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Abstract

Asimage-basedsurfacere ectanceand illumination gain wider usein physically-basedenderingsystemsit is
becomingmore critical to provide representationghat allow samplinglight pathsaccomding to the distribution
of enegy in thesehigh-dimensionaineasued functions.In this paper we apply algorithmstraditionally usedfor
curveapproximationto reducethe sizeof a multidimensionatabulated CumulativeDistribution Function(CDF)
by oneto threeorders of magnitudewithoutcompomisingits delity. Theseadaptiverepresentationgnablenev
algorithmsfor samplingenvironmentmapsaccouing to the local orientation of the surfaceand for multiple
importancesamplingof image-basedighting andmeasued BRDFs.

Categories and Subject Descriptors(accordingto ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
GraphicsandRealisml.3.6 [ComputerGraphics]:Methodologyand Techniques

1. Intr oduction

Techniquesarenow commonfor accuratelyneasuringeal-
world surface re ectance and illumination. As a result,
denselysampledakular representationsf lighting andBi-

directionalRe ectanceDistribution Functions(BRDFs)ap-
pearin off-line, physically-basedrenderingpipelines.Be-
causeglobal illumination algorithmstypically use Monte
Carlo integration, employing common variancereduction
techniquess critical to achieving a feasiblerate of corver

gence.Consequentlyit is importantthat representationsf
measureckrvironmentmapsand BRDFs provide ef cient

importancesampling.

While several speci ¢ representationsf measureden-
vironment maps and BRDFs do allow direct sampling,
thereis still no singlerepresentatiothatis appropriatefor
generalmultidimensionalmeasuredunctions. As higher
dimensionaldatasetsnd their way into renderedscenes
(e.g.light elds, re ectance elds, etc.),a generalmethod
for samplingthemwill becomemoreimportant.Moreover,
for thespeci ¢ caseof ervironmentmaps existing represen-
tationsdo notaccountor thelocal orientationof the surface
(i.e.thecosinetermin therenderingequation) This property
canlimit the effectivenesf ervironmentmapsamplingin
reducingvariancefor mary scenesAnotherimportantdrav-
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Figure 1. We representa 1D CDF with a set of non-
uniformly spacedsamplesof the original function. Thisre-
sultsin a more compactyet accuiate approximationof the
original functionthanuniformspacingwouldallow. In addi-
tion, the nal CDF maintainsmanykey propertiesnecessary
for unbiasednultipleimportancesampling

back of someexisting ervironmentmap representations
thatthey arenot readilyincorporatednto a multiple impor
tancesamplingframework [VG95.

In this paper we apply a curve approximationalgorithm
to thetaskof compressingnultidimensionatatular Cumu-
lative Distribution Functiong CDFs)derivedfrom measured
datasetsAssumewe have a 1D CDF, P(x), sampleduni-
formly in x. In orderto compresghis function, we lift the
restrictionthat the samplesmust be uniformly spacedas
shawvn in Figure 1. We usethe Douglas-Peuddr greedyal-
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gorithm for polygonalapproximationof 2D curves[DP73
HS97 to computethe location of theseadaptivesamples.
We further extend this algorithmto represenmultidimen-
sional CDFs.To accomplishthis, we computemanginal 1D
CDFsin eachdimensionby summingthe enegy contained
acrosgheorthogonaldimensionsEachof theselD CDFsis
representely non-uniformlyspacedamplesandtheresult-
ing setof these'cascadingCDFs” approximatesheoriginal
high-dimensionatlistribution. Thereare several bene ts of
usingthis adaptve numericalrepresentation:

Allowing placemenbf non-uniformlyspacedsamplese-
ducesthe numberthat mustbe storedto accuratelyrep-
resenthe original CDF. This is especiallytrue for multi-
dimensionaldistributions becausehe storagegrows ex-
ponentiallywith the numberof dimensions.Signi cant
reductionis alsoachieved for common“peaky” distribu-
tions, for which mary methodgequireO(n) storage.
Generatingdirectionsaccordingto the distribution, ac-
complishedusing numericalinversionof the CDF, sim-
ply requiresa binary searchover the sortedsamplesof
P(x). Thisis essentiallythe samealgorithmasis usedfor
uniformly sampledCDFs, but with the position of each
samplealongthe domainstoredexplicitly.

Storinga “cascadingset” of conditional1D CDFs,each
representetly non-uniformlyspacedsamplef theorig-
inal functions,promotesa directimplementatiorof unbi-
asedstrati ed importancesampling.This resultsfrom the
factthateachdimensioncanbe sampledndependently
Theprobabilityof asamplenotdravn from the CDF itself
canbeefciently computedrom the nal representation.
This propertyis critical for combiningdistributionswith
standardnultiple importancesamplingalgorithms.

To demonstratéhebene t of our adaptve representation,
we presenta novel algorithmfor samplingmeasurecervi-
ronmentmapsin an orientation-dependemhanner This is
accomplishedby samplingthe 4D functionthatresultsfrom
modulatingan ernvironmentmap with the horizon-clipped
cosineterm in the renderingequation. This algorithm is
more ef cient than existing techniqueghat sampleonly a
singlesphericadistribution. Lastly, we shav how our adap-
tive representationsanbeusedwithin amultipleimportance
samplingframenork.

2. RelatedWork

Monte Carlo importancesampling has a long history in
ComputerGraphics[Vea91. For strati ed samplingfrom
2D CDFsonamanifold(in thepracticalexamplesof thispa-
per, the manifold is a sphereor hemisphere)Arvo [Arv01]
describes particularrecipewhenananalyticdescriptionof
the function is available, with analytic samplingstratejies
availablein somecaseqArv95]. Whendealingwith mea-
suredillumination or re ectancedata,asin this paper non-
parametricor “numerical” CDFsare unavoidable,andit is
importantto compresghem.

One possibleapproachis to use generalfunction com-
pressionmethods,such as wavelets or Gaussianmixture
models Waveletshave beenpreviously usedfor importance
samplingof BRDFs[CPBO03LF97]. However, thecomputa-
tional costfor generatinga samplecanbe signi cant, espe-
cially if non-Haawaveletsareused(asis necessaryo avoid
mary kinds of blocking artifacts).Additionally, the imple-
mentationfor multidimensionafunctionssuchasmeasured
illumination and BRDFs can be dif cult, requiring sparse
waveletdatastructuresanda hexa-decarysearch.

A secondapproachto compactCDF representatiorthat
hasbeenappliedfor BRDFsis factorizationLRR04]. This
methodtakesadvantageof the structureof the BRDF to fac-
tor it into 1D and2D piecestherebyreducingdimensional-
ity while still allowing for accurateepresentatioandef -
cientimportancesampling Thetechniqueproposederedif-
fersin consideringcompressiorf generalttatulatedCDFs,
andis notlimited to BRDF sampling Additionally, the CDF
compressiorconsiderechereis independenbf dimension
and orthogonalto ary factorizationsof the input data. It
couldthereforebe appliedequallywell to methodgsthatuse
afull tabular BRDF representatioandsamplingschemeas
shawvn in this paper),or to lower dimensionatomponents.

Another specializedCDF compressiorapproachwhich
hasbeenappliedto environmentmaps,is to decomposéhe
functioninto piece-wiseconstant/oronoior Penroseegions
onthesphere[ARBJO3KK03,0DJ04. As comparedo our
method,thesetechniquesffer more optimal strati cation,
but do not directly extendto multidimensionaHistributions.
Another dravback of theserepresentations that they are
dif cult to usewith standardmultiple importancesampling
algorithmsthat require computingthe probability of a di-
rectiongeneratedrom a separatalistribution. Lastly, these
representationgnorethe factthat half of the environment
is alwaysclippedagainstthe horizonof the surfaceandthat
theilluminationis scaledby a cosineterm (Figure 10).

3. Background

In this paperwe addresghe problemof importancesam-
pling. That is, we seekto generatesamplesaccordingto
someProbabilityDensityFunction(PDF), p, which by de -
nition is non-ngative andnormalizedi.e., it integrateso 1).
We accomplishthis usingthe inversion method which pre-
computeghe correspondingCumulatize Distribution Func-
tion (CDF)
z

PO=  ax’p(x) &)
andevaluatests inverseP (z) atlocationsgivenby auni-
formly distributedrandomvariablez 2 [0; 1].

We areinterestedn the caseof a PDF speci ed numer
ically: in 1D, we assumehat we are given probabilitiesp;
atlocationsx;. We precomputehe correspondin@CDF val-
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Figure 2: The Douglas-Ruder algorithm greedily com-
putesa polyline approximation of a smooth2D curve It
worksby insertingthe next samplein the approximationat

thepointof maximundeviation betweerthe (black) original
curveandthe (red) currentpolyline approximation.

uesP and,at run-time,invert the CDF by performinga bi-
nary searchfor the interval [F; B+ 1] that containsthe ran-
domvaluez. Notethatthis searclis requiredwhetheror not
the x; are spaceduniformly. This will be the key property
usedby ourrepresentationve canrepresenmary functions
moreefciently by having non-uniformlyspaced; without
increasinghe run-timecostof importancesampling.

In 2D, the situationis more comple. We must rst de-
composehe 2D PDF p(x;y) into two piecespnedependent
only onx andtheotherony:

Z,
) = dy p(x;y) 2
Ly PXY)
plyix) = 50 (3)

The numericalrepresentatiothen consistsof a discretized
versionof f, given as samplesp; at locationsx;, together
with acollectionof discretizectonditionalprobabilityfunc-
tions pi(yjx). This techniquegeneralizesaturally to ary
numberof dimensionsproducinga “cascadingset” of CDFs
wherea valuein eachdimensionis generatedsequentially
usingtheappropriatel D maginal CDF ateachstep[ Sch94.
As an important special case,we note that functions on
a spheremay be representedising the parameterization
p(zf), wheretheusualchangeof variablesz= cosq is used
to normalizefor theareameasurelw = sinqdqdf .

If the CDFsare uniformly sampledalong their domain,
the total size of this set of CDFs will be slightly larger
thanthe size of the original function. In ComputerGraph-
ics, it is often the casethat thesefunctions can be both
high-dimensionahndmeasuredt high resolutionsConse-
quently the combinedsize of the resulting1D CDFs can
quickly becomeprohibitively large. This motivatesour in-
vestigation into efcient techniquesfor compressinghese
sampledfunctionswithout compromisingtheir accurag or
utility.
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4. Numerical CDF Compression

We usepolygonalcurve approximationalgorithmsto com-
pressa denselysampledCDF by representingt with a re-
ducedsetof non-uniformlyspacedsampleselectedo min-
imize thereconstructiorerror.

4.1. Polygonal Curve Approximation

With earlyrootsin cartograply, several ef cient algorithms
have beendevelopedfor computingpolygonalapproxima-
tions of digitized curves. Polygonal approximationalgo-
rithms take asinput a curve representedby an N-segment
polylineandproduceanM-segmentpolylinewith verticesso
asto minimizetheerrorbetweerthetwo (typicallyM  N).

Although algorithmsexist that output the optimal solu-
tion [CC96 Goo94 CD0J, we insteaduse the Douglas-
Peucler[DP73 HS97 greedyalgorithmbecausef its sim-
plicity andspeedlt hasalsobeenshowvn thatthesegreedy
algorithmstypically produceresultswithin 80%accurag of
theoptimalsolution[Ros97.

The Douglas-Peuddr curve approximation algorithm
works by iteratively selectingthe vertex furthestfrom the
current polyline as the next vertex to insertinto the ap-
proximation (Figure 2). Initially only the endpointsof the
curve areselectedandthe algorithmiteratively updateghis
approximationuntil eitheran error thresholdis reachedor
some maximum number of vertices have beenused.For
cunves derived from numerical CDFs, we found this algo-
rithm sufcient for producingnearoptimal approximations
with few samples.

4.2. Applying Curve Approximation to CDFs

Thereareseveralwaysof applyingthe above curve approx-
imation algorithmsto the task of representingnumerical
probability functions. First, we can apply themto yield a
piecavise linear approximatiorof the CDF, which is equi-
alent to a piecavise constantapproximationof the cor
respondingPDF. Becausethe Douglas-Peuddr algorithm,
when appliedto the CDF, is guaranteedo yield a nonde-
creasindunctionwith arangeof [0::1], theresultingapprox-
imationmaybe useddirectly asa CDF anddifferentiatedo
nd thecorresponding?DF

A secondway of using curve approximationalgorithms
is to apply themdirectly to the PDF to obtaina piecavise
linear approximation(which implies a piecevise quadratic
CDF). In this case the resultingapproximationis not guar
anteedto integrateto one,and mustbe normalizedbefore
it canbe usedas a probability function. Figure 3, bottom,
compareshesetwo stratgieson a (relatively smooth)func-
tion: note that the two approachesesultin samplesbeing
placedat differentlocationsin the domain.For comparison,
Figure3, top, shaws piecaviseconstantindpieceviselinear
approximationsisinguniform samplespacing.



