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Abstract

As image-basedsurfacere�ectanceand illumination gain wider usein physically-basedrenderingsystems,it is
becomingmore critical to provide representationsthat allow samplinglight pathsaccording to the distribution
of energy in thesehigh-dimensionalmeasuredfunctions.In this paper, weapplyalgorithmstraditionally usedfor
curveapproximationto reducethesizeof a multidimensionaltabulatedCumulativeDistribution Function(CDF)
by oneto threeorders of magnitudewithoutcompromisingits �delity. Theseadaptiverepresentationsenablenew
algorithmsfor samplingenvironmentmapsaccording to the local orientation of the surfaceand for multiple
importancesamplingof image-basedlighting andmeasuredBRDFs.

Categories and SubjectDescriptors(accordingto ACM CCS): I.3.7 [ComputerGraphics]:Three-Dimensional
GraphicsandRealismI.3.6 [ComputerGraphics]:MethodologyandTechniques

1. Intr oduction

Techniquesarenow commonfor accuratelymeasuringreal-
world surface re�ectance and illumination. As a result,
denselysampledtabular representationsof lighting andBi-
directionalRe�ectanceDistribution Functions(BRDFs)ap-
pear in off-line, physically-basedrenderingpipelines.Be-
causeglobal illumination algorithmstypically use Monte
Carlo integration, employing commonvariancereduction
techniquesis critical to achieving a feasiblerateof conver-
gence.Consequently, it is importantthat representationsof
measuredenvironmentmapsand BRDFs provide ef�cient
importancesampling.

While several speci�c representationsof measureden-
vironment maps and BRDFs do allow direct sampling,
thereis still no singlerepresentationthat is appropriatefor
generalmultidimensionalmeasuredfunctions. As higher-
dimensionaldatasets�nd their way into renderedscenes
(e.g. light �elds, re�ectance�elds, etc.),a generalmethod
for samplingthemwill becomemoreimportant.Moreover,
for thespeci�c caseof environmentmaps,existingrepresen-
tationsdonotaccountfor thelocalorientationof thesurface
(i.e.thecosinetermin therenderingequation).Thisproperty
canlimit theeffectivenessof environmentmapsamplingin
reducingvariancefor many scenes.Anotherimportantdraw-

0 

1.0 

0 

1.0 

(a)6 Samples (b) 18Samples

Figure 1: We representa 1D CDF with a set of non-
uniformly spacedsamplesof the original function.This re-
sults in a more compactyet accurate approximationof the
original functionthanuniformspacingwouldallow. In addi-
tion, the�nal CDF maintainsmanykey propertiesnecessary
for unbiasedmultipleimportancesampling.

backof someexisting environmentmap representationsis
thatthey arenot readily incorporatedinto a multiple impor-
tancesamplingframework [VG95].

In this paper, we apply a curve approximationalgorithm
to thetaskof compressingmultidimensionaltabular Cumu-
lativeDistributionFunctions(CDFs)derivedfrom measured
datasets.Assumewe have a 1D CDF, P(x), sampleduni-
formly in x. In order to compressthis function,we lift the
restriction that the samplesmust be uniformly spaced,as
shown in Figure1. We usetheDouglas-Peucker greedyal-
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gorithm for polygonalapproximationof 2D curves[DP73,
HS92] to computethe locationof theseadaptivesamples.
We further extend this algorithm to representmultidimen-
sionalCDFs.To accomplishthis, we computemarginal 1D
CDFsin eachdimensionby summingtheenergy contained
acrosstheorthogonaldimensions.Eachof these1D CDFsis
representedby non-uniformlyspacedsamplesandtheresult-
ing setof these“cascadingCDFs”approximatestheoriginal
high-dimensionaldistribution. Thereareseveral bene�ts of
usingthisadaptivenumericalrepresentation:

� Allowing placementof non-uniformlyspacedsamplesre-
ducesthe numberthat mustbe storedto accuratelyrep-
resenttheoriginal CDF. This is especiallytruefor multi-
dimensionaldistributionsbecausethe storagegrows ex-
ponentiallywith the numberof dimensions.Signi�cant
reductionis alsoachieved for common“peaky” distribu-
tions,for whichmany methodsrequireO(n) storage.

� Generatingdirectionsaccordingto the distribution, ac-
complishedusing numericalinversionof the CDF, sim-
ply requiresa binary searchover the sortedsamplesof
P(x). This is essentiallythesamealgorithmasis usedfor
uniformly sampledCDFs,but with the positionof each
samplealongthedomainstoredexplicitly.

� Storinga “cascadingset” of conditional1D CDFs,each
representedby non-uniformlyspacedsamplesof theorig-
inal functions,promotesa direct implementationof unbi-
asedstrati�ed importancesampling.This resultsfrom the
factthateachdimensioncanbesampledindependently.

