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ABSTRACT
In 3D printing, stiff fibers (e.g., carbon fiber) can reinforce thermo-
plastic polymers with limited stiffness. However, existing commer-
cial digital manufacturing software only provides a few simple fiber
layout algorithms, which solely use the geometry of the shape. In
this work, we build an automated fiber path planning algorithm
that maximizes the stiffness of a 3D print given specified external
loads. We formalize this as an optimization problem: an objective
function is designed to measure the stiffness of the object while
regularizing certain properties of fiber paths (e.g., smoothness). To
initialize each fiber path, we use finite element analysis to calculate
the stress field on the object and greedily “walk” in the direction
of the stress field. We then apply a gradient-based optimization
algorithm that uses the adjoint method to calculate the gradient of
stiffness with respect to fiber layout. We compare our approach, in
both simulation and real-world experiments, to three baselines: (1)
concentric fiber rings generated by Eiger, a leading digital manu-
facturing software package developed by Markforged, (2) greedy
extraction on the simulated stress field (i.e., our method without
optimization), and (3) the greedy algorithm on a fiber orientation
field calculated by smoothing the simulated stress fields. The re-
sults show that objects with fiber paths generated by our algorithm
achieve greater stiffness while using less fiber than the baselines—
our algorithm improves the Pareto frontier of object stiffness as
a function of fiber usage. Ablation studies show that the smooth-
ing regularizer is needed for feasible fiber paths and stability of
optimization, and multi-resolution optimization helps reduce the
running time compared to single-resolution optimization.
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1 INTRODUCTION
Additive manufacturing has revolutionized the ability to fabricate
three-dimensional objects of high geometric complexity, with a
variety of applications including in healthcare, automotive, and
aerospace industries [Shahrubudin et al. 2019]. However, the in-
creasing flexibility in manufacturing has outstripped our ability to
produce designs that optimally take advantage of 3D printers. This
has motivated research on computational fabrication pipelines that
augment human specification of goals with computational optimiza-
tion of designs that best realize those goals, for problems ranging
from ensuring structural integrity through controlling appearance
and fine-tuning the fabrication process [Attene et al. 2018].

In this work, we address the problem of producing structurally-
sound parts that are capable of bearing nontrivial load. We aim
to exploit the capabilities of devices such as the Markforged Mark
Two [Markforged 2023a], which is based on conventional fused
deposition modeling (FDM) using thermoplastic nylon, but aug-
ments this with the ability to extrude and deposit continuous fibers.
Options for the latter include carbon fiber, Kevlar, fiberglass, and
HSHT (High Strength High Temperature) fiberglass, all of which
offer the ability to selectively strengthen printed parts with respect
to tensile loads. In effect, this process creates fiber-reinforced plastic
(FRP) composites [Kabir et al. 2020], but with the ability to control
fiber placement to achieve specific tradeoffs in strength, weight,
and cost.

The optimization of fiber layout is similar to problems tradi-
tionally considered in computational fabrication, such as topology
optimization (i.e., removing material from certain regions) and
spatially-varying assignment of different materials. Systems for
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(a) Eiger baseline (1 inner
ring),
length = 449.6 mm,
stiffness = 292.3 N/mm.

(b) Eiger baseline (2 rings at all
walls),
length = 2022.8 mm,
stiffness = 617.2 N/mm.

(c) Optimized fiber path (1
ring),
length = 372.7 mm,
stiffness = 483.8 N/mm.

(d) Optimized fiber path (2
rings),
length = 799.5 mm,
stiffness = 815.0 N/mm.

Figure 1: Planned and 3D printed fiber paths with fiber lengths and average stiffness measured over four batches annotated, for
a part with external tension applied between two holes. (a) (b): Concentric fiber rings generated by the Eiger baseline only
consider geometry. (c) (d): Our optimized fiber paths, tuned for the applied loads, yield greater stiffness at lower fiber lengths.

these latter tasks are typically based on Eulerian analysis and opti-
mization, in which a quantity (density, material choice, etc.) is de-
termined for each location in space (e.g., on a voxel grid). Similarly,
almost all existing methods for optimizing carbon fiber composites
focus on the spatially-varying fiber direction field, then use vari-
ants of greedy extraction or ODE solvers to extract the fiber paths
themselves [Schmidt et al. 2020; Wang et al. 2021].

In contrast, we are inspired by a Lagrangian point of view: we
characterize the strength of the part as a function of the fiber path,
compute gradients with respect to changes in path coordinates,
and optimize the fiber path directly using gradient descent. This
strategy is based on the adjoint method [Cao et al. 2003; Errico
1997], commonly used for PDE-constrained optimization, and ex-
ploits modern systems for automatic differentiation [Griewank and
Walther 2008], which have evolved considerably in recent years
to support a range of machine learning and general optimization
problems. Our end-to-end optimization approach has the benefit
of focusing directly on the final goal—maximizing stiffness with
respect to external loads—rather than on indirect objectives such
as minimizing strain throughout the object.