J. Lawrence et. al. / AdaptiveNumericalCDFsfor ImportanceSampling

Beach PDF, 8 Uniform Samples

0.5

Omj\nal

Piecewise Linear @

Probability

T Sy

-3.14 -1.57 0.00 157 3.14
Phi

Beach PDF, 8 Adaptive Samples

0.5

Or@nal

Piecewise Linear @

Probability

-3.14 -1.57 0.00 157 3.14
Phi

Figure 3: A probability densityfunction (correspondingo
ervironmentmapin Figure 7) andits piecaviselinear and
piecavise constantapproximationswith 8 samplesplaced
uniformly (top) andcomputedy the Douglas-Ruder algo-
rithm (bottom).The piecavise constantapproximationwas
computedby running Douglas-Ruder on the integral of
the PDF (i.e. the CDF). Notethat, for this relativelysmooth
function,the pieceviselinear approximationis closerto the
original.

One important difference between uniformly-sampled
and adaptvely-sampledCDFsis the costof reconstructing
the value of the approximatedunction (i.e., evaluatingthe
probability) at an arbitrary position. This propertyis nec-
essaryfor combining several distributions using multiple
importancesamplingalgorithms[Vea97. When the sam-
plesare uniformly spacedhe costis O(1), whereasadap-
tively sampledrepresentationsequire O(logN) time (here
N refersto the numberof non-uniformsamples).This in-
creaseadcompleity resultsfrom having to performabinary
searchover the valuesof the function sortedalongthe do-
mainto nd thedesirednterval. Becauseadaptve represen-
tationsprovide suchlarge compressiomates,however, N is
typically smallenoughto malke this addedcostinsigni cant
in practice.ln addition,the time compl«ity of geneating
a sample(asopposedo evaluatingthe probability) remains
thesameat O(logN) in bothcases.

In our experimentswe alwaysuseda piecavise constant
approximationof the PDF (i.e. piecavise linear CDF). Al-
thoughthis resultsin a slightly larger representatiorin our
experiencehisdravbackwasoutweighedy thesimplerim-
plementatiommequiredfor samplinga piecevise constanfp-
proximation.

5. Multidimensional CDFs: The Cascading
Douglas-Reucker Algorithm

In theprevioussectionwe discussedhow to applycurve ap-
proximationalgorithmsto thetaskof ef ciently representing
numericallD CDFs.In this sectionwe extendthesddeasto
accomodatdalistributionsof higherdimension For the sale
of explanationwe rst restrictour discussiorto the2D case
andprovide anexamplewith syntheticdatain Figure4. Ex-
tendingthesetechniqueso higherdimensionss straightfor
wardandbrie y discusseattheendof thesection.

Recallthatwe cancorvert ary 2D distribution (Figure 4
top) into a single maiginal CDF plus a set of conditional
CDFsaccordingto Equationsl, 2 and3. In orderto genef
ate (x;y) pairswith probability proportionalto the magni-
tude of the original function,we rst generatea value of x
from the maginal CDF P(x) (Figure 4 bottom, red curve)
andthengeneratea valueof y from the correspondingon-
ditional CDF P(yjx) (notshavn in Figure4).

As describedreviously, we usethe Douglas-Peuddr al-
gorithm to selecta set of non-uniformly spacedsamples
that accuratelyrepresenthe maiginal 1D CDF, B(x). For
the examplein Figure4, we canperfectly approximatethe
mamginal CDF with samplesattheendpointsA andE andat
internallocationsB andD. Next, we would computea setof
conditional CDFs, P(yjx); onefor eachof theseregionsin
X (e.g.in Figure4 theseregionsare AB, BD andDE). Each
conditionalCDF is the averageacrossts associatedange:

Z 0.
X 0 P(XY).
X %1k B0 @

For all theexampledn this paperon measuredata,build-
ing acascadingetof CDFsaccordingo Equatiord wassuf-
cient for accuratelyapproximatingheoriginaldistribution.
However, thereare potentialsituationswherethis approach
aloneignoreserrorintroducedby approximatingthe distri-
bution of enegy within aregionwith asingleCDF. Figure4
illustratessuchasituation.In this casethedistribution of en-
emgy within theregion BD would be poorly approximatedy
a single conditionaldistribution becausehe two arealight
sourcesare at differentheights.In orderto addresghis is-
sue,we mustalsoconsiderthe gradientin the x-directionof
theoriginal distribution:

p(yixi) =

Z 1 .
e y)
d Tx ©)

Whenthe function g(x) is large this indicateslocationsin
x wherethe conditional CDFs, P(yjx), would not be well
approximateddy a single distribution. Therefore after our
rst applicationof the Douglas-Peuddr algorithmto repre-
sentP(x), we addadditionalsamplesccordingo this gradi-
entfunction.Speci cally, we cancomputea numericalCDF
from g(x) andgeneratea x ed numberof strati ed samples
along the domain (e.g. the x-axis) suchthat they occurat
locationswherethis function is large. Adding samplesac-

9(¥) = y
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Figure 4: Ef ciently approximatingmulti-dimensionablis-

tributions requires computing a cascading set of 1D

mamginal and conditional CDFs. Here we show (top) a

syntheticernvironmentmap that containsonly two equal
sizedarealight souces.We compute(bottom,red curve)a

maminal CDF in x by summingthe total enegy acrossy.