� Theprobabilityof asamplenotdrawn from theCDFitself
canbeef�ciently computedfrom the�nal representation.
This propertyis critical for combiningdistributionswith
standardmultiple importancesamplingalgorithms.

To demonstratethebene�t of ouradaptive representation,
we presenta novel algorithmfor samplingmeasuredenvi-
ronmentmapsin an orientation-dependentmanner. This is
accomplishedby samplingthe4D functionthatresultsfrom
modulatingan environmentmap with the horizon-clipped
cosine term in the renderingequation.This algorithm is
more ef�cient than existing techniquesthat sampleonly a
singlesphericaldistribution.Lastly, weshow how ouradap-
tive representationcanbeusedwithin amultiple importance
samplingframework.

2. RelatedWork

Monte Carlo importancesampling has a long history in
ComputerGraphics[Vea97]. For strati�ed samplingfrom
2D CDFsonamanifold(in thepracticalexamplesof thispa-
per, themanifold is a sphereor hemisphere),Arvo [Arv01]
describesaparticularrecipewhenananalyticdescriptionof
the function is available,with analytic samplingstrategies
available in somecases[Arv95]. Whendealingwith mea-
suredillumination or re�ectancedata,asin this paper, non-
parametricor “numerical” CDFsareunavoidable,andit is
importantto compressthem.

One possibleapproachis to usegeneralfunction com-
pressionmethods,such as wavelets or Gaussianmixture
models.Waveletshave beenpreviously usedfor importance
samplingof BRDFs[CPB03,LF97]. However, thecomputa-
tional costfor generatinga samplecanbesigni�cant, espe-
cially if non-Haarwaveletsareused(asis necessaryto avoid
many kinds of blocking artifacts).Additionally, the imple-
mentationfor multidimensionalfunctionssuchasmeasured
illumination and BRDFs can be dif�cult, requiring sparse
waveletdatastructuresandahexa-decarysearch.

A secondapproachto compactCDF representationthat
hasbeenappliedfor BRDFsis factorization[LRR04]. This
methodtakesadvantageof thestructureof theBRDFto fac-
tor it into 1D and2D pieces,therebyreducingdimensional-
ity while still allowing for accuraterepresentationandef�-
cientimportancesampling.Thetechniqueproposedheredif-
fers in consideringcompressionof generaltabulatedCDFs,
andis not limited to BRDFsampling.Additionally, theCDF
compressionconsideredhereis independentof dimension
and orthogonalto any factorizationsof the input data. It
could thereforebeappliedequallywell to methodsthatuse
afull tabularBRDFrepresentationandsamplingscheme(as
shown in thispaper),or to lowerdimensionalcomponents.

Another specializedCDF compressionapproach,which
hasbeenappliedto environmentmaps,is to decomposethe
functionintopiece-wiseconstantVoronoiorPenroseregions
onthesphere[ARBJ03,KK03,ODJ04]. As comparedto our
method,thesetechniquesoffer moreoptimal strati�cation,
but donotdirectlyextendto multidimensionaldistributions.
Anotherdrawbackof theserepresentationsis that they are
dif�cult to usewith standardmultiple importancesampling
algorithmsthat requirecomputingthe probability of a di-
rectiongeneratedfrom a separatedistribution. Lastly, these
representationsignorethe fact that half of the environment
is alwaysclippedagainstthehorizonof thesurfaceandthat
theillumination is scaledby acosineterm(Figure10).

3. Background

In this paperwe addressthe problemof importancesam-
pling. That is, we seekto generatesamplesaccordingto
someProbabilityDensityFunction(PDF),p, whichby de�-
nition is non-negativeandnormalized(i.e.,it integratesto 1).
We accomplishthis usingthe inversionmethod, which pre-
computesthecorrespondingCumulative Distribution Func-
tion (CDF)

P(x) =
Z x

�1
dx0p(x0) (1)

andevaluatesits inverseP� 1(z) at locationsgivenby auni-
formly distributedrandomvariablez 2 [0;1].

We areinterestedin the caseof a PDF speci�ed numer-
ically: in 1D, we assumethat we aregiven probabilitiespi
at locationsxi . We precomputethecorrespondingCDF val-
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Figure 2: The Douglas-Peucker algorithm greedily com-
putesa polyline approximation of a smooth2D curve. It
worksby insertingthe next samplein the approximationat
thepointof maximumdeviationbetweenthe(black) original
curveandthe(red)currentpolylineapproximation.

uesPi and,at run-time,invert theCDF by performinga bi-
nary searchfor the interval [Pi ;Pi+ 1] that containsthe ran-
domvaluez. Notethatthissearchis requiredwhetheror not
the xi arespaceduniformly. This will be the key property
usedby ourrepresentation:wecanrepresentmany functions
moreef�ciently by having non-uniformlyspacedxi without
increasingtherun-timecostof importancesampling.

