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Abstract
While existing methods for 3D surface approximation use local geometric properties, we propose that more intu-
itive results can be obtained by considering global shape properties such as symmetry. We modify the Variational
Shape Approximation technique to consider the symmetries, near-symmetries, and partial symmetries of the input
mesh. This has the effect of preserving and even enhancing symmetries in the output model, if doing so does not
increase the error substantially. We demonstrate that using symmetry produces results that are more aesthetically
appealing and correspond more closely to human expectations, especially when simplifying to very few polygons.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric Algorithms

1. Introduction
In applications such as interactive rendering, editing, or
physical simulation of large scenes, it is important to adapt
the complexity of the models to the detail present in the sur-
face. This is especially the case given the increased prac-
ticality of 3D scanners and procedural modeling systems,
which has led to an abundance of over-tessellated models
containing millions of primitives. Correspondingly, over the
last decade many methods have been developed to simplify
3D models while closely approximating their geometry.

While such approximation methods maintain the geom-
etry of the original model, they do not explicitly preserve
other types of high-level information. In particular, the sym-
metry of the model in Figure 1a would not be preserved
by existing remeshing techniques. The recently-introduced
Variational Shape Approximation [CSAD04], for example,
yields Figures 1b and 1d, in which the approximate left-right
symmetry is not captured in the triangulation.

To address this, we propose a framework for model
simplification that automatically detects symmetric regions
and actively preserves and even strengthens those symme-
tries during simplification. Specifically, we have adapted all
stages of Variational Shape Approximation to include sym-
metry. During the proxy generation stage, we extend the no-
tion of a proxy to include multiple connected components re-
lated by a pre-defined set of symmetry transformations (e.g.,
planar reflection). Thus, while growing proxies we consider
not only neighboring triangles, but also reflected triangles.
In the triangulation stage, we explicitly find corresponding
symmetric points based on the proxies grown previously. We
force the triangulation to follow these correspondences as
much as possible, yielding a more symmetric triangulation.

The result is the mesh of Figures 1c and e, which captures
symmetry while yielding a comparable approximation error.

(a) Initial model

 with symmetry 

         plane

(b) Traditional 

       proxies 

(c) Symmetric

       proxies

(d) Traditional 

  triangulation

(e) Symmetric 

  triangulation

Figure 1: Remeshing without symmetry does not create a
symmetric triangulation without explicit accounting for sym-
metry. Column (a) shows a model (62K triangles) of a rela-
tively symmetric mask. Column (b) shows a visualization of
the proxies found by a standard remeshing algorithm, while
(c) shows the proxies obtained taking symmetry into account.
(d) and (e) show the resulting triangulations.
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The rest of the paper will be organized as follows: Sec-
tion 2 will describe previous remeshing techniques in greater
detail, Section 3 will provide the details of our algorithm,
Section 4 will show results and Section 5 will include a dis-
cussion and future work.

2. Previous Work
2.1. Surface Approximation
Due to the usefulness of simplified models for many appli-
cations in computer graphics, there is a long history of tech-
niques designed to approximate a 3D surface while optimiz-
ing for various types of geometric error.

One common method for mesh simplification involves ap-
proximating the surface locally either by greedily clustering
local groups of triangles or by collapsing the edges of a mesh
using a local error metric that captures the geometry defor-
mation of the simplified area [Hop96,KLS96,GH98,Tur92].
Other methods, including [KT03] and [STK02], seek to
combine sets of faces containing similar properties to gen-
erate characteristic regions.

An alternative paradigm for simplification involves gener-
ating a a maximally-accurate approximation with respect to
a global error metric, while reducing the number of faces.
Work such as [HDD∗93] generates an energy functional
based on a point-to-surface distance of the input mesh. This
error function captures the curvature and surface variations
from the original model. Departing slightly from the use of
surface distance (the L2 metric), [CSAD04] define a met-
ric based on the normals of the surface (The L2,1 metric).
They also solve the global error function by fixing a num-
ber of proxies and then optimally placing these proxies to
best approximate the surface. Using normals rather than the
more widely used surface distance is motivated by the desire
to generate more visually pleasing results, for example by
more accurately retaining highlights.

We propose to extend this reasoning by noting that in gen-
eral, people are sensitive to symmetry, and will notice depar-
ture from symmetry more readily than some general defor-
mation of the surface. To this end, we propose to augment
remeshing techniques by directly incorporating symmetry
information into the algorithm.