We incorporate our gradient descent-based optimization into a
complete system that addresses three key challenges: (1) solving
for the stress field of the object given external loads, (2) computing
an optimization objective and its gradient based on the stress field,
and (3) providing a good initialization of fiber layout for our local
optimizer. To address the first challenge, we model the composite
material using the linear elastic model, and approximately solve the
PDE using the finite element method. Without loss of generality
and for the sake of simplicity, we model the composite material in
two dimensions under the assumption of in-plane stress (i.e., we
only consider laminates). We also simplify the problem by consider-
ing Dirichlet (fixed-displacement) boundary conditions. To address
the second challenge, we design an objective function based on
total strain energy given the boundary conditions: under the as-
sumption of linear elasticity, maximizing this energy is equivalent
to maximizing the object’s stiffness. We regularize the objective to
ensure that the optimized fiber paths are feasible. Finally, to address
the last challenge, we initialize each fiber path by greedily follow-
ing the directions of maximum tensile stress (or perpendicular to
the direction of maximum compressive stress). We further use a

multi-resolution approach inspired by multigrid methods, to reduce
the running time of the optimization.

We show designs produced by our method on a number of illus-
trative case studies, demonstrating that our method yields higher
stiffness with less fiber as compared to baseline paths produced by
the Eiger software by Markforged [2023b]. We compare our results
to greedy extraction based on either the stress field or optimized
fiber direction field, as well as other ablations including omitting
regularization or multi-resolution optimization. We print our de-
signs (see Figure 1), using the method of Sun et al. [2021] to compute
fiber extruder paths that compensate for fiber stiffness. Finally, we
test our printed parts to verify that our method matches the pre-
dicted stiffness in the real world (subject to inherent print-to-print
variations in material strength).

2 RELATEDWORK
2.1 Fiber orientation optimization in 3D

printing
A task that is similar to fiber path planning is fiber orientation
optimization, where researchers discretize space into elements and
optimize fiber orientations in them. Additional steps, such as greedy
extraction, ODE solvers, or geometric methods, must be performed
to produce fiber paths from the orientation field. Thus fiber orienta-
tion optimization can serve as the first step of fiber path planning,
which we will discuss in § 2.2. See Hu [2021] for a survey (called
“free material optimization”). The most common approach for ori-
entation optimization is to set density and orientation as design
variables and optimize an objective such as compliance [Chu et al.
2021; da Silva et al. 2020; Jung et al. 2022] or the Tsai–Wu fail-
ure criterion [Ma et al. 2022] with a gradient-based optimizer. To
address the checkerboard pattern issue (periodicity of the orienta-
tion variables), researchers usually use filtering [Andreassen et al.
2011] to smooth the design variable field (e.g., through a weighted
average of neighboring elements). Another choice of design vari-
able is the lamination parameters: Shafighfard et al. [2019] and
Demir et al. [2019] proposed to first optimize lamination parame-
ters, search for the best fitting fiber orientations from the optimized
lamination parameters, and then perform an optimization on the
orientation field while considering manufacturing constraints (e.g.,
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Goal

Stress field 
(red: tension, blue: compression) Greedy path(s) Low-resolution 

path(s)

Optimized low-
resolution path(s) Upsampled path(s) Optimized path(s)

Greedy  
algorithm 
(Sec. 3.2) Downsample

Optimization (Sec. 3.3)

Upsampling 
(interpolation) Optimization

Simulation 
(Sec. 3.1)

Next fiber
Coarse-to-fine optimization (Sec. 3.4)

Figure 2: We repeatedly use the finite element method to calculate the stress field of the object (§ 3.1), extract a new fiber path
by greedily “walking” on the stress field (§ 3.2), optimize the downsampled fiber path with an objective function designed to
maximize stiffness and regularize fiber paths to be manufacturable (§ 3.3), and finally upsample and optimize all the fiber paths
several times to perform coarse-to-fine optimization (§ 3.4).

curvature). There are also iterative variants. For example, Caivano
et al. [2020] proposed iterating between calculating the principal
stress direction and updating the material distribution until con-
vergence. While mainly concentrating on orientation optimization,
some approaches do ultimately generate fiber paths. For example,
Fedulov et al. [2021] first optimized density and orientation and
then used third-party software for printing trajectory generation;
Schmidt et al. [2020] performed density and orientation optimiza-
tion and generated streamlines using the 4th-order Runge-Kutta
integrator for visualization.

2.2 Fiber path planning in 3D printing
A variety of path planning algorithms have been proposed for
continuous fiber-reinforced plastics—see Zhang et al. [2020] for a
survey. The most common approach is to first perform an optimiza-
tion (topology, orientation, etc.), and then extract fiber paths from
the result. As discussed, orientation optimization is one choice of
the optimization (i.e., use density and orientation as the design vari-
ables), but there are different methods for path extraction. Wang
et al. [2021] proposed to “walk” in the field along with the stress
direction and consider the angle turned in every move to produce
smoothed paths. Papapetrou et al. [2020] described three methods
for path extraction: the offset method and the EQS (Equally-Space)
method use the geometry of the optimized layout, and the stream-
line method fits the orientation field with streamlines. Safonov
[2019] proposed to alternate between topology optimization and
fiber orientation updates using an evolutionary heuristic method.

There are also more potential choices for the design variable. For
example, one choice is to only optimize the density. Li et al. [2021]
performed topology optimization of material density (without ori-
entation) using regularizers that force the fiber material to form
lines. However, they did not extract fiber paths explicitly at the end,
so it is unclear whether the fibers are directly printable. Li et al.

[2020] and Chen and Ye [2021] proposed to lay fibers along with
the load transmission trajectories. Almeida Jr. et al. [2019] proposed
to perform the SIMP (Solid Isotropic Material with Penalization)
method first, designed the fiber pattern manually, and then used
a genetic algorithm to determine the number of fiber rings/paths
that would minimize compliance (defined as mass divided by stiff-
ness). Sugiyama et al. [2020] proposed to calculate the stress field
and update fiber paths so that they follow the direction of max-
imum principal stress, repeating this process until convergence.
Apart from these two-stage approaches, there are also end-to-end
approaches based on genetic algorithms. For example, Yamanaka
et al. [2016] modeled fiber paths as streamlines and optimized them
directly using a genetic algorithm.

In summary, most existing works perform fiber planning in two
stages (topology/orientation optimization followed by path extrac-
tion). In contrast, our method performs an end-to-end optimization
of the fiber layout, maximizing the regularized object stiffness via
a gradient-based optimizer.

2.3 PDE-constrained optimization
Also related to the problem of optimizing geometry to maximize
stiffness is the area of PDE-constrained optimization, in which an
optimization problem is subjected to physical constraints expressed
via partial differential equations (PDEs) [De los Reyes 2015]. There
are two common types of algorithms to solve PDE-constrained
optimization problems: all-at-once and black-box [Herzog and Ku-
nisch 2010]. All-at-once treats both the design variable and the state
variable as independent variables, so the method may not satisfy
the constraints before the optimization finishes. A common all-at-
once algorithm is SQP (sequential quadratic programming) [Boggs
and Tolle 1995]. A disadvantage of the all-at-once approach is the
dimension of the state variable can be very large, which makes the
optimization costly. Black-box solves the problem in reduced form,
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by treating the design variable as the only independent variable, so
that a gradient-based optimizer can be applied (e.g., gradient de-
scent, Newton’s method). We formalize the fiber path planning task
as a PDE-constrained optimization problem and use the black-box
approach, specifically the adjoint method, to solve it.

3 METHOD
The pipeline of our method is shown in Figure 2. Starting from a
goal (a shape with some external loads), we first simulate the stress
field using the finite element method (§ 3.1). We apply a greedy
fiber extraction algorithm by “walking” in the stress field, and then
downsample the greedy path (§ 3.2). We build and optimize an
objective function based on the object’s stiffness and regularity
conditions of the fiber paths, using the adjoint method to calculate
the gradients of the objective (§ 3.3). These steps can be repeated
until a desired number of fiber paths are extracted and optimized.
We then perform a coarse-to-fine optimization by upsampling and
optimizing the fiber paths a specified number of times (§ 3.4).

3.1 Simulation
In this subsection, we describe how we solve the stress field given a
shape, some external loads, and a specified fiber layout. We denote
the body as Ω, the stress tensor as 𝝈 , the strain tensor as 𝜺, the
displacement vector as u, and the stiffness tensor as C. The linear
elastic model can be written as

−∇ · 𝝈 = 𝑓 ,

𝜺 =
1
2
(
∇u + (∇u)⊺

)
,

𝝈 = C : 𝜺,

(1)

where the colon is the dot product. 𝑓 is the body force and we set it
to 0. For certain regions on the boundary of Ω (i.e., 𝜕Ω), the value
of u is given as input (i.e., Dirichlet boundary condition). For the
remaining regions, we have 𝝈 · n = 𝑇 (i.e., Neumann boundary
condition), where n is the outward unit normal vector, and 𝑇 is the
tractive force which we set to 0.

The constitutive equations 𝝈 = C : 𝜺 can also be written in a
matrix product form; under the assumption of in-plane stress, we
have 

𝜎11
𝜎22
𝜎12

 =


𝐸1

1−𝜈21𝜈12
𝐸1𝜈21

1−𝜈21𝜈12 0
𝐸2𝜈12

1−𝜈12𝜈21
𝐸2

1−𝜈12𝜈21 0
0 0 𝜇



𝜀11
𝜀22
2𝜀12

 , (2)

where 𝐸1 and 𝐸2 are Young’s moduli, 𝜈12 and 𝜈21 are the Poisson’s
ratios, and 𝜇 is the shear modulus. For simplicity, we assume both
plastic and fiber are isotropic materials, and they have different
Young’s moduli 𝐸plastic and 𝐸fiber and identical Poisson’s ratio 𝜈 .

The next issue is to calculate the Young’s modulus field. Consider
a laminate of height ℎobject, with some layers filled with just plastic
and others containing both plastic and fiber. We assume that all
layers with fiber, adding up to a total height of ℎfiber, have identical
fiber paths, and omit plastic where fiber is present. The set of
fiber paths is denoted as 𝑃 , and every path 𝑝 in it is a sequence of
vertices on the fiber path. For a point 𝑥 ∈ Ω, for the purpose of
differentiability, we define its “soft” Young’s modulus as

𝐸 (𝑥) B 𝐸plastic · 𝛼plastic (𝑥) + 𝐸fiber · 𝛼fiber (𝑥), (3)

where

𝛼fiber (𝑥) B
∑︁
𝑝∈𝑃

exp

(
−

(
dis(𝑝, 𝑥)
𝑤fiber/2

)2)
· ℎfiber, (4)

where𝑤fiber = 0.9 mm is the width of the fiber, dis(·, ·) measures
the distance between a point and a path, and

𝛼plastic (𝑥) B ℎobject −min(𝛼fiber (𝑥), ℎfiber) . (5)

We allow fiber paths to overlap in this setting, as even in real
prints from the Markforged Mark Two, we do not observe any
problems. We then have 𝜇 (𝑥) = 𝐸 (𝑥 )

2(1+𝜈 ) . Finally, we solve the PDE
in Equation 1 using FEniCS with DOLFIN [Logg and Wells 2010] by
solving its first-order condition on linear triangular finite elements.
Figure 2 visualizes an example of the calculated stress field, using
line integral convolution [Cabral and Leedom 1993].

3.2 Greedy fiber path extraction
In this subsection, we describe how we greedily extract a fiber path
from a stress field along the directions of maximum tensile stress
or perpendicular to the direction of maximum compressive stress.
With the stress tensor 𝝈 calculated from § 3.1, we first calculate the
stress on plastic:

𝝈plastic B 𝝈 ·
𝐸plastic · 𝛼plastic

𝐸plastic · 𝛼plastic + 𝐸fiber · 𝛼fiber
. (6)

For any point 𝑥 ∈ Ω, we can calculate the eigenvalue with the
largest absolute value 𝜆(𝑥) and its corresponding eigenvector v(𝑥).
We then build a scalar field with |𝜆(𝑥) | and randomly sample a
starting point 𝑥0 with the field as sampling weights. From the
starting point, we walk in both directions along with ±v(𝑥0) (or
perpendicular to v(𝑥0) if 𝜆(𝑥0) is negative) at a fixed step size of
0.5 mm. If we walk outside Ω or within 1.3 mm to 𝜕Ω (number
measured from prints from Eiger), we retry at most 19 times with a
random rotation uniformly sampled between −𝜋/12 to 𝜋/12. The
algorithm stops when a preset length limit is reached, or we cannot
walk in both directions even after retries.

We then downsample the extracted fiber path by keeping 1 of
every 20 vertices.We iterate every subsequence of the downsampled
path and select the one that minimizes the objective function we
will define in Section 3.3. We repeat this process 10 times (sampling
10 starting points) and keep the one that minimizes the objective
function.

3.3 Gradient calculation and optimization
In this subsection, we describe how we design an objective function
and minimize it using a gradient-based optimizer. We denote the
optimized strain energy in Equation 1 as 𝑈 , and the set of fiber
paths as 𝑃 . The objective L(𝑃) is defined as

−𝑈 +
∑︁
𝑝∈𝑃

(
𝑤lap · Llap (𝑝 ) + 𝑤min_l · Lmin_l (𝑝 ) + 𝑤bdy · Lbdy (𝑝 )

)
,

(7)
where𝑤lap,𝑤min_len, and𝑤bdy are hyper-parameters. The Lapla-
cian regularizer Llap penalizes non-smooth fiber paths:

Llap (𝑝) B 𝑠 (𝑃)3 ·
|𝑝 |−1∑︁
𝑖=2

������𝑝𝑖 − 𝑝𝑖−1 + 𝑝𝑖+1
2

������2 , (8)
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where 𝑠 (𝑃) is a count of the total number of segments in all fiber
paths (i.e.,

∑
𝑝∈𝑃 |𝑝 | − |𝑃 |). The reason to apply the 𝑠 (𝑃)3 multiplier

is because the Laplacian regularizer is sensitive to upsampling,
which we discuss in § 3.4, and this multiplier keeps our Laplacian
regularizer scale-invariant. Theminimum-length regularizerLmin_l
penalizes infeasibly-short fiber paths:

Lmin_l (𝑝) B max ©­«𝑙min −
|𝑝 |∑︁
𝑖=2

| |𝑝𝑖 − 𝑝𝑖−1 | | , 0
ª®¬
2

, (9)

where 𝑙min is the minimum fiber length that can be printed by the
3D printer. The boundary regularizer Lbdy penalizes fiber paths
outside Ω or too close to 𝜕Ω:

Lbdy (𝑝) B
∑︁
𝑖

max(𝑑min − dis(𝑝𝑖 ,Ω), 0)2, (10)

where dis(𝑝𝑖 ,Ω) measures the distance from 𝑝 to 𝜕Ω (positive for
𝑝𝑖 ∈ Ω, negative otherwise) and 𝑑min is the lower limit of distance
from fiber to the boundary.

The next step is to calculate dL(𝑃 )
d𝑃 . Here we apply the ad-

joint method. Denote the first-order condition of Equation 1 as
𝐹 (u, 𝑃) = 0. By the implicit function theorem (under proper reg-
ularity conditions) u can be thought of a function of 𝑃 , and the
derivative du

d𝑃 is well-defined. Taking the derivative of 𝐹 with re-
spect to 𝑃 , we have

d𝐹
d𝑃

=
𝜕𝐹

𝜕u
du
d𝑃

+ 𝜕𝐹

𝜕𝑃
= 0, (11)

which leads to
dL(𝑃)
d𝑃

= − 𝜕L(𝑃)
𝜕u

(
𝜕𝐹

𝜕u

)−1
𝜕𝐹

𝜕𝑃
+ 𝜕L(𝑃)

𝜕𝑃
. (12)

We implement this end-to-end differentiation automatically using
dolfin-adjoint [Mitusch et al. 2019] and PyTorch [Paszke et al. 2019].
We use the BFGS implementation in SciPy [Virtanen et al. 2020]
to minimize L(𝑃), and again we iterate every subsequence of the
optimized path and select the one that minimizes L(𝑃). We can
repeat the steps in § 3.1, § 3.2, and § 3.3 several times to extract
multiple fiber paths.

3.4 Coarse-to-fine optimization
To speed up the optimization, we perform multigrid optimization.
As described in § 3.2, we initially downsample all the fiber paths.
Then, for every fiber path 𝑝 , we insert midpoints between every 𝑝𝑖
and 𝑝𝑖+1 by B-spline interpolation, using SciPy, and optimize all the
fiber paths. This process can be repeated several times to generate
the final fiber paths for 3D printing.

4 FABRICATION AND EXPERIMENTAL SETUP
In this section, we describe how we manufacture real 3D prints
and measure their position-load curves. We use a Markforged Mark
Two printer with nylon as the plastic material and carbon fiber as
the reinforcing fiber material. We print laminates with a height of
2 mm and 16 layers, of which the 4th, 7th, 10th, and 13th layers
are fiber layers. All layers without fiber and regions in fiber layers
without fiber are filled with nylon (solid fill).

For the 2D shape, we use a 46 mm × 30 mm rectangle with
two rounded isosceles trapezoidal holes, the same shape as shown

Figure 3: A 3D printed part being tested on a universal testing
machine (Instron 600DX), with square nuts in the trapezoidal
holes. Themachinemoves at a speed of 20mm/min and stops
when the object breaks or by a manual stop.

Figure 4: Nine different fiber layouts printed for moduli cal-
culation (left to right, top to bottom): no fiber path, 1 to 3
inner rings, 1 to 3 outer rings, 1 to 2 rings for all walls.

in Figure 2. The isosceles trapezoids have two sides of 11 mm and
14 mm and a height of 11 mm, with every corner smoothed by an
arc with a radius of 1 mm. We will reuse this shape in § 5, § 6.3,
and § 7.

To measure the position-load curve of a print, we insert two
square nuts into both its holes and apply tension to them using a
universal testing machine (Instron 600DX), as shown in Figure 3.
The machine is programmed to move at a speed of 20 mm/min until
the object breaks or by a manual stop when we believe enough data
is collected. A position-load curve is recorded for every print.

5 MODULUS CALCULATION
In this section, we describe how we determine the effective Young’s
moduli of nylon and carbon fiber. We print composites with differ-
ent (baseline) fiber layouts, measure their stiffness, then optimize
for moduli such that their stiffness in simulation best matches the
real-world measurements.

5.1 3D prints for testing
We use Eiger to generate nine different layouts of carbon fiber paths:
no fiber path, 1 to 3 inner rings, 1 to 3 outer rings, 1 to 2 rings for
all walls. To reduce the bias introduced by the non-uniformity of
the material, we print all of them in one batch, as shown in Figure 4.
Due to the variability of the printing process, we print three batches
of these nine prints and pick the batch with the best printing quality.
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Figure 5: Position-load curves recorded from the testing ma-
chine. The beginning parts of the curves are noisy due to
parts not being perfectly vertical, etc., and a too-large load
can cause the object to buckle, violating our in-plane stress
assumption. We therefore use the middle parts of the curves,
with loads between 150 N and 300 N, to calculate the stiffness.

5.2 Stiffness measurement
As described in Section 4, we test the prints and record their position-
load curves (Figure 5). Note that the beginning of every curve can
be noisy as the part is not perfectly vertical, etc. Additionally, a
large load can cause the part to buckle out of the 2D plane, which
violates our in-plane stress assumption. We therefore measure the
position change between a load of 150 N and a load of 300 N for ev-
ery print, and calculate the stiffness by dividing load change (150 N)
by position change (in mm). The results are shown in Figure 6,
marked as “X”. Note that there is a factor of 0.5 when converting
stiffness in N/mm to energy in N·mm at 1 mm displacement (e.g., a
stiffness of 500 N/mm corresponds to having strain energy of 250
N·mm at 1 mm displacement).

5.3 Simulation and modulus calculation
For each measured data point, we apply Dirichlet boundary condi-
tions corresponding to 1 mm displacement on the two shorter sides
of the two holes on the rectangle. We calculate the strain energy
of the object, then do a grid search for the values of the moduli of
nylon and carbon that minimize the sum of squared distances be-
tween measured and simulated stiffness. The search yields moduli
of 0.40 GPa for nylon and 20.1 GPa for carbon, with results shown
in Figure 6. As we can see, the simulation results mostly match the
real results, with small residuals relative to the energy.

6 EXPERIMENTS
In this section, we present detailed evaluations of the performance
of our method in both simulation and real experiments on four case
studies (§ 6.1–§ 6.4), then show several additional results in § 6.5.We
start with two simple shapes—a rectangle and a “plus” shape—then
move to more complex shapes: rectangles with two and four holes
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Inner rings

Rings at all walls

Outer rings

Simulated
Real
Residual

Figure 6: We calibrate the moduli of nylon and carbon fiber
using nine prints with three different types of fiber layouts:
inner rings, outer rings, and rings at all walls. The solid lines
connect datapoints sharing the same fiber layout strategy.
The real results are marked as “X”, the simulated results are
marked as small solid circles, and the residuals are shown
as dotted lines. The energy numbers are calculated at 1 mm
displacement.

(a) Rectangle (b) Plus shape

(c) Rectangle with two holes (d) Rectangle with four holes

Figure 7: Four shapes we use in our case studies. (a) and (b)
are relatively simple shapes, and the loads are applied on
the two sides. For (c), a rectangle with two holes, tension is
applied on the two shorter sides of the holes. (d) is designed
to be a multi-functional rectangle with four holes, and the
user can choose one hole from the left two holes and another
hole from the right two holes to apply tension.

(Figure 7). The first baseline we use is concentric fiber rings from
Eiger, which have three different types: inner, outer, and all walls.
For the next two case studies, to better illustrate the effectiveness
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1 greedy path 
Energy =  346.3 N⋅mm

Optimized 1 greedy path 
Energy =  354.6 N⋅mm

2 greedy paths 
Energy =  425.2 N⋅mm

Optimized 2 greedy paths 
Energy =  436.0 N⋅mm

3 greedy paths 
Energy =  506.7 N⋅mm

Optimized 3 greedy paths 
Energy =  515.6 N⋅mm

Upsampled paths 
Energy =  516.0 N⋅mm

Optimized upsampled paths 
Energy =  516.1 N⋅mm

Figure 8: Step-by-step visualization of how our method ex-
tracts three fiber paths, optimizes them, and performs coarse-
to-fine optimization on the rectangle shape. In the first row,
we extract the first fiber path, optimize it, extract the second
fiber path, and optimize both paths. The two paths curve and
move up and down after the optimization, respectively. In
the second row, we extract a third fiber path, optimize all
three paths, upsample them, and finally optimize them. The
energy numbers are calculated at 1 mm displacement.

of our algorithm on complex shapes and loads, we include two addi-
tional baselines: (1) greedy, simplifying our algorithm by removing
all the optimization components and directly generating results
using the greedy algorithm; (2) field-opt-greedy, similar to greedy
but with an additional step of field optimization before running
the greedy algorithm. The latter baseline, intended to represent the
approach of previous work on fiber orientation optimization (see
§ 2.1), optimizes a vector field that aligns to the stress direction,
with a smoothing regularizer. Additional details about the field
optimization can be found in the appendix. We refer to the results
from our method as optimized. For all the experiments (unless other-
wise specified), we use the BFGS optimizer and limit the maximum
number of iterations to 500 and a gradient tolerance of 3 × 10−9.
The objective function is set with𝑤lap = 1 × 10−8,𝑤min_l = 1, and
𝑤bdy = 1.

6.1 Case 1: rectangle
In this case study, we show how our algorithm works step by step
on a rectangle (45 mm × 30 mm), with tension applied to its two
shorter sides (Figure 7a). As we can see in the first row in Figure 8,
we first greedily extract a fiber path and optimize it. When we add
and optimize a second fiber path, the two paths separate and curve.
In the second row, we extract a third greedy path and optimize the
three paths together. Finally, we double the number of points of
both fiber paths and optimize the three paths together. The last step
does not help much since the task is relatively simple. As shown
in Figure 9, for a fixed displacement of 1 mm, our algorithm uses
less fiber while achieving higher energy in simulation, compared to
1 outer concentric fiber ring, which lays fiber in vertical directions
that are much less useful than fibers in horizontal directions.

6.2 Case 2: “plus” shape
As shown in Figure 7b, we use a “plus” shape whose edges are
all of length 15 mm, and we apply tension to two sides of the
shape. We compare fiber paths of outer and optimized in Figure 10,

1 outer ring (558.4 mm) Energy map (449.0 N⋅mm)

Optimized (510.9 mm) Energy map (516.1 N⋅mm)

Figure 9: Fiber paths and energy maps of outer and optimized
at 1 mm displacement on the rectangle shape. We use less
fiber while achieving higher energy, as the baseline lays ver-
tical fibers that are much less useful than horizontal fibers.

1 outer ring, 678.4 mm, 251.3 N⋅mm 2 outer rings, 1328.0 mm, 336.9 N⋅mm 3 outer rings, 1948.8 mm, 432.7 N⋅mm

Optimized, 339.3 mm, 300.0 N⋅mm Optimized, 678.7 mm, 455.7 N⋅mm Optimized, 1017.9 mm, 607.4 N⋅mm

Figure 10: Fiber paths, lengths, and strain energy at 1 mm
displacement of outer and optimized on the plus shape. With
the help of optimization, fiber paths automatically distribute
themselves uniformly in the space as we increase the number
of fiber paths. By laying slightly bending fibers in horizontal
directions, we save fiber while increasing the energy, com-
pared to outer, which lays fiber in unrelated regions.

with three solutions from each strategy. As we can see, outer lays
fibers in regions of low relevance to the loads applied, in contrast
to optimized which prioritizes regions of high relevance to the
loads. We also observe that the optimization process automatically
distributes fiber paths uniformly as we extract more fiber paths.
Based on our simulation, for a fixed displacement at 1 mm, the fiber
paths of optimized improve upon the Pareto front of outer, as shown
in Figure 11.

6.3 Case 3: rectangle with two holes
As shown in Figure 7c, we also tested a rectangle (46 mm × 30 mm)
with two rounded isosceles trapezoid holes, with external forces
applied to the two sides of the holes.
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Figure 11: Energy-fiber usage plot of outer and optimized at
1 mm displacement on the plus shape. Our method improves
over the Pareto front of outer by laying fibers according to
the external loads.

Table 1: Real (measured) stiffness of greedy (g), field-opt-
greedy (f ), and optimized (o) on the rectangle with two holes
shape, measured between 150 N and 300 N (4 batches). Opti-
mized performs consistently better than the baselines when
using a similar or less amount of fiber.

Stiffness (N/mm) Solution 1 Solution 2

g f o g f o

Batch 1 490.1 574.6 625.5 745.0 741.3 992.6
Batch 2 584.3 692.0 756.0 801.0 741.3 985.2
Batch 3 483.5 485.0 656.7 671.6 603.4 953.5
Batch 4 491.7 481.7 603.0 670.0 670.9 970.4

Average 512.4 558.3 660.3 721.9 689.2 975.4
Length (mm) 400.0 400.0 372.7 800.0 800.0 799.5

Planned fiber paths and simulation results. The fiber paths gener-
ated from all methods are shown in Figure 12. We set the maximum
greedy fiber path length so that fiber lengths of greedy, field-opt-
greedy, and optimized are comparable. As we can see, the baseline
methods use only geometric information; both greedy and field-
opt-greedy generate similar fiber paths along stress directions, but
paths from field-opt-greedy are smoother; optimized wraps fiber
paths tightly around the holes while aligned with stress direction,
yielding larger strain energy when using a similar amount of fiber.

Real experiment results. To evaluate the quality of fiber paths, we
perform real-world experiments by applying tension to 3D prints on
a universal testing system (600DX from Instron). Due to the limited
space on the printer bed, two sets of comparisons are performed
separately: (1) inner, outer, and all walls vs. optimized; (2) greedy and
field-opt-greedy vs. optimized. We thus printed eight batches, four
for each set of comparisons. Again, as in Section 4, we measure the
stiffness of a print by calculating the slope of its position-load curve,
picking two points that have loads of 150 N and 300 N. The results
of inner, outer, and all walls vs. optimized are shown in Figure 13.
As we can see, our algorithm consistently provides significantly

higher stiffness than the concentric baselines when using a similar
or lower amount of fiber. Note that the fiber lengths may have slight
discrepancies between simulation and real-world experiments since
they are from different path generation algorithms (one from our re-
implementation of Eiger, another from Eiger directly). The results
of greedy and field-opt-greedy vs. optimized are shown in Table 1.
Again, our algorithm consistently improves the stiffness over the
two baselines while using a similar or lower amount of fiber.

6.4 Case 4: rectangle with four holes
As shown in Figure 7d, we also tested a rectangle (84 mm × 28 mm)
with four rounded isosceles trapezoid holes. We design the shape
to be multi-functional—if we label the holes from 1 to 4 from left
to right, we assume the user uniformly chooses one of the four
settings: 1) hole 1 and hole 3; 2) hole 1 and hole 4; 3) hole 2 and
hole 3; 4) hole 2 and hole 4. To support this multi-functional shape,
we simulate all four cases and calculate the average strain energy.

The fiber paths from all the methods are shown in Figure 14.
Again, both greedy and field-opt-greedy produce fibers along stress
directions with fiber paths from field-opt-greedy being slightly
smoother. Optimized lays the first fiber over all holes and lays
the second fiber around the middle two holes, due to the multi-
functional nature of the shape. The energy-fiber usage plot is shown
in Figure 15, where optimized improves upon the Pareto front of
every baseline.

6.5 Results on additional shapes
In this subsection, we provide results from our method and base-
lines on several additional shapes. The shape designs are inspired by
sketches from SketchGraphs [Seff et al. 2020], a large-scale dataset
of sketches of real-world CAD models, as well as shapes from ex-
isting works [Ma et al. 2022; Shafighfard et al. 2019]. We use a
Laplacian regularizer weight 𝑤lap = 5 × 10−7, and the results are
shown in Figure 16, with every dotted line a Dirichlet boundary
condition. For the first shape, all methods use a similar amount of
fiber but optimized achieves much higher energy than others. For
the second shape, optimized uses a similar amount of fiber as concen-
tric, less fiber than greedy and field-opt-greedy but achieves higher
energy. For the third shape, optimized achieves comparable energy
as concentric but saves approximately 70% of fiber. Compared to
greedy and field-opt-greedy, optimized achieves much higher energy
while using slightly more fiber. For the fourth and fifth shapes, op-
timized uses less fiber or comparable fiber as other baselines while
achieving significantly higher energy.

7 ABLATION STUDIES
Our algorithmwithout optimization has been studied in Section 6 as
the greedy baseline. In this section, we study the effects of removing
two other components of our method: the Laplacian regularizer
and the multi-resolution optimization, using the shape rectangle
with two holes (Figure 7c).

7.1 Ablation study of the Laplacian regularizer
As both the minimum-length regularizer and the boundary regu-
larizer are intuitively necessary for fiber paths to be long enough
for printing purposes and within the object boundary, we study
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No fiber, 0.0 mm, 
80.0 N⋅mm

1 inner ring, 428.3 mm, 
164.1 N⋅mm

2 inner rings, 901.8 mm, 
222.4 N⋅mm

3 inner rings, 1420.8 mm, 
287.6 N⋅mm

1 outer ring, 566.4 mm, 
102.6 N⋅mm

2 outer rings, 1104.0 mm, 
117.2 N⋅mm

3 outer rings, 1612.8 mm, 
137.3 N⋅mm

1 ring at all walls, 994.7 mm, 
192.6 N⋅mm

2 ring at all walls, 2005.8 mm, 
281.2 N⋅mm

Greedy, 400.0 mm, 
157.1 N⋅mm

Greedy, 800.0 mm, 
223.9 N⋅mm

Field-opt-greedy, 400.0 mm, 
160.4 N⋅mm

Field-opt-greedy, 800.0 mm, 
220.0 N⋅mm

Optimized, 799.5 mm, 
355.2 N⋅mm

Optimized, 372.7 mm, 
222.0 N⋅mm

Figure 12: Fiber paths, lengths, and strain energy at 1 mm displacement of inner, outer, all walls, greedy, field-opt-greedy, and
optimized on the rectangle with two holes shape. field-opt-greedy provides similar but smoother paths compared to greedy, and
optimized provides more effective fiber paths. Note that there is a factor of 2 when converting the strain energy in N·mm
at 1 mm displacement to stiffness in N/mm which we will use in real experiments (e.g., strain energy of 250 N·mm at 1 mm
displacement corresponds to having a stiffness of 500 N/mm).
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(a) Batch 1
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(b) Batch 2
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(c) Batch 3
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(d) Batch 4

Figure 13: Real stiffness-fiber length plots of inner, outer, all walls, and optimized on the rectangle with two holes shape,
measured between 150 N and 300 N (4 batches). By laying fibers tightly around the holes, optimized consistently performs
better than all others.

the effect of removing the Laplacian regularizer from the optimiza-
tion. We run our algorithm with the same hyper-parameter setting
except for 𝑤lap = 0. We extract one fiber path and upsample for
one time. As shown in Figure 17, the optimizer successfully opti-
mizes the low-resolution path as the number of points is still small
(Figure 17a), but introduces jagged results with more degrees of
freedom (Figure 17b), demonstrating the need for some form of
regularization.

7.2 Ablation study of multi-resolution
optimization

In this subsection, we study how the multi-resolution approach
speeds up the optimization process. For the multi-resolution case,
we extract one fiber path, downsample its resolution by a factor of

20, optimize it, and upsample and optimize it three times, with every
optimization limited to 100 iterations. For the single-resolution case,
we also extract one fiber path, downsample its resolution by a factor
of 2, optimize it and limit the maximum number of optimization
iterations to 400. For a fair comparison, we use the same random
seed for both cases when sampling starting points of the greedy
path extraction algorithm. As shown in Figure 18, both cases get
similar fiber paths with similar strain energy, but multi-resolution
optimization reduces the running time by approximately 40%.

8 DISCUSSION
In this work, we studied the task of fiber path planning in 3D
printing for given external loads, aiming at maximizing the stiffness.
We proposed an end-to-end optimization approach that optimizes
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No fiber, 0.0 mm, 
67.9 N⋅mm

1 inner ring, 856.5 mm, 
135.4 N⋅mm

2 inner rings, 1803.7 
mm, 185.5 N⋅mm

1 outer ring, 854.4 mm, 
94.7 N⋅mm

2 outer rings, 1680.0 mm, 
110.8 N⋅mm

1 ring at all walls, 1710.9 
mm, 174.6 N⋅mm

Greedy, 720.0 mm, 
110.8 N⋅mm

Greedy, 1092.0mm, 
132.4 N⋅mm

Field-opt-greedy, 718.0 mm, 
110.4 N⋅mm

Field-opt-greedy, 1078.0 
mm, 127.5 N⋅mm

Optimized, 1021.9 
mm, 218.0 N⋅mm

Optimized, 688.6 mm, 
171.0 N⋅mm

Figure 14: Fiber paths, lengths, and strain energy at 1 mm displacement of inner, outer, all walls, greedy, field-opt-greedy, and
optimized on the multi-functional rectangle with four holes shape. Similarly, greedy and field-opt-greedy lay fibers along stress
directions, and field-opt-greedy provides slightly smoother fiber paths. Optimized lays the first fiber over all the holes, and the
second fiber around the middle two holes, with paths tightly around the holes.
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(a) Concentric vs. optimized
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Figure 15: Energy-fiber usage plot (at 1 mm displacement) of all methods on the rectangle with four holes shape. The comparison
between concentric fiber rings and optimized is shown on the left, and the comparison between greedy-based baselines and
optimized is shown on the right. Optimized improves the Pareto front of all the baselines by laying fibers tightly around the
holes.

regularized object stiffness directly to the fiber layout, rather than
an intermediate fiber orientation field, with the help of the adjoint
method and automatic differentiation. We perform planning by
extracting fiber paths using a greedy algorithm that lays fiber paths
along stress directions, followed by coarse-to-fine optimization.
To apply our method, we first measure the effective moduli of
plastic and fiber by manufacturing and testing real 3D prints. We
then study our method with three baselines on four case studies
and several additional shapes. The first baseline is concentric fiber

rings from Eiger, a leading digital manufacturing software package
developed by Markforged. The second baseline is our method with
the optimization part removed, producing fiber paths from the
greedy path extraction algorithm. The third baseline includes a
fiber field optimization part which smooths the stress field before
using it in the greedy algorithm. We demonstrated that, both in
simulation and real experiments, our method could generate shorter
fiber paths while achieving greater stiffness (i.e., we improved the
Pareto front). We also studied the effects of removing the Laