stabilized. We measure convergence rates by
reporting the maximum error for each iteration with respect to the
final partition function value (i.e., the maximum error for any edge
– RMSD values would be orders of magnitude smaller).

A plot of error versus iteration appears in Figure 6. We can see that
after about 400 iterations, the maximum error for any edge in any
of the 5 models is below 5% (this is the number of iterations used
to make most images in this paper). The algorithm took .6 seconds
to run per iteration, and thus an average of 4 minutes were taken to
create a stable partition function for each of these models. Both the
timings and convergence rates do not vary much between models
of similar triangle counts, but they do increase with O(V E2) for
models with N faces and E edges, as we execute Edmonds-Karp to
find a mincut for every iteration.

While the computational complexity of the MinCut algorithm
grows superlinearly with triangle count, this is not a practical prob-
lem for our system, since we aim to reveal large-scale part struc-
tures of a mesh, which are apparent at low triangle counts. We strike
a conservative balance between mesh resolution and compute time
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Figure 6: Maximum error in partition function versus iterations for
five example models.

by decimating all meshes to at most 4K triangles, which contain
more than enough resolution to describe parts, but allow reasonable
compute times.

6.2 Examples

Our second experiment investigates the qualitative properties of the
randomized cuts generated with our methods. We do this by com-
puting and visualizing the partition function for a wide variety of
examples.

Figure 7 shows a visualization of the partition function computed
for meshes representing animals, humans, faces, organs, and tools.
From these examples, we see that the partition function gener-
ally favors edges that: 1) lie on cuts that partition the mesh with
few/short/concave edges, 2) lie on cuts that partition the mesh into
nearly equal size parts, and 3) do not lie nearby other more fa-
vorable cuts. The first property is a direct result of using the
MinCut algorithm to produce segmentations (the cut cost favors
few/short/concave edges). The second comes from both penaliz-
ing edges close to the source and sink with W (e,X) and random
sampling of mincut sinks and sources (edges near the center of the
mesh are more likely to lie “between” randomly chosen sources and
sinks). The third is a combined result of mincuts and random sam-
pling – an edge will only get votes if it has the least cost among
cuts that separate the source and sink. So, a very favorable cut will
“dominate” nearby cuts whose cost is not as low.

Figure 7: Partition function examples.
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Figure 8: Comparison of graph edge concavity weights (a) vs. par-
tition function (b). Note that the edge weights (left) capture only lo-
cal concavity features, while the partition function captures global
shape properties.

Figure 8 provides a comparison of the partition function (right) with
the original edge concavity weights computed from dihedral angles
(left) for a Gargoyle. The main difference is that the partition func-
tion captures global properties of the mesh. As a result, not all con-
cave edges have large partition function values, and vice-versa. For
example, for the Gargoyle, the partition function value is highest
on edges that lie along the junctions of the wings-to-body, head-
to-body, and feet-to-stand. In some cases, convex edges have high
partition function values because they lie on a favorable seam de-
termined by other concave edges (e.g., on the top of the shoulder),
while some concave edges have low partition function values be-
cause they do not lie on a global seam (e.g., folds of feathers in
the wings), or because they do not cut off a large part (junctions
of ear-to-head), or because they lie near other global seams (e.g.,
top of the foot). The global nature of the partition function makes
it more useful for applications that require stable, large-scale shape
features.

6.3 Sensitivity to Pose and Intra-Class Variation

Our next experiments investigate the sensitivities of the partition
function to articulated pose and variations of shapes within the same
class of objects. Since edge weights on the dual graph used to gen-
erate random segmentations are determined directly from dihedral
angles (which vary with changes to pose and between instances of
the same class), one might wonder how robust our methods are to
variations of this type.

To test sensitivity to pose, we computed the partition function and
consistent cuts for seven poses of a horse provided by [Shapira et al.
2008] and twenty poses of the Armadillo provided by [Giorgi et al.
2007]. As can be seen in Figure 9, the gross characteristics of
the partition functions are fairly stable across different poses – the
strongest cuts appear consistently along the neck, tail, face of the
horse and at the key joints of the Armadillo (knees, thighs, shoul-
ders, etc.). Even though the dihedral angles of individual edges
vary with pose, the global properties of the most consistent cuts
generally remain stable.