In 2D, the situationis morecomplex. We must �rst de-
composethe2D PDF p(x;y) into two pieces,onedependent
only onx andtheotherony:

p̃(x) =
Z 1

�1
dyp(x;y) (2)

p(yjx) =
p(x;y)
p̃(x)

(3)

The numericalrepresentationthenconsistsof a discretized
versionof p̃, given as samplesp̃i at locationsxi , together
with acollectionof discretizedconditionalprobabilityfunc-
tions pi(yjxi ). This techniquegeneralizesnaturally to any
numberof dimensions,producinga“cascadingset”of CDFs
wherea value in eachdimensionis generatedsequentially
usingtheappropriate1DmarginalCDFateachstep[Sch94].
As an important special case,we note that functions on
a spheremay be representedusing the parameterization
p(z; f ), wheretheusualchangeof variablesz= cosq is used
to normalizefor theareameasuredw = sinqdqdf .

If the CDFsareuniformly sampledalong their domain,
the total size of this set of CDFs will be slightly larger
thanthe sizeof the original function. In ComputerGraph-
ics, it is often the casethat thesefunctions can be both
high-dimensionalandmeasuredat high resolutions.Conse-
quently, the combinedsize of the resulting1D CDFs can
quickly becomeprohibitively large. This motivatesour in-
vestigation into ef�cient techniquesfor compressingthese
sampledfunctionswithout compromisingtheir accuracy or
utility.

4. Numerical CDF Compression

We usepolygonalcurve approximationalgorithmsto com-
pressa denselysampledCDF by representingit with a re-
ducedsetof non-uniformlyspacedsamplesselectedto min-
imize thereconstructionerror.

4.1. PolygonalCurveApproximation

With early rootsin cartography, severalef�cient algorithms
have beendevelopedfor computingpolygonalapproxima-
tions of digitized curves. Polygonal approximationalgo-
rithms take as input a curve representedby an N-segment
polylineandproduceanM-segmentpolylinewith verticesso
asto minimizetheerrorbetweenthetwo (typically M � N).

Although algorithmsexist that output the optimal solu-
tion [CC96, Goo94, CD03], we insteaduse the Douglas-
Peucker [DP73,HS92] greedyalgorithmbecauseof its sim-
plicity andspeed.It hasalsobeenshown that thesegreedy
algorithmstypically produceresultswithin 80%accuracy of
theoptimalsolution[Ros97].

The Douglas-Peucker curve approximation algorithm
works by iteratively selectingthe vertex furthest from the
current polyline as the next vertex to insert into the ap-
proximation(Figure 2). Initially only the endpointsof the
curve areselected,andthealgorithmiteratively updatesthis
approximationuntil eitheran error thresholdis reachedor
somemaximum numberof verticeshave beenused.For
curves derived from numericalCDFs,we found this algo-
rithm suf�cient for producingnear-optimal approximations
with few samples.

4.2. Applying CurveApproximation to CDFs

Thereareseveralwaysof applyingtheabove curve approx-
imation algorithms to the task of representingnumerical
probability functions.First, we can apply them to yield a
piecewiselinearapproximationof theCDF, which is equiv-
alent to a piecewise constantapproximationof the cor-
respondingPDF. Becausethe Douglas-Peucker algorithm,
when appliedto the CDF, is guaranteedto yield a nonde-
creasingfunctionwith arangeof [0::1], theresultingapprox-
imationmaybeuseddirectly asa CDF anddifferentiatedto
�nd thecorrespondingPDF.

A secondway of usingcurve approximationalgorithms
is to apply themdirectly to the PDF to obtaina piecewise
linear approximation(which implies a piecewise quadratic
CDF). In this case,theresultingapproximationis not guar-
anteedto integrateto one,andmustbe normalizedbefore
it canbe usedasa probability function. Figure 3, bottom,
comparesthesetwo strategiesona(relatively smooth)func-
tion: note that the two approachesresult in samplesbeing
placedat differentlocationsin thedomain.For comparison,
Figure3, top,showspiecewiseconstantandpiecewiselinear
approximationsusinguniformsamplespacing.
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Figure 3: A probability densityfunction(correspondingto
environmentmapin Figure 7) and its piecewiselinear and
piecewise constantapproximationswith 8 samplesplaced
uniformly(top)andcomputedbytheDouglas-Peucker algo-
rithm (bottom).Thepiecewiseconstantapproximationwas
computedby running Douglas-Peucker on the integral of
thePDF (i.e. theCDF). Notethat, for this relativelysmooth
function,thepiecewiselinear approximationis closerto the
original.

One important difference between uniformly-sampled
andadaptively-sampledCDFsis the costof reconstructing
the valueof the approximatedfunction (i.e., evaluatingthe
probability) at an arbitrary position.This property is nec-
essaryfor combining several distributions using multiple
importancesamplingalgorithms[Vea97]. When the sam-
plesareuniformly spacedthe cost is O(1), whereasadap-
tively sampledrepresentationsrequireO(logN) time (here
N refersto the numberof non-uniformsamples).This in-
creasedcomplexity resultsfrom having to performa binary
searchover the valuesof the function sortedalongthe do-
mainto �nd thedesiredinterval. Becauseadaptive represen-
tationsprovide suchlargecompressionrates,however, N is
typically smallenoughto make this addedcostinsigni�cant
in practice.In addition,the time complexity of generating
a sample(asopposedto evaluatingtheprobability) remains
thesameatO(logN) in bothcases.

In our experiments,we alwaysuseda piecewiseconstant
approximationof the PDF (i.e. piecewise linear CDF). Al-
thoughthis resultsin a slightly larger representation,in our
experiencethisdrawbackwasoutweighedby thesimplerim-
plementationrequiredfor samplingapiecewiseconstantap-
proximation.

5. Multidimensional CDFs: The Cascading
Douglas-Peucker Algorithm

In theprevioussection,wediscussedhow to applycurveap-
proximationalgorithmsto thetaskof ef�ciently representing
numerical1D CDFs.In thissection,weextendtheseideasto
accomodatedistributionsof higherdimension.For thesake
of explanation,we�rst restrictourdiscussionto the2D case
andprovide anexamplewith syntheticdatain Figure4. Ex-
tendingthesetechniquesto higherdimensionsis straightfor-
wardandbrie�y discussedat theendof thesection.

Recallthatwe canconvert any 2D distribution (Figure4
top) into a single marginal CDF plus a set of conditional
CDFsaccordingto Equations1, 2 and3. In orderto gener-
ate (x;y) pairswith probability proportionalto the magni-
tudeof the original function,we �rst generatea valueof x
from the marginal CDF P̃(x) (Figure4 bottom,red curve)
andthengeneratea valueof y from thecorrespondingcon-
ditionalCDFP(yjx) (not shown in Figure4).

As describedpreviously, we usetheDouglas-Peucker al-
gorithm to selecta set of non-uniformly spacedsamples
that accuratelyrepresentthe marginal 1D CDF, P̃(x). For
the examplein Figure4, we canperfectlyapproximatethe
marginal CDF with samplesat theendpointsA andE andat
internallocationsB andD. Next, wewouldcomputeasetof
conditionalCDFs,P(yjx); onefor eachof theseregions in
x (e.g.in Figure4 theseregionsareAB, BD andDE). Each
conditionalCDF is theaverageacrossits associatedrange:

p(yjxi) =
1

xi � xi� 1

Z xi

xi� 1

dx0 p(x0;y)
p̃(x0)

: (4)

For all theexamplesin thispaperonmeasureddata,build-
ingacascadingsetof CDFsaccordingtoEquation4wassuf-
�cient for accuratelyapproximatingtheoriginaldistribution.
However, therearepotentialsituationswherethis approach
aloneignoreserror introducedby approximatingthe distri-
butionof energy within aregionwith asingleCDF. Figure4
illustratessuchasituation.In thiscase,thedistributionof en-
ergy within theregionBD wouldbepoorlyapproximatedby
a singleconditionaldistribution becausethe two arealight
sourcesareat differentheights.In order to addressthis is-
sue,we mustalsoconsiderthegradientin thex-directionof
theoriginaldistribution:

g(x) =
Z 1

�1
dy

�
�
�
�
¶p(x;y)

¶x

�
�
�
� (5)

When the function g(x) is large this indicateslocationsin
x wherethe conditionalCDFs, P(yjx), would not be well
approximatedby a singledistribution. Therefore,after our
�rst applicationof theDouglas-Peucker algorithmto repre-
sentP̃(x), weaddadditionalsamplesaccordingto thisgradi-
entfunction.Speci�cally, wecancomputeanumericalCDF
from g(x) andgeneratea �x ednumberof strati�ed samples
along the domain(e.g. the x-axis) suchthat they occur at
locationswherethis function is large. Adding samplesac-
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Figure 4: Ef�ciently approximatingmulti-dimensionaldis-
tributions requires computing a cascading set of 1D
marginal and conditional CDFs. Here we show (top) a
syntheticenvironmentmap that contains only two equal
sizedarea light sources.We compute(bottom,red curve)a
marginal CDF in x by summingthe total energy acrossy.
Wealsoconsider(bottom,greencurve)theaveragegradient
in the x-direction.We placenon-uniformlyspacedsamples
according to theDouglas-Peucker algorithmat positionsA,
B, D and E and any additional points where the gradient
functionis large (i.e. at positionC).

cordingto thegradientguaranteesthatbothP̃(x) is well rep-
resentedby the non-uniformlyspacedsamplesandthat the
conditionalCDFs computedfor eachregion, P(yjxi), well
approximatethe variationpresentin the orthogonaldimen-
sions.In theexamplein Figure4, weadditionallysamplethe
marginal CDF at locationC, separatingthe 2D distribution
into atotalof four regions(AB, BC, CD andDE), whereeach
region is now well approximatedby asingleCDF.

Lastly, we extendthis samplingalgorithmto arbitrarydi-
mensionsby simply expandingthe integralsover theentire
rangeof free variables(asopposedto just y for the 2D ex-
ampleconsideredabove).For anN-dimensionaldistribution,
p(x1;x2; : : :xN), boththemarginalandconditionalCDFsare
proportionalto the integral acrossthe remainingfree vari-
ables(note:weomit thenormalizationconstantfor clarity):

p(xi jx1 : : :xi� 1) /
Z 1

�1
dxi+ 1 : : :

Z 1

�1
dxN p(x1 : : :xN);

andthegradientfunctionwouldbecomputedsimilarly:

g(xi jx1 : : :xi� 1) =
Z 1

�1
dxi+ 1 : : :

Z 1

�1
dxN

�
�
�
�
¶p(x1 : : :xN)

¶xi

�
�
�
� :

6. Evaluation of Algorithm

In general,global illumination algorithmsperformnumeri-
cal integrationof therenderingequation:

Lo(x;wo) = Le(x;wo) +
Z

W2p

dwi Li(x;wi) r (x;wi ;wo) (wi � n):

A commonapproachto estimatingthe value of this in-
tegral is to performMonteCarlo integrationover thespace
of incomingdirections.Becausetheentireintegrandis usu-
ally not known a priori , a reasonablestrategy is to sample
accordingto the termsthat areknown. For example,if the
incident illumination Li is representedby an environment
map,we may performenvironmentsampling.BRDF sam-
pling, on theotherhand,generatessamplesaccordingto ei-
therr itself or r � (wi � n). Althoughalgorithmsexist for sam-
pling BRDFs and environmentmaps,thesefunctionspro-
vide a convenientplatform to evaluateour representation.
Moreover, ourapproachhasseveraldesirablepropertiesthat
theseexisting techniqueslack. Theseenablenovel applica-
tionsthatwepresentin Section7.

6.1. Envir onmentMap Sampling

Onedirect approachfor generatingsamplesaccordingto a
measuredenvironmetmap[Deb98], is simply to computea
family of numerical1D CDFsdirectly from the 2D spheri-
cal function [PH04]. RecallthatoneCDF will quantify the
distributionalongf , P̃(f ) andasetof 1D CDFswill control
thedistributionof samplesalongq at eachsampledlocation
of f , Pi(qjf i). Thesearederived from the intensityof each
pixel in theenvironmentmap(i.e.weightedaverageof color
values)usingthemethoddescribedin Section3.

If the resolutionof theseCDFsis proportionalto that of
theenvironmentmap(asit shouldbeto avoid aliasing)this
representationwill be slightly larger thentheoriginal mea-
sureddatasetitself. Therefore,thereis signi�cant opportu-
nity for compressionusingour adaptive representation.Fig-
ure5 shows false-colorvisualizationsona logarithmicscale
of thefull-resolution1000� 1000(q� f ) PDFof theGrace
Cathedral environment (http://www.debevec.org/Probes/),
togetherwith 16� 16and64� 64approximationsusingboth
uniform and non-uniform sampleselection.As compared
to uniform sampling,adaptive sampleplacementresultsin
a signi�cantly moreaccurateapproximationof the original
distribution.

Figure 6 comparesthe error of our adaptive numerical
representationwith uniform sampleplacementon two dis-
tributionswith qualitatively differentbehaviors. The upper
graphsshow asinglescanline(i.e.varyingphi for aconstant
theta) of the environmentmap,while the graphsat bottom
plot theRMSerrorof theapproximationasa functionof the
numberof samplesused(notethatthehorizontalaxisis log-
arithmic).At left, we considera relatively smoothfunction.
In thiscase,thegainfrom nonuniformplacementof samples
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(a)GraceCathedral (b) OptimalProbability
Light Probe Distribution

(c) Distributionw/ 16� 16 (d) Distributionw/ 16� 16
Uniform Samples Non-UniformSamples

(e)Distributionw/ 64� 64 (f) Distributionw/ 64� 64
Uniform Samples Non-UniformSamples

Figure5: False-colorvisualizationsof sphericalprobability
densityfunctionsona logarithmicscale(red= largestprob-
ability, green= smallestprobability).Directionsaremapped
to theunit circle according to theparameterizationusedby
Debevec[Deb98]. (a) A measured environmentmapof the
insideof GraceCathedral. (b) Theprobabilitydensityresult-
ing from usinga numericallytabulatedCDF sampleduni-
formlyat thesameresolutionof theoriginal map.Theprob-
ability distribution of numericalCDFs computedfrom (c)
16� 16 uniform samples(d) 16� 16 non-uniformsamples
(e) 64� 64 uniform samplesand (f) 64� 64 non-uniform
samples.

is relatively modest.At right, we show a “peakier” function
that is easierto compresswith nonuniformsampleplace-
ment. In this example,our adaptive representationreduces
the numberof samplesrequiredat equalapproximationer-
ror by a factorof 16comparedto uniformdownsampling.

 0

 0.25

 0.5

-3.14 -1.57 0.00 1.57 3.14

P
ro

ba
bi

lit
y

Phi

Beach

0.0

2.0

4.0

-3.14 -1.57 0.00 1.57 3.14

Phi

St. Peter's

 0

 0.01

 0.02

 0.03

 8  16  32  64  128  256

R
M

S
 E

rr
or

 o
f P

D
F

Number of Samples

Uniform
Adaptive

 0

 0.1

 0.2

 0.3

 8  16  32  64  128  256

Number of Samples

Uniform
Adaptive

Figure 6: Two different probability distribution functions
and the RMSerror in approximating themusing different
numbersof pointsanddifferentsamplingstrategies.Thedif-
ferent samplingalgorithmsuseeither uniform or adaptive
placementof samplelocations.

6.2. BRDF Sampling

The BRDF gives the ratio of re�ected light to incident
light for every pair of incoming and outgoing directions:
r (wo;wi). For glossymaterials,it is advantageousto sam-
ple the environmentaccordingto the distribution of energy
in theBRDF. Becausethis is a4D function(3D if theBRDF
is isotropic),a tabular representationat a modestresolution
wouldstill bequitelarge.Consequently, weapplyouradap-
tiverepresentationto thetaskof ef�ciently storingnumerical
CDFsderivedfrom measuredBRDFs.

We comparedthesizeandaccuracy of this representation
with astandardapproachof pre-computingtheCDFsattheir
full resolution[Mat03] for thesamesetof viewing directions
(Figure7). We evaluatedthe ef�ciency of generatingsam-
plesusingan adaptive numericalCDF computedfrom two
measuredBRDFs[MPBM03]: nickel andmetallic-blue.

For theseresults,we �rst reparameterizedtheBRDF into
a view/half-angleframe in order to maximize the redun-
dancy amongslicesof the function giving greateroppor-
tunity for compression[LRR04]. Eachuniformly-sampled
CDF had a resolutionof 32� 16� 256� 32 (qo � f o �
qh � f h) andoccupied65MB. Here,qh and f h are the el-
evation and azimuthalanglesof the half-anglevector re-
spectively. To computethe correspondingadaptive numer-
ical CDFs required,on average,roughly 30 samplesin qh
and10samplesin f h. UsingtheDouglas-Peuckeralgorithm,
theseadaptive sampleswereselectedfrom an initial setof
2048� 1024(qh � f h) uniformly-spacedsamples—areso-
lution prohibitively expensive for the fully tabulatedCDFs.
It required20 minutesof processingtime to computethe
adaptive representationfor eachBRDF.
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MeasuredNickel BRDF

Original (65MB) Compressed(3.9MB)

MeasuredMetallic-Blue BRDF

Original (65MB) Compressed(2.3MB)

Figure7: BRDFimportancesamplingwith adaptivenumer-
ical CDFs.Wecompare thevariancein imagesrenderedus-
ing a pathtracerthat generatessamplesusingthefully tab-
ulatedCDF andtheadaptiveCDF. In all casesweestimate
theradiancewith 80paths/pixel.Wealsolist thetotal sizeof
theprobability representationbeloweach image.

We found that for theseBRDFs,samplingthe adaptive
numericalCDF is nearlyasef�cient asthe full tabular ap-
proach.For the measurednickel BRDF, the compactCDF
actuallyproducesslightly lessvariancein theimagebecause
the uniform samplingwasnot suf�ciently denseto capture
theverysharphighlight.