2.2. Detection of Symmetry in 3D Shape
Perfect Symmetry: The traditional approach to symmetry
detection works with discrete symmetries — perfect sym-
metries under rotation, reflection, or translation [Ata85,
WWV85, MIK93, TW05]. While these methods can detect
perfect symmetries with varying degrees of tolerance to
noise, they do not work with imperfect symmetries or with
symmetries that reflect only parts of the model.
Imperfect Symmetry: In the last decade, methods have
been provided for measuring imperfect symmetries. Work
such as [ZPA95,KFR04] paved the way by defining a contin-
uous notion of symmetry for partial reflection of models. Re-

(a) (b)

Figure 2: An example of a 2D symmetry transform. (a) The
initial model. (b) The transform of the model with the darker
lines representing stronger symmetries. Note the line of per-
fect symmetry passing through both the square and the el-
lipse, as well as additional weaker lines of imperfect sym-
metry. In all cases, the local maxima of the transform are
significant symmetries.

Figure 3: An example of principal symmetries of a 3D
model, extracted from the 3D symmetry transform. Note that
these capture the partial and approximate symmetries of the
ears, head, body and legs of the bunny.

cently, [MGP06] have shown how to efficiently find imper-
fect symmetries in a model, while [PSG∗06] defined a sym-
metry transform, capturing the degree of symmetry about all
planes passing though a 3D model. An example in 2D is
shown in Figure 2. There are two types of imperfect sym-
metry: local symmetry, in which a portion of a model is per-
fectly symmetric while the rest of it is not, and approximate
symmetry, in which the entire model is not symmetric but
could be made symmetric with a slight deformation. Both
types of imperfect symmetry may be found automatically
using the symmetry transform by extracting the set of Prin-
cipal Symmetries of the model, a set of planes that are lo-
cal maxima of the transform. An example of these principal
symmetries can be seen in Figure 3. We use these principal
symmetries to guide our approximation of the surface.

3. Symmetric Remeshing
3.1. Our Approach
The goal of our paper is to remesh a surface in a “symmetry
aware” environment. If we were only concerned with perfect
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symmetries, a simple algorithm would be to remesh using
any existing technique, then force symmetry by mirroring
the output. However, in most practical situations, the sym-
metries will be imperfect. For example, there may be near-
symmetries that are not perfect because of noise or differing
tessellation, or partial symmetries in which regions of the
model may be symmetric about different planes. In addition,
some models may exhibit approximate symmetry. In these
cases, faithful remeshing (resulting in a large number of
polygons), should prioritize geometric accuracy. However,
remeshing such models with fewer polygons should result in
a symmetric output, provided that doing so introduces error
of the same order as that necessarily introduced by remesh-
ing. In this way, we avoid symmetrizing if there is no reason
to do so: the choice to remesh with many polygons shows
that the user’s overriding concern is to preserve detail accu-
rately.

Our approach is to modify the algorithm proposed by
[CSAD04] so that it explicitly preserves symmetry. We
chose to begin with this algorithm because it has been shown
to produce good results for low polygon counts, for which
the careful choice of symmetrization algorithm has the most
visible impact. In addition, as we will show later, this al-
gorithm allows us to smoothly combine multiple planes of
symmetry, as well as both symmetric and asymmetric re-
gions of the mesh.

Our adapted algorithm uses as input a list of principal
planes of symmetry, as extracted by the methods described
in [PSG∗06]. These planes are used during the three stages
of the algorithm: proxy generation, point selection, and tri-
angulation. In the next three subsections we describe each
step briefly and explain how we modify the original algo-
rithm to incorporate symmetry.

3.2. Symmetric Proxy Generation
The first step of the algorithm is to generate proxies, pla-
nar regions that closely approximate local sections of the
surface. This is done with an iterative technique based on
Lloyd’s algorithm. At every iteration:
1. Every proxy is assigned triangles of the model from a

single priority queue. When a triangle ∆ is removed from
the queue and assigned to a proxy P, all triangles adja-
cent to ∆ are added to the queue with a weight defined by
the compatibility of those triangles to P. This assures that
each proxy is a single connected component.

2. Once all triangles have been assigned, optimal proxy pa-
rameters (i.e., center and normal) are re-computed based
on the triangles currently assigned to the proxy.
In order to avoid converging to local minima, small prox-

ies are occasionally deleted and new proxies introduced at
appropriate locations (“teleportation”).