However, there are exceptions. Figure 9 clearly shows variations in
the cuts across the torso of the Armadillo. In this case, the torso
is nearly symmetric, and diagonal cuts across it have nearly equal
costs. Thus, small perturbations to the edge weights can cause a dif-
ferent global cut to be chosen consistently. We believe that this ef-
fect can be ameliorated somewhat by randomization of graph edge
weights, but experimentation with this strategy is future work.

Figure 9: Partition function for different poses (horse and ar-
madillo) and instances within the same class (humans). Note that
many of the prominent cuts remain consistent despite considerable
variability in body shape.

To investigate variation across objects within the same class, we
computed and compared the partition functions for all 400 meshes
in all 20 classes of the Watertight Data Set of the SHREC bench-
mark [Giorgi et al. 2007]. We find that examples within most
classes in this data set have similar partition functions. In partic-
ular, the most consistent cuts amongst instances of the airplane,
ant, armadillo, bird, chair, cups, glasses, hand, octopus, plier, and
teddy classes are very similar, while those of the bust, human, mech,
spring, and table have greater variation. Representative results are
shown for the human class in bottom row of Figure 9. While many
of the prominent cuts remain consistent despite considerable vari-
ability in body shape and pose (e.g., neck, shoulders, thighs, knees,
etc.), there are certainly cases where a large concave seam appears
in some objects, but not others (e.g., there is a strong concave waist
in three out of the six examples shown). These results suggest that
many, but not all, consistent cuts are stable across instances within
the same class.

6.4 Sensitivity to Noise and Tessellation

Our fourth experiment studies whether the partition function is sen-
sitive to noise and tessellation of the mesh.

To study sensitivity to noise, we calculated the partition function for
a series of increasingly noisy meshes (vertices were moved in a ran-
dom direction by a Gaussian with the standard deviation of σ times
the average edge length). Three meshes with increasing noise (red)
and the resulting partition functions (gray) are shown from left-to-
right for two objects in Figure 10. These images show that the
strong consistent cuts are largely insensitive to noise (e.g., neck),
but that weaker cuts at the extremities are diminished (e.g., legs).
The reason is as follows. Strong consistent cuts mainly appear at
the boundaries between large, nearly-convex parts. Since they are
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Figure 10: Partition function on noisy meshes: random vertex dis-
placement of standard deviation σ times the average edge length
has been applied. Note that the partition function degrades only
with high noise, and even then the main cuts remain.

the results of votes by many source-sink pairs selected from oppo-
site sides of a part boundaries, they remain stable as noise is added
to the mesh – i.e., there is still a lowest-cost cut that separates the
large parts, and that cut is found consistently even in the presence of
noise. On the other hand, for boundaries between smaller parts near
the extremities, where the partition function is weaker, fewer votes
are cast for the cut, and thus new low-cost cuts along concave seams
created by gross vertex displacements receive as many votes as they
do, and their relative strength is diminished. Overall, we find that
the gross structure of partition functions is stable within a moderate
range of noise (e.g., less than 10% of average edge length).

To study sensitivity to tessellation, we computed partition func-
tions for a camel model decimated to several resolutions with QS-
lim [Garland and Heckbert 1997]. Figure 11 shows the results. Al-
though decimation changes the graph representation of the surface
considerably (increasing dihedral angles), the most consistent cuts
remain largely unchanged (they can even be found after decima-
tion to 250 faces). The exact placement of consistent cuts can vary
slightly (e.g., on the neck), and extra cuts sometimes appear as the
mesh is decimated and concavities become more exaggerated (e.g.,
around the hump). However, the original structure of cuts persists
for moderate decimations. One concern may be that sharp features
are less prominent at higher resolutions. As the zoomed images in
Figure 11 show, the cuts are still found consistently as model reso-
lution is increased. Of course, our algorithm assumes that segment
boundaries are located along mesh edges, so an adversarial triangu-
lation (such as one where edges cut across a natural boundary) or
simplification so extreme that segments are broken (such as in the
last image of Figure 11) would pose challenges to our method (and
to other graph-based mesh analysis methods).

6.5 Comparisons to Alternative Methods

Our final analysis compares the proposed partition function to other
functions previously used for revealing natural decompositions of
graphs. The most obvious alternative is the work of [Gdalyahu et al.

4000 faces

1000 faces

250 faces

16000 faces 64 faces

Figure 11: Partition function on a mesh decimated to varying reso-
lutions. Although decimation alters the meshing considerably, the
gross structure of the partition function remains largely unchanged
until decimation becomes extreme. The two zoomed views show
that the partition function remains consistent at the smoother seg-
ment boundaries of the 16K mesh (compared to the 1K mesh).

2001], which computes Typical Cuts. Their method is a random-
ized hierarchical clustering, where the probability of merging two
segments is proportional to cost of the cut between them. We have
implemented this approach and find that it tends to create only very
large and very small segments for our graphs (single faces whose
cut costs are low get isolated). So, in our comparison, we stop con-
tracting segments when 500 are still remaining in each randomized
iteration (which we find gives the best results). A partition function
calculated this way is shown in Figure 12b.

Another alternative is spectral embedding. Spectral segmentation
methods embed the input graph in a lower-dimensional subspace,
and segment in that subspace. Distances in these spectral embed-
dings can be used for a partition function. For example, the method
of [Yu and Shi 2003] creates a segmentation into n segments by
first embedding the input graph into an n dimensional space, and
then projecting it onto a unit sphere. We can use distances between
graph nodes on that sphere to create a function similar in concept
to a partition function (shown in Figure 12c).

Comparing results, the partition function more clearly highlights
the cuts between natural parts (Figure 12a). Although the level of
darkness is different in the three images, the second two have been
tuned to reveal as much of the part structure as possible, and ad-
justing visualization parameters does not reveal the part structure
as well as the partition function does.

(a) Min-cut partition (b) Typical cut partition (c) Spectral embedding

Figure 12: The partition function created by our method (a), com-
pared with Typical Cuts (b), and spectral embedding (c).



(a) Segmentations from [Shapira et al.  2008] (b) Our segmentations

Figure 13: Comparison with [Shapira et al. 2008]. (a) Figure 11 from [Shapira et al. 2008] (reproduced with permission). (b) Our results.
None of the segmentations are perfect. Some of their segmentations are better, and some of ours are better; overall, the quality is similar
between the two methods.

7 Applications

Randomized cuts are a basic shape analysis tool that may be useful
in a wide range of application domains. In this section, we investi-
gate four applications in computer graphics.

7.1 Visualization

An obvious application of the partition function is visualization. In
the figures shown in previous sections of this paper, meshes are
drawn with diffuse shading in light gray, with lines superimposed
over edges based on the partition function (darker lines represent
higher partition function values). In most cases, this visualization
provides a sense for the whole shape (due to the light gray shading),
while highlighting the seams between large parts (due to the dark
lines), and thus perhaps it conveys the large-scale parts structure of
the surface more clearly than diffuse shading alone. Of course, it
can also be useful to display a sequence of the most consistent cuts,
and/or provide the user with an interactive tool to explore a ranked
set of consistent cuts to better understand the structure of a surface.
While we have experimented with these methods for our own un-
derstanding of partition functions, we have not investigated the full
potential of visualization of surfaces based on partition functions
and consistent cuts, which is a topic for future work.

7.2 Segmentation

Segmentation is an important pre-processing step to many algo-
rithms. Many methods exist to segment models; some of these are
described in Section 2, and some of their randomized variations
are described in Section 5. The partition function and ranked cuts
represent a consensus of which edges and cuts are more likely to
participate in a segmentation, and are therefore useful to segment a
model.

There are several ways the partition function can be used to seg-
ment models. The idea suggested in Typical Cuts [Gdalyahu et al.
2001] is to define as segments those parts of the mesh that are con-
nected with partition function edges less than some threshold (they
use .5). While this has the benefit of simplicity and a natural stop-
ping criterion, it has two major drawbacks when applied to mesh
segmentation. First, the desirable cut to make within a segment
should depend on the surrounding segments. For example, there
are frequently cuts of similar probabilities that are close to one an-
other, often overlapping, and rather than segment the narrow slivers
between these close cuts, it would be better to recalibrate the parti-
tion function within the chosen segment. Second, it is impractical
to compute the partition function globally for all levels of detail,
since most of the computation of calculating a partition function on
the entire mesh is spent on finding large, global cuts.