7. Novel Applications

In this sectionwe presenta new algorithmfor samplingil-
luminationfrom anenvironmentmapaccordingto thelocal
orientationof thesurface.Additionally, wedemonstratehow
our representationfacilitatesmultiple importancesampling
of bothilluminationandtheBRDF.

7.1. Local Envir onmentMap Sampling

Usingadaptive numericalCDFs,we introducea novel algo-
rithm for samplingan environmentmap in an orientation-
dependentmanner. In previous methodsof samplingenvi-
ronmentmaps,incomingdirectionsaredrawn from a single

100%
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7.8%

3.3%

(a) Illumination (b) Sampling
Ef�ciency

Figure8: For someorientationsandlighting, samplingfrom
a singledistribution will be inef�cient becausemostof the
energy is occludedby the horizon.(a) We examinethis in-
ef�ciency for an examplein which the majority of light is
above and slightly behindthe objectbeingrendered. (b) A
false-colorimage visualizesthe percentage of samplesthat
will begeneratedabovethehorizonand,consequently, make
a positivecontributionto theradianceestimateat thatpixel.
In manyregionsof this image only 5% of the samplesare
generatedabovethehorizon.

sphericaldistribution [ARBJ03,KK03,ODJ04,PH04]. This
approachis inef�cient whena signi�cant amountof light in
thescenehappensto fall below thehorizonfor a largenum-
berof pixels.In Figure8, therearemany regionsof theim-
agewhereasfew as5% of thesamplesaregeneratedabove
the horizon—thisalso indicatesthe inef�cacy of standard
techniqueslike rejectionsamplingto addressthis problem.
Furthermore,samplingfrom a singlesphericaldistribution
cannotconsiderthe cosineterm that appearsin the render-
ing equation(i.e.max(0;n � wi)). Accountingfor thiscosine-
falloff wouldrequiresamplingfrom a4D function(i.e. there
are two degreesof freedomin the incoming direction and
two in thenormaldirection).We show several 2D slicesof
this function for differentnormaldirectionsin Figure9. As
with BRDFs,representinga4D distributionevenatamodest
resolutioncouldrequireprohibitively largestorage.

We canstorethe 4D distribution that resultsfrom mod-
ulating an environmentmap by the cosineterm using our
adaptive CDF representation.During rendering,eachpixel
correspondsto anormaldirectionthatbecomesanindex into
the4D distribution,producinga2D distributionover incom-
ing directionsthatwe samplefrom. In our experiments,we
evaluatedthelocal environmentmapdistribution at 25� 10
(f � q) normaldirectionsand1000� 2000(f � q) incom-
ing directions.Storing this tabular CDF directly would re-
quireapprox. 4GB of space.In contrast,our representation
requires10-20MBof storageand1-2hoursof computetime
to provideanacceptableapproximation.

We comparedlocal environmentmapsamplingwith jit-
teredsamplingof a strati�ed representation[ARBJ03] and
samplingfrom a uniformly-spacedCDF [PH04] (seeFig-
ure 10). Jitteredsampling(Figure 10 left) performedthe
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nq = 0, nf = 0 nq = p, nf = 0

nq = 2:35,nf = 1:57 nq = 2:35,nf = 4:71

Figure 9: False-colorvisualizationsof several CDFs com-
putedat different surfaceorientations.Each distribution is
visualizedon a logarithmic scaleas in Figure 5. For each
surfacenormal considered we clip the environmentmapto
thevisiblehemisphere andmultiply each radiancevalueby
(n� wi) beforecomputinganadaptiveCDF representationof
theresulting4D distribution.

worst mainly becausethis techniqueis ineffective for such
low samplecounts (note: we are using only 20 samples
here).Moreover, there is signi�cant error due to the bias
introducedby approximatingeachstratawith a radial disk.
Although unbiasedjittering is not impossibleto achieve, it
is not a simple extensionto publishedalgorithmsand has
not beenreportedin previous work. We alsocomparedour
algorithmto samplingfrom a uniformly-sampledCDF and
rejectingthosesamplesthat fell below the horizon[PH04]
(Figure 10 middle). This strategy is most comparablein
quality to our own, but becauseit doesnot accountfor the
horizon-clippedcosine term in the renderingequation,it
fails to achievethesamerateof convergence.Quantitatively,
local environmentmapsamplingachieved approx. 5 times
lowervariancethansamplingasingleCDFcomputedat full
resolutionandapprox.20timesbetterthanjitteredsampling
for thesetestscenes.

7.2. Multiple Importance Sampling

In practice,neitherthe BRDF nor the incidentillumination
alonedeterminethe �nal shapeof the integrandin the ren-
deringequation.Therefore,it is critical that a CDF repre-
sentationsupportsmultiple importancesampling[VG95].

St. Peter'sBasilica

Galileo'sTomb

GraceCathedral

Jittered Full CDF Local
Sampling With Rejection Env. Sampling

Figure 10: We compare thevarianceof a MonteCarlo esti-
matorcomputedaccordingto (left column)jitteredsampling
of a strati�ed representation[ARBJ03], (middlecolumn)a
uniformly-sampledCDF [PH04] where we reject samples
that fall below the horizon and (right column) using our
local environmentmap samplingalgorithm. We haveren-
dereda perfectlydiffuseobjectat 20 samples/pixelin three
different environmentsthat all exhibit high-frequencylight-
ing. Cutoutsincludea magni�ed region of the image anda
varianceimage(note:theseare false-colorvisualizationsof
the logarithm of RMSerror in image intensitywhere black
� 0:135 and red � 20:08). All threesamplingmethodsre-
quiredapproximately15secondsto rendertheseimages.

The main criterion this imposesis that the representation
mustallow ef�cient computationof theprobabilityof a di-
rection that was not generatedfrom the distribution itself.
Algorithms that decomposeenvironment maps into non-
overlappingstrata[ARBJ03, KK03, ODJ04], for example,
donot readilyprovidethispropertybecausedeterminingthe
probabilityof anarbitrarydirectionwould requiresearching
over thestrata.Althoughnot impossible,makingthissearch
ef�cient hasnot previously beendemonstratedandcouldbe
onedirectionof future work. With our adaptive numerical
CDF, however, the probability of an arbitrarydirectioncan
be computedin O(logN) whereN is the numberof non-
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Cook-Torrance BRDF in the BeachEnvir onment

MeasuredNickel BRDF in GraceCathedral Envir onment

MeasuredPlasticBRDF in Galileo'sTomb Envir onment

Illumination BRDF Environment Relative Combined
Sampling Sampling Ef�ciency Sampling

Figure11: Multiple importancesamplingusingadaptivenumericalCDFscomputedfrombothBRDFsandimage-basedlight-
ing. The4th columnvisualizestherelativereductionin varianceusingenvironmentsamplingvs.BRDFsampling:red= BRDF
samplinghas8x lessvariancethanenvironmentmapsampling, blue= environmentsamplinghas8x lessvariancethanBRDF
sampling. For thesescenes,samplingfromeithertheBRDFor environmentalonewill not effectivelyreducevarianceover the
entire imageandperformingmultipleimportancesamplingis critical.

uniformly spacedsamples.Moreover, becauseof the com-
pressionratios possiblewith our representation,N is typ-
ically small enoughto make this operationinexpensive in
practice.

We show several scenesfor which multiple importance
sampling is critical (Figure 11). In theseresults,we use
the balanceheuristicintroducedby [VG95] to combine50
samplesof the BRDF with 50 samplesof the environment.
The BRDF samplesaregeneratedusingour adaptive CDF
discussedin Section6.2 and the illumination samplesare
generatedusinglocal environmentmapsampling(seeSec-
tion 7.1). To demonstratethebene�t of a representationthat
supportsmultiple importancesampling,we also compare
theseimagesto thoserenderedusing 100 samplesdrawn
from eithertheBRDFor environmentalone.

8. Conclusionsand Futur eWork

Wehaveappliedtraditionalcurveapproximationalgorithms
to compressthe size of numerically tabulatedCumulative
DistributionFunctions(CDFs)for ef�cient importancesam-
pling.Thisrepresentationresultsin adrasticreductionin the
storagecostof a numericalCDF without sacri�cing signi�-
cantaccuracy in thereconstructedProbabilityDensityFunc-
tion (PDF). We investigated the bene�t of using adaptive
numericalCDFs to sampleimage-basedlighting andmea-
suredBRDFs. We also introducedlocal environmentmap
sampling, which accountsfor theorientationdependenceof
theillumination.Lastly, we have demonstratedmultiple im-
portancesamplingusingadaptive numericalCDFsto repre-
sentdistributionsfor boththeBRDFsandenvironmentmap
in thescene.
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Becauseof the generalityof our adaptive representation,
it haspotentialapplicationsin many otherproblemsthatrely
on samplingfrom tabulated measureddata.For example,
the techniquemight beusedto representlight �elds, which
would thenbeusedto illuminatea sceneor to samplefrom
thefull productof acosine-weightedenvironmentmapwith
a measuredBRDF. A secondclassof applicationsmight in-
volve synthesisof textures,video, or animationbasedon
probabilitydistributionslearnedby example.
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