We alsoconsider(bottom,greencurve)theaverage gradient
in the x-direction. We place non-uniformlyspacedsamples
accoding to the Douglas-Rud<er algorithmat positionsA,

B, D and E and any additional points whele the gradient
functionis large (i.e. at positionC).

cordingto thegradieniguaranteethatboth P(x) is well rep-
resentedy the non-uniformly spacedsamplesandthatthe
conditional CDFs computedfor eachregion, P(yjx;), well
approximatethe variationpresentin the orthogonaldimen-
sions.In theexamplein Figure4, we additionallysamplethe
maginal CDF at locationC, separatinghe 2D distribution
into atotal of four regions(AB, BC, CD andDE), whereeach
region is now well approximatedy a singleCDFE

Lastly, we extendthis samplingalgorithmto arbitrarydi-
mensiongdy simply expandingthe integralsover the entire
rangeof free variables(asopposedo justy for the 2D ex-
ampleconsidered@bove). For anN-dimensionadistribution,
p(x1;%2; :::Xn), boththemaminal andconditionalCDFsare
proportionalto the integral acrossthe remainingfree vari-
ables(note:we omit thenormalizationconstanfor clarity):

zZ, zZ,

p(Xijxg:::x 1)/ dXje1::: dxn (X1 XN);
andthegradientfunctionwould be computedsimilarly:

zZ, zZ,
g0jXg: % 1) = dxi+1::: dxn M :
1 1 %
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6. Evaluation of Algorithm

In general globalillumination algorithmsperformnumeri-
calintegrationof therenderingequation:

Zz
Lo(X;Wo) = Le(X;wo) +  dwi Li(x;wi) 1 (X Wi; Wo) (wi n):
P

A commonapproachto estimatingthe value of this in-
tegral is to performMonte Carlo integrationover the space
of incomingdirections.Becauséhe entireintegrandis usu-
ally not known a priori, a reasonablestratgy is to sample
accordingto the termsthat areknown. For example,if the
incidentillumination L; is representedy an ervironment
map, we may perform ervironmentsampling.BRDF sam-
pling, on the otherhand,generatesamplesaccordingto ei-
therr itselforr (w; n). Althoughalgorithmsexist for sam-
pling BRDFs and ervironmentmaps,thesefunctions pro-
vide a corvenientplatform to evaluateour representation.
Moreover, our approacthassereraldesirablepropertieghat
theseexisting techniquedack. Theseenablenovel applica-
tionsthatwe presenin Section?.

6.1. EnvironmentMap Sampling

Onedirectapproachor generatingsamplesaccordingto a
measurecrnvironmetmap[Deb9g, is simply to computea
family of numericallD CDFsdirectly from the 2D spheri-
cal function[PHO4. Recallthatone CDF will quantifythe
distribution alongf , P(f ) anda setof 1D CDFswill control
thedistribution of samplesalongq ateachsampledocation
of f, R(qjfi). Thesearederved from the intensityof each
pixel in theernvironmentmap(i.e. weightedaverageof color
values)usingthe methoddescribedn Section3.

If the resolutionof theseCDFsis proportionalto that of
the ervironmentmap (asit shouldbeto avoid aliasing)this
representatiomill be slightly largerthenthe original mea-
sureddataseitself. Therefore thereis signi cant opportu-
nity for compressiomsingour adaptve representatiorfig-
ure5 shavs false-colowisualizationsn alogarithmicscale
of thefull-resolution1000 1000(q f) PDFoftheGrace
Cathedral ervironment (http://www.debeec.og/Probes/),
togethewith 16 16and64 64approximationsisingboth
uniform and non-uniform sampleselection.As compared
to uniform sampling,adaptve sampleplacementesultsin
a signi cantly more accurateapproximationof the original
distribution.

Figure 6 comparesthe error of our adaptve numerical
representationvith uniform sampleplacementon two dis-
tributionswith qualitatively differentbehaiors. The upper
graphsshav asinglescanling(i.e. varying phifor aconstant
theta) of the ervironmentmap,while the graphsat bottom
plot theRMS errorof theapproximatiorasafunctionof the
numberof samplesised(notethatthe horizontalaxisis log-
arithmic). At left, we considera relatively smoothfunction.
In this casethegain from nonuniformplacemenbf samples
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(a) GraceCathedral
Light Probe

(b) Optimal Probability
Distribution

(d) Distributionw/ 16 16
Non-UniformSamples

(c) Distributionw/ 16 16
Uniform Samples

(f) Distributionw/ 64 64
Non-UniformSamples

(e) Distributionw/ 64 64
Uniform Samples

Figure5: False-colorvisualizationof sphericalprobability

densityfunctionson alogarithmicscale(red= largestprob-

ability, green= smallesprobability). Directionsare mapped
to the unit circle accoding to the parameterizatiorusedby

Deberec[Deb9§. (a) A measued ervironmentmap of the

insideof GraceCathedal. (b) Theprobability densityresult-

ing from usinga numericallytabulated CDF sampleduni-

formly at the sameresolutionof the original map.Theprob-

ability distribution of numerical CDFs computedfrom (c)

16 16 uniformsamplegd) 16 16 non-uniformsamples
(e) 64 64 uniform samplesand (f) 64 64 non-uniform
samples.

is relatively modestAt right, we shav a “peakier” function
that is easierto compresswith nonuniformsampleplace-
ment.In this example,our adaptve representatiomeduces
the numberof samplesequiredat equalapproximationer-
ror by afactorof 16 comparedo uniform downsampling.

Beach St. Peter's
0.5 4.0

2.0

Probability
o
b

0 0.0
-3.14 -1.57 0.00 157 3.14 -3.14 -1.57 0.00 1.57 314
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02§
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8 16 32 64 128 256 8 16 32 64 128 256
Number of Samples Number of Samples

Figure 6: Two different probability distribution functions
and the RMSerror in approximatingthem using different
numbes of pointsanddifferentsamplingstrategies. Thedif-

ferent samplingalgorithmsuseeither uniform or adaptive
placemenbf samplelocations.

6.2. BRDF Sampling

The BRDF gives the ratio of re ected light to incident
light for every pair of incoming and outgoing directions:
r (wo;w;). For glossymaterials,it is adwantageouso sam-
ple the ervironmentaccordingto the distribution of enegy
in theBRDF. Becausehisis a4D function(3D if theBRDF
is isotropic),a takular representatioat a modestresolution
would still be quitelarge. Consequentlywe apply our adap-
tiverepresentatioto thetaskof ef ciently storingnumerical
CDFsderivedfrom measure®RDFs.

We comparedhesizeandaccuray of this representation
with astandaradpproactof pre-computinghe CDFsattheir
full resolutionMat03 for thesamesetof viewing directions
(Figure 7). We evaluatedthe ef ciency of generatingsam-
plesusingan adaptve numerical CDF computedfrom two
measure@RDFs[MPBMO3]: nickel andmetallic-blue

For theseresults,we rst reparameterizethe BRDF into
a view/half-angleframe in order to maximize the redun-
dang amongslices of the function giving greateroppor
tunity for compressiorfLRR04]. Eachuniformly-sampled
CDF had a resolutionof 32 16 256 32 (qo fo
gn fn) andoccupied65MB. Here, g, andfy, arethe el-
evation and azimuthalanglesof the half-anglevector re-
spectvely. To computethe correspondingadaptve numer
ical CDFsrequired,on average,roughly 30 samplesin gp
andl10samplesn f . UsingtheDouglas-Peuddr algorithm,
theseadaptve sampleswvere selectedrom aninitial setof
2048 1024(gn fn) uniformly-spacedsamples—aeso-
lution prohibitively expensve for the fully tatulatedCDFs.
It required20 minutesof processingime to computethe
adaptve representatiofor eachBRDF.
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Measured Nickel BRDF

Original (65MB) Compresse@3.9MB)

Measured Metallic-Blue BRDF

Original (65MB) Compresse2.3MB)

Figure 7: BRDFimportancesamplingwith adaptivenumer

ical CDFs.We compae thevariancein imagesrendeedus-
ing a pathtracerthat geneatessamplesusingthefully tab-

ulatedCDF andthe adaptiveCDF In all caseswve estimate
theradiancewith 80 paths/pixelWe alsolist thetotal sizeof

the probability representatiorbelowead) image.

We found that for theseBRDFs, samplingthe adaptve
numericalCDF is nearlyasefcient asthe full takular ap-
proach.For the measurechickel BRDF, the compactCDF
actuallyproduceslightly lessvariancein theimagebecause
the uniform samplingwas not sufciently denseto capture
thevery sharphighlight.

7. Novel Applications

In this sectionwe presenta new algorithmfor samplingil-

luminationfrom anenvironmentmapaccordingto the local
orientationof thesurface Additionally, we demonstratbow

our representatiofiacilitatesmultiple importancesampling
of bothilluminationandthe BRDF

7.1. Local EnvironmentMap Sampling

Usingadaptve numericalCDFs,we introducea novel algo-
rithm for samplingan ervironmentmapin an orientation-
dependenmanner In previous methodsof samplingervi-

ronmentmaps,incomingdirectionsaredravn from asingle
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Figure 8: For someorientationsandlighting, samplingfrom
a singledistribution will be inefcient becausemostof the
enegy is occludedby the horizon.(a) We examinethis in-
efciency for an examplein which the majority of light is
above and slightly behindthe objectbeingrendeed. (b) A
false-colorimage visualizesthe percentaye of sampleghat
will begeneatedabovethehorizonand,consequentiymale
a positivecontribution to theradianceestimateat that pixel.
In manyregions of this image only 5% of the samplesare
generatedabovethehorizon.

sphericaldistribution [ARBJ03 KK03, 0DJ04 PHO4. This

approachis inef cient whena signi cant amountof light in

the scenehappendo fall below the horizonfor alargenum-
berof pixels.In Figure8, therearemary regionsof theim-

agewhereasfew as5% of the samplesaregeneratedbore

the horizon—thisalso indicatesthe inef cacy of standard
techniquedik e rejectionsamplingto addresghis problem.
Furthermore samplingfrom a single sphericaldistribution

cannotconsiderthe cosineterm that appearsn the render

ing equation(i.e.max0;n w;)). Accountingfor this cosine-
falloff would requiresamplingfrom a4D function(i.e. there
aretwo degreesof freedomin the incoming directionand
two in the normaldirection).We shav several 2D slicesof

this functionfor differentnormaldirectionsin Figure 9. As

with BRDFs,representing4D distributionevenatamodest
resolutioncouldrequireprohibitively large storage.

We can storethe 4D distribution that resultsfrom mod-
ulating an ervironmentmap by the cosineterm using our
adaptve CDF representationDuring rendering,eachpixel
correspondgo anormaldirectionthatbecomesnindex into
the4D distribution, producinga 2D distribution overincom-
ing directionsthatwe samplefrom. In our experimentswe
evaluatedthelocal ervironmentmapdistributionat25 10
(f g) normaldirectionsand1000 2000(f q) incom-
ing directions.Storingthis talular CDF directly would re-
quire approx. 4GB of spaceln contrast,our representation
requiresl0-20MBof storageand1-2 hoursof computetime
to provide anacceptablapproximation.

We comparedocal ervironmentmap samplingwith jit-
teredsamplingof a strati ed representatiofARBJ03 and
samplingfrom a uniformly-spacedCDF [PHO4 (seeFig-
ure 10). Jitteredsampling (Figure 10 left) performedthe
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nq=0,nf=0 nqu,nfzo

Ng = 2:35,ns = 1.57 Ng = 2:35,ns = 471
Figure 9: False-colorvisualizationsof several CDFs com-
putedat different surfaceorientations.Each distribution is
visualizedon a logarithmic scaleas in Figure 5. For eath
surfacenormal consideed we clip the ervironmentmapto
the visible hemisphez and multiply ead radiancevalueby
(n w;) before computinganadaptiveCDF representatiorof
theresulting4D distribution.

worst mainly becausehis techniqueis ineffective for such
low samplecounts (note: we are using only 20 samples
here). Moreover, thereis signi cant error due to the bias
introducedby approximatingeachstratawith a radial disk.
Although unbiasedittering is not impossibleto achieve, it
is not a simple extensionto publishedalgorithmsand has
not beenreportedin previous work. We alsocomparedour
algorithmto samplingfrom a uniformly-sampledCDF and
rejectingthosesampleghat fell belov the horizon[PHO04
(Figure 10 middle). This stratgyy is most comparablein
quality to our own, but becausét doesnot accountfor the
horizon-clippedcosineterm in the renderingequation, it
failsto achieve the samerateof corvergence Quantitatvely,
local ervironmentmap samplingachiezed approx. 5 times
lower variancethansamplinga singleCDF computedat full
resolutionandapprox. 20 timesbetterthanjittered sampling
for thesetestscenes.

7.2. Multiple Importance Sampling

In practice,neitherthe BRDF nor the incidentillumination
alonedeterminethe nal shapeof theintegrandin the ren-
dering equation.Therefore,it is critical thata CDF repre-
sentationsupportsmultiple importancesampling[VG95.

St. Peter's Basilica

Galileo'sTomb

Grace Cathedral
Jittered Full CDF Local
Sampling With Rejection Env. Sampling

Figure 10: We compae the varianceof a MonteCarlo esti-
matorcomputediccodingto (left column)jitteredsampling
of a strati ed representatiorf ARBJO3, (middle column)a
uniformly-sampledCDF [PHO04] whele we reject samples
that fall below the horizon and (right column)using our
local ervironmentmap samplingalgorithm. We haveren-
dered a perfectlydiffuseobjectat 20 samples/pixein three
differentervironmentghat all exhibit high-frequencylight-
ing. Cutoutsincludea magni ed region of theimage and a
varianceimage (note:theseare false-colorvisualizationsof
the logarithm of RMSerror in image intensitywhere bladk
0:135andred 20:08). All three samplingmethodsre-
quiredappoximatelyl5 secondgo rendertheseimages.

The main criterion this imposesis that the representation
mustallow ef cient computationof the probability of a di-
rection that was not generatedrom the distribution itself.
Algorithms that decomposeervironment maps into non-
overlappingstrata| ARBJ03 KK03, ODJ04, for example,
donotreadilyprovide this propertybecauseletermininghe
probabilityof anarbitrarydirectionwould requiresearching
overthe strata Althoughnotimpossible makingthis search
ef cient hasnot previously beendemonstratedndcouldbe
onedirection of future work. With our adaptve numerical
CDF, however, the probability of an arbitrarydirectioncan
be computedin O(logN) whereN is the numberof non-

¢ TheEurographic#ssociation2005.
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Cook-Torrance BRDF in the BeachEnvironment

Measured Nickel BRDF in Grace Cathedral Environment

Measured Plastic BRDF in Galileo's Tomb Environment

BRDF
Sampling

Illumination

Environment
Sampling

Combined
Sampling

Relative
Ef ciency

Figure 11: Multiple importancesamplingusingadaptivenumericalCDFs computedrombothBRDFsandimage-basedight-
ing. The4™" columnvisualizesherelativereductionin varianceusingernvironmentsamplingvs. BRDF sampling:red= BRDF
samplinghas8x lessvariancethanenvironmentmapsampling blue = ervironmentsamplinghas8x lessvariancethanBRDF
sampling For thesescenessamplingfrom eitherthe BRDF or ervironmentalonewill not effectivelyreducevarianceover the
entire image and performingmultipleimportancesamplingis critical.

uniformly spacedsamplesMoreover, becausef the com-
pressionratios possiblewith our representationN is typ-
ically small enoughto make this operationinexpensve in
practice.

We shaw several scenesor which multiple importance
samplingis critical (Figure 11). In theseresults,we use
the balanceheuristicintroducedby [VG95 to combine50
samplesof the BRDF with 50 sampleof the ervironment.
The BRDF samplesare generatedising our adaptve CDF
discussedn Section6.2 and the illumination samplesare
generatedisinglocal ervironmentmap sampling(seeSec-
tion 7.1). To demonstrat¢he bene t of arepresentatiothat
supportsmultiple importancesampling,we also compare
theseimagesto thoserenderedusing 100 samplesdravn
from eitherthe BRDF or ervironmentalone.

¢ TheEurographic#ssociation2005.

8. Conclusionsand Futur e Work

We have appliedtraditionalcurve approximatioralgorithms
to compresshe size of numerically talulated Cumulatize
Distribution Functiong CDFs)for ef cient importancesam-
pling. Thisrepresentatioresultsin adrasticreductionin the
storagecostof a numericalCDF without sacri cing signi -
cantaccurag in thereconstructeérobabilityDensityFunc-
tion (PDF). We investicated the bene t of using adaptve
numericalCDFsto sampleimage-basedighting and mea-
suredBRDFs. We also introducedlocal environmentmap
sampling which accountdor the orientationdependencef
theillumination. Lastly, we have demonstratednultiple im-
portancesamplingusingadaptve numericalCDFsto repre-
sentdistributionsfor boththe BRDFsandervironmentmap
in thescene.
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Becauseof the generalityof our adaptve representation,
it haspotentialapplicationsn mary otherproblemshatrely
on samplingfrom takulated measureddata. For example,
the techniquemight be usedto representight elds, which
would thenbe usedto illuminate a sceneor to samplefrom
thefull productof a cosine-weighte@nvironmentmapwith
ameasureRDF. A secondclassof applicationsmightin-
volve synthesisof textures,video, or animationbasedon
probability distributionslearnedby example.
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