This suggests a hierarchical algorithm: compute the partition func-
tion on the current segment (starting with the entire mesh), split
the segment into child segments with the most consistent cut, and
recurse. Re-computing the partition function in each segment dis-
courages cuts adjacent to existing segment boundaries, and focuses
computation on cuts within the segment. However, the resulting
probabilities of cuts within child segments are not normalized with
respect to one another, and so we use the area-normalized cut cost
(see Section 5.2) to choose the order of the recursion. The full algo-
rithm is: cut the current segment with the most consistent cut, com-
pute the partition function on the child segments and propose splits
of each child segment, and put these proposed splits into a global
priority queue ordered by the area-normalized cut of the resulting
segmentation. The algorithm takes as input the desired number of
segments, and uses that as its termination criterion.

Figure 13 has our segmentation results for a variety of meshes
(b), and compares them to the results of [Shapira et al. 2008] (a).
The partition function finds segment boundaries on these meshes
through a combination of their being partially concave, and/or be-



Figure 14: More segmentation examples. The models in the bottom
two rows appeared in the segmentation comparison study of [Attene
et al. 2006a] (in their Figures 7, 8, 10, and 11). The quality of our
segmentations is similar to that of the best methods in their survey.

ing closer to the “middle” of previous segments. Some of the seg-
mentations of [Shapira et al. 2008] are better, and some of ours are
better; overall, the quality is similar between the two methods.

Figure 14 shows segmentations of more shapes. The models in the
bottom two rows were chosen to provide a direct comparison to the
segmentation survey of [Attene et al. 2006a] (to save space, we do
not reprint their results, but direct the reader to their Figures 7, 8,
10, and 11). Again, we find that the quality of our segmentations
appears similar to the best of prior work. However, to be fair, we
have not included an automatic criterion for stopping the hierarchi-
cal segmentation, and instead simply select a number of segments
to match results of prior work (this aspect of the segmentation al-
gorithm is orthogonal from our work on the partition function, and
thus we have not addressed it in our system).

7.3 Surface Correspondence

Finding correspondences between points on two different surfaces
is a fundamental problem in computer graphics – it is an underlying
problem in surface matching, morphing, completion, symmetriza-
tion, and modeling.

While there are many algorithms for finding a dense inter-surface
mapping when given an initial coarse set of point correspondences
(e.g. [Schreiner et al. 2004]), it is still very difficult to establish the
initial correspondences automatically, even for rigid-body transfor-
mations. The problem is to derive an alignment error function that
heavily penalizes mismatches of semantic features. Typical meth-
ods based on RMSD and local shape descriptors are not always
effective [Audette et al. 2000], and thus most systems rely upon
human-provided markers (e.g., [Allen et al. 2003]).

In this section, we propose that the partition function can be used
to help establish a coarse set of correspondences automatically be-
tween two surfaces. Our intuition is based on the results shown in
Sections 6 – the partition function is high in concave seams where
large parts connect. Since those seams are often a consistent fea-

ture across a set of deformations and/or within a class of objects
(Figure 9), we hypothesize that they provide a useful cue for estab-
lishing point correspondences.

To investigate this hypothesis, we have implemented a simple adap-
tation of the RMSD error measure for surface alignment. Rather
than measuring the sum of squared distances between closest points
for all points on two surfaces, we computed a weighted sum of the
squared distances between closest points on edges with high parti-
tion function values. That is, given two surfaces, we compute their
partition functions, sample points from edges with values above a
threshold in proportion to their lengths and partition function, and
then use ICP with multiple restarts to find the similarity transfor-
mation that minimizes the RMSD of the sampled point sets. This
procedure effectively sets weights on the original RMSD to strongly
favor correspondences between points on the most consistent cuts.

Figure 15 shows an example of how this simple scheme for aligning
cuts can help find a coarse alignment for one model of a horse (red)
with six others in different poses (green). The top row shows align-
ments produced with our cut-weighted alignment scheme, while the
bottom row shows the results produced without it (i.e., sampling
points on all edges uniformly). Note that head and tail are flipped
for three of the examples in the bottom row (they are marked with
a black ‘X’), while all examples in the top row find good corre-
spondences. In this case, the strong cuts along the neck, across the
face, and at the base of the tail provide the main cues that produce
semantically correct coarse alignments.

7.4 Deformation

Methods for skeleton-free deformation of a mesh have recently
been developed (for example, [Lipman et al. 2005; Botsch et al.
2006] among others). They often allow a user to select a region of
influence and a handle, and then move or re-orient the handle while
the rest of the mesh deforms in a way that locally preserves surface
shape while meeting the user-specified handle constraints. Such
methods generally spread deformation error uniformly over a sur-
face, which gives the surface a “rubbery” feel, sometimes creating
undesirable deformations (see Figures 16a and 16c).

To address this issue, [Popa et al. 2006] described a “material-
aware” deformation framework, where the stiffness of deforma-
tion is determined by material properties of the mesh. However,
a user had to provide stiffness properties manually (or they had to
be learned from example deformations). Here, we use our partition
function to provide stiffness properties automatically. Our intuition
is that edges of the mesh with high partition function values appear
along seams of large parts, and thus should be very flexible, while
edges having low partition function values should remain stiff.

Our implementation is based on the deformation framework
of [Lipman et al. 2005]. Their framework reconstructs a mesh from
local coordinates in two steps: first, the Frenet frames of vertices
are solved for to maintain the changes in frames between adja-
cent vertices, and second, the positions of the vertices are found.
We modify the first step so that edges neighboring high partition
function edges are less obligated to preserve frame changes from
the original model. To extend the partition function to neighboring
edges, if p(i) is the partition function on edge i, we form p′(i) as
p′(i) = max j∈N(i) p( j) (where N(i) is the set of edges adjacent to

edge i). We then invert the partition function as: w(i) = α

α+p′(i)
.

These w(i) are the weights we use in the linear system that re-
constructs frames to determine how closely the change in frames
across edge i must be preserved from the original model. We choose
α = .5, so that an edge bordering a definite partition has a weight
of 1/3, and an edge bordering no partition has a weight of 1.



P
ar

ti
ti

o
n

F
u
n
ct

io
n

S
am

p
li

n
g

U
n
if

o
rm

S
am

p
li

n
g

Figure 15: Using the partition function for registration. Alignments based on RMSD between points sampled (left image) according to the
partition function (top row) provide better point correspondences than ones based on points sampled uniformly (bottom row).

Figure 16 compares deformations created with (16b and 16d) and
without (16a and 16c) weights determined by the partition func-
tion. Note that deformations with weights from the partition func-
tion preserve the rigid shape of the head and leg of the cheetah,
spreading the deformation into the likely segment junctions favored
by the partition function. In contrast, the deformations with uni-
form weights warp the head and leg of the cheetah in an unnatural-
looking way.

(a) (b)

(c) (d)

Figure 16: Spreading deformation error uniformly can lead to un-
natural deformations (a), (c), whereas allowing more deformation
near edges of high partition value leads to more natural, segment-
like deformations (b), (d) The deformations were made by setting a
region of influence (pink) and adjusting the orientation of handles
(yellow spheres).

8 Conclusion

The main contribution of this paper is the idea that randomized cuts
can be used for 3D shape analysis. This idea is an instance of a
broader class of techniques where randomization of discrete pro-
cesses produce continuous functions. In our case, the combination
of multiple randomized mesh segmentations produces a continu-
ous partition function that provides global shape information about
where part boundaries are likely to be on a mesh. This information
is stable across several common mesh perturbations, and thus we
find it useful in mesh visualization and processing applications.

While the initial results are promising, there are many limitations,
which suggest topics for further study. First, our MinCut algorithm
produces unstable results for symmetric objects (such as the chest
of the Armadillo in Figure 9), as it favors one of multiple cuts of
similar costs. Perhaps this problem could be ameliorated by ran-
domizing graph edge weights, but further investigation is required.

Second, our study considers a limited set of methods for random-
izing segmentation algorithms. For example, it might be useful to
randomize algorithm selection, numbers of segments, scales, and
other parameters in ways that we did not investigate. Third, we
have considered only scalar representations of the partition func-
tion. Perhaps it could be extended to multiple dimensions by en-
coding for each edge the value of the partition function for different
scales, numbers of parts, and other parameters that affect segmenta-
tions. This could provide a feature vector for every edge that could
be useful for visualization or shape matching. Fourth, our study
of applications is a small first step. For example, we believe that
the partition function could be leveraged more effectively for seg-
mentation, and perhaps it could be used for chokepoint analysis,
saliency analysis, feature-preserving smoothing, skeleton embed-
ding, grasp planning, feature detection, and other applications in
computer graphics.
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