Our method follows this approach but generalizes the def-
inition of a proxy by allowing it to represent a planar region,
possibly transformed by a discrete set T1..Tk of symmetry
transformations. This is a key component of our algorithm,

(a) (b)

Figure 4: (a) A proxy with two patches. The purple patch
is associated with the identity and the green patch is asso-
ciated with the reflection plane shown. (b) When a triangle
(orange) is assigned to a proxy (green), the neighboring tri-
angles (black) are added to the queue. The triangles across
the plane of reflection (red) are added as well.

as proxies may now contain multiple connected components
symmetric to one another. We allow a maximum of one con-
nected component per symmetry transformation (including
the identity), called patches. As an example, we show in
Figure 4(a) a proxy with two patches, one associated with
the identity (purple triangles) and one associated with the
reflection plane shown (green triangles).

In our method, a triangle ∆ may be assigned to a proxy P if
it is adjacent to a triangle previously assigned to P, or if the
triangle nearest to Ti(∆) has previously been assigned to P.
Consider the example shown in figure 4(b). The orange tri-
angle was recently assigned to the proxy shown (dark green),
so any of the black triangles may now be added to the proxy;
under our extended definition, the red triangles may be added
as well.

The remainder of the iterative algorithm is nearly un-
changed, with triangles extracted from the priority queue in
order of increasing error, and new patch centers and posi-
tions computed after each iteration. The teleportation pro-
cess is augmented to allow individual patches, in addition to
entire proxies, to be deleted.

After a few iterations, we observe that, where possi-
ble, proxies will have symmetric patches corresponding to
“good-enough” symmetry transformations. This will ulti-
mately lead to symmetric outputs, since the boundaries be-
tween the proxies determine the topology of the final sur-
face. Note that the order with which triangles are selected
from the priority queue completely determines whether or
not the final proxies are symmetric. That is, symmetric prox-
ies will be created if and only if the error of doing so is
comparable to the error introduced by the remeshing itself.
Multiple planes of local symmetry are used automatically in
the appropriate regions, and no user intervention is required.
An example of this can be seen in Figure 5, where the area
around the chin is not symmetric. Therefore, in this region,
unlike the the rest of the face, the proxies are generated with-
out a reflection.
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Figure 5: This model is quite symmetric, except for the gash
in the right side of the chin. Note how our algorithm does not
create symmetric patches for the proxies that approximate
that area, because the error introduced would be too great.
The remainder of the head however, has symmetric patches.
The model was remeshed using 50 proxies and one plane of
symmetry (up to two patches per proxy).

It is also be possible to augment the method with addi-
tional user control. This may consist of limiting the symme-
tries that are considered for particular portions of the surface,
or could extend to implementing a threshold on the deviation
from perfect symmetry that is allowed when adding triangles
to the priority queue. For the results presented in this paper,
only figure 10 uses any user control. In that example, every
triangle is limited to consider only a single reflection.

3.3. Point Correspondences
Once the proxies are placed, our goal is to place a set of sym-
metric points on the surface that we will later triangulate.

[CSAD04] place two categories of points onto the new
surface. The first category of points is anchor vertices,
placed at junctions where three or more proxies meet. The
second category of points is secondary points, which are
placed along the boundaries between proxies to improve the
geometry approximation of the new surface and to assure at
least three points per proxy boundary. New positions for an-
chor and secondary points are computed by averaging the
projections of each vertex onto all adjacent proxies.

Our modifications to this vertex-placing algorithm involve
determining symmetric correspondences between points.
For anchor vertices, we check whether the proxies adjacent
to some vi all have reflections that meet in an identical con-
figuration at some v j . If this is the case, then we establish a
correspondence between vi and v j, and further adjust their
new positions to be perfect reflections of each other.

We find matching secondary points by establishing cor-
respondences between proxy boundaries: mesh-edge paths
that run between corresponding anchor vertices are consid-
ered to be in correspondence with each other. When adding
a secondary vertex to a boundary, we search through cor-
responding boundaries for the nearest symmetric vertex. As

(a) (b)

Figure 6: This figure shows the need for splitting faces that
cross over reflection planes. (a) Without splitting faces, tri-
angles that cross the plane of reflection are assigned to only
one of the reflections of the proxy. This causes a jagged tri-
angulation. (b) When we split the triangles that cross the
reflection plane, the tessellation is symmetric. The models
have 342 and 358 faces respectively.

with anchor vertices, we adjust the positions of such corre-
spondences to be perfect reflections.

3.4. Triangulation
Once we obtain all our correspondences between anchor and
secondary points, all that remains is to triangulate the set of
points symmetrically.

We triangulate the proxies in the same manner suggested
by [CSAD04]. This consists of flooding using Dijkstra’s
shortest-path algorithm, where the sources are the anchor
and secondary points, and with each edge weighted accord-
ing to its length. At the end of the flooding, adjacency of
regions implies that their source points should be connected
in the resulting triangulation. As a final pass, edge flipping
and edge removal are run to obtain a better tessellation.

We use the same flooding algorithm, but run edge flip-
ping on each proxy separately to prevent edge flips in one
proxy from altering the triangulation of its neighbors. This
process is guaranteed to converge to the same topology for
symmetric proxies if the associated triangles are co-planar.
In practice, we find that this method produces a consistent
topology even when the triangles are not co-planar.

3.5. Proxies Spanning Reflection Planes
The algorithms for proxy assignment and triangulation, as
described above, operate at the granularity of entire trian-
gles of the input. This leads to potential problems for prox-
ies that lie near the planes of symmetry, since triangles that
originally cross a symmetry plane will be assigned entirely
to one or another component (patch) of a proxy. The result is
non-symmetric triangulations along the planes of reflection,
as can be seen in Figure 6a. Obtaining a symmetric output
therefore requires us to treat this situation as a special case.
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Bull planes (α = 0) (α = 0.4)

Figure 7: At left, we show a bull remeshed to 200 proxies with two planes simultaneously, one passing through the head and
one passing through the body. In the center column we show results using the basic L2,1 metric (α = 0). At right, we show
results when α = 0.4. Note that the model becomes more symmetric, at the expense of geometric accuracy.

We preprocess the model by splitting each triangle that
crosses a reflection plane, creating new vertices where the
original triangle’s edges intersect the reflection plane and
replacing the original with three new triangles. The proxy-
fitting stage proceeds as previously described. Then, at the
beginning of the triangulation stage, we explicitly check
each of the split triangles to see if both sides of the triangle
were assigned to different patches. If so, we explicitly en-
force that the vertices we inserted to perform the split (lying
on the reflection plane) be anchor vertices. The rest of the
algorithm proceeds as above, with the result that the triangu-
lation now becomes symmetric (figure 6b). In the examples
in this paper, splitting triangles adds 3% to the number of
triangles.

3.6. Error Metric
While it is not possible to change the amount of weight given
to symmetry vs. geometric deformation, since all we do is
add more triangles for the priority queue to consider, in cer-
tain cases it might be important to consider symmetry more
strongly than surface deformation. In these cases, we have
observed that the L2,1 metric proposed by [CSAD04] is not
ideal for preserving symmetry. This is because it considers
only normals, which tend to be more sensitive to noise and
small deformation than does the geometry itself. Therefore,
in order to allow more freedom for the algorithm to capture
a model’s near-symmetries, we have considered other, more
“symmetry friendly” error metrics.

We begin by noting that in the L2,1 metric, the distance
of a triangle to a proxy depends only on the normal, and
indeed the center of the proxy is not relevant, being set as
the weighted average of the triangles in the proxy for book-

keeping purposes only. We note that if the metric were sim-
ply the weighted Euclidean Distance of the centers of the
triangles to the center of the proxy, then the optimal proxy
position would also be at the weighted average of the tri-
angles, without consideration of the normal. We expect that
such a purely position-based error metric allows the algo-
rithm greater opportunity to capture near-symmetries, at the
expense of less-faithful preservation of the original geome-
try.

Thus, we have investigated a combined error metric, with
one term dependent only on positions and one only on nor-
mals. Specifically, we take

Ecombined = α
∥

∥

∥

ctriangle − cproxy
∥

∥

∥

2
+

(1−α)Aavg
∥

∥

∥

ntriangle −nproxy
∥

∥

∥

2
,

where c and n represent the average positions and normals
of triangles and proxies, Aavg is the average triangle area
(included to ensure that the two terms are dimensionally
compatible and the metric is scale invariant), and α is a
user-selected parameter. In Figure 7 we show an example
of remeshing a bull with α = 0 and with α = 0.4. Note that
the proxies look more symmetric as we increase α, at the ex-
pense of a less-faithful reproduction of the original surface.

4. Results
We evaluate the algorithm described in the preceding sec-
tions using a number of well-known 3D meshes. Our goal
is to produce simplified meshes that maintain and even en-
hance symmetries, while minimizing geometric approxima-
tion error. In the following subsections, we analyze the algo-
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Original 600 50

Figure 8: Increasing the amount of geometric simplification
(towards right) results in greater symmetry preservation. Im-
ages in the bottom row are colored to represent deviations
from symmetry (how far each point is from the reflected sur-
face) with blue indicating perfect symmetry.

rithm for both single and multiple planes of symmetry and
present running times.

4.1. Approximate Symmetries
A first example shows results for a mask (Figure 1): the
original model (a) contains 62K faces and is only roughly
symmetric. Figure 1(b) shows proxies for the model gen-
erated using the unmodified algorithm of Cohen-Steiner et
al. [CSAD04]. Note that the proxies are not symmetric. Fig-
ure 1(c) shows the result of using our symmetry-aware algo-
rithm: note that the proxies are now symmetric. Since sym-
metric remeshing allows proxies to have multiple patches,
we used 100 proxies in the basic method and 50 proxies
in the symmetry-aware version to ensure a similar-quality
tessellation. Note that our algorithm (e) produces a trian-
gulation with more symmetry than the traditional method
(d), as expected. Moreover, we find that it introduces very
little geometric error in the shape approximation as com-
pared to the original Cohen-Steiner algorithm — the RMSD
increases by 4%, while the symmetry error (RMSD to re-
flection) decreases by 50%. This result suggests that more-
symmetric topology can be provided for approximately sym-
metric models at very little cost.

Figure 8 demonstrates that increasing the amount of sim-
plification results in meshes that are more symmetric. At top
we show the Max Planck model simplified to 600 and 50

Original Asymmetry Remeshed

Figure 9: 3D scan of a sacrum (605K polygons, shown at
left) remeshed with 200 proxies (right). Note that the model
is only approximately symmetric (middle).

proxies, while at bottom we illustrate deviations from per-
fect symmetry (blue is most symmetric while green, yellow,
and red indicate more asymmetry). This illustrates the prop-
erty of our algorithm that it automatically captures symmetry
if doing so is compatible with the current deformation error.

A third example is the sacrum in Figure 9 (605K faces)
which was remeshed using 200 proxies. This is model of a
natural object that is close to symmetric yet not perfectly so,
as shown in the color-coded visualization at center. In addi-
tion, this model was created from a set of 3D scans, meaning
that high-frequency scanning noise caused further deviations
from symmetry. At right we show our remeshed result, pro-
duced in just over eight minutes. Our method remains robust
despite the high-frequency noise, the presence of holes and
the large size of the mesh.

4.2. Multiple Symmetries
Our first example of remeshing while considering multiple
planes of symmetry is the bull (Figure 7). This model has
separate planes of reflection indicating approximate sym-
metries of the head and the body. These planes were au-
tomatically extracted by finding local maxima of the sym-
metry transform and iteratively optimizing their position
[PSG∗06]. Note that the remeshing results in symmetric tri-
angulations for the head and the body with a reasonable
(though not symmetric) triangulation at the neck.

Our second example (Figure 10) shows results for the
Stanford bunny. While it is intuitively obvious that the bunny
has two major planes of symmetry, the result of automatic
symmetry analysis is that there are in fact four strong sym-
metries. Figure 3 illustrates these four planes, which capture
the separate symmetries of the ears, body, head, and legs of
the bunny respectively. We show in Figure 10 the result of
remeshing with respect to two, three, and four planes of sym-
metry. Note that remeshing with only three planes fails to
capture the symmetry of the feet, while considering only two
planes (through the body and ears — the strongest planes re-
sulting from the symmetry analysis) fails to triangulate the
head symmetrically. In contrast, the result at right shows that
we are able to take advantage of all four symmetry planes to
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2 symmetry planes 3 symmetry planes 4 symmetry planes

Figure 10: The bunny is shown here remeshed with 250 proxies, using 2, 3, or 4 planes of symmetry. Note that increasing
the number of symmetries results in progressively more symmetric and more intuitive triangulations, while retaining plausible
triangulations at the boundaries of symmetric regions.

produce an intuitive result with locally-symmetric triangula-
tions and smooth transitions between the symmetric regions.

To produce these results, we segmented the input mesh
according to the strongest symmetry at each point, then con-
strained the proxy flooding to only consider one candidate
symmetry per triangle. The remeshing itself, however, was
still run on the entire model, allowing smooth blends be-
tween symmetry regions to be computed automatically.

4.3. Computation Time
We ran our experiments on a 3GHz PC with 1GB of RAM.
As a preprocess, for every model we calculated a symme-
try transform using a 128x128x128 grid, then ran the Iter-
ative Symmetric Points algorithm (described in [PSG∗06])
to refine each of the extracted principal symmetries. The to-
tal computation time for extraction of symmetry information
took roughly half a minute, with minimal dependence on the
size of the original model. While most models exhibit a sin-
gle strong plane of symmetry, we have extracted up to four
principal planes for the models considered in this paper.

Our remeshing algorithm can take up to several min-
utes for large (i.e., 600k polygons) models. The most
time-consuming phase is the distortion-minimizing flooding,
which takes O(m · n logn) time for m iterations on a mesh
with n triangles. Note that this time is similar to what would
be required for the unmodified remeshing algorithm. In com-
parison, the time required for anchor and secondary point
placement and triangulation is much lower, ranging from a
few seconds to half a minute if the model is simplified to
have large patches. The total time for the clustering part of
the algorithm can be seen in Table 1. Unless otherwise noted,
all models in this paper were remeshed with α = 0.002.

5. Discussion
Since human beings can recognize symmetry easily, retain-
ing the symmetry of models during simplification is impor-
tant. We have shown how to modify the existing remesh-
ing technique proposed by [CSAD04] to directly incorpo-
rate symmetry without deforming the model too much. In
fact, the approximation error introduced by our algorithm

can be trivially bounded. The upper bound is simply the er-
ror of the unmodified algorithm with the same number of
proxies, while the lower bound is the error of the original
algorithm using a number of proxies equal to the number of
our patches. For example, if we remesh using only one plane
of symmetry (up to 2 patches per proxy) using K proxies, the
error will be between the errors resulting from using the tra-
ditional method with K and 2K proxies.

We have observed that many models exhibit approximate
and partial symmetries, and have demonstrated that our algo-
rithm is able to take advantage of even these imperfect sym-
metries during remeshing. Moreover, we can handle multi-
ple symmetries, producing regions of symmetric tessellation
joined by plausible triangulations. While the results shown
in the previous sections provide an initial demonstration of
opportunities for using and maintaining approximate sym-
metries during remeshing, our method has limitations that
suggest avenues for future work.

First, our approach to symmetric remeshing is limited by
the fact that our final edge-flipping technique does not ex-
plicitly search for symmetry. While the method works in
cases where entire proxies are symmetric, if a proxy contains
both symmetric and non-symmetric anchor and secondary
points, the edge-flipping technique might adversely affect
the triangulation in the symmetric areas. A further weakness
of this technique is that running edge-flipping on patches
separately, rather than on the entire mesh at once, may re-
duce the quality of the final triangulation of the model.

Model # Triangles # Proxies Time (s)
Mask 62K 50 62
Igea 130K 50 99

Teapot 8.5K 100 7
Bull 49K 200 72

Max Planck 98K 600 85
Sacrum 605K 200 491
Bunny 69K 30 49

Table 1: Timing results for the proxy-growing stage of our
method, for various models and different numbers of proxies.
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Thus, symmetry-preserving edge-flipping is a topic for fu-
ture work.

Another limitation of the approach is our non-reflexive
method of dealing with symmetry. If for example, one side
of a model is reflected only once while the other side is re-
flected twice, the number of patches for a proxy in that sec-
tion depends on the starting triangle. This is merely a man-
ifestation of a problem with Lloyd’s algorithm - it doesn’t
converge to a minimum.

There are other limitations of our technique inherited from
the underlying Variational Shape Approximation algorithm.
For example, the patch flooding requires a computation-
ally expensive iteration, and the final triangulation algorithm
is constrained to use original vertices of the model and is
not error-driven. Moreover, the algorithm is optimized for
the case of significantly fewer output than input polygons,
thus making our symmetry-enabled variant inappropriate for
symmetric remeshing that preserves all original detail.

A further limitation of this work is that the use of sym-
metry is necessarily coupled to the error metric. Although
we believe that this coupling is theoretically sound and in-
tuitively understandable, it may be inappropriate for some
applications. Therefore, a future extension of this work may
consider explicitly allowing for greater deformation if doing
so will strengthen symmetry.

Finally, we use planar proxies as the foundation of our al-
gorithm, but our algorithm should work for general proxies.
An possible avenue of future work is to implement our al-
gorithm using the generalized proxy definitions of [WK05]
or [YLW06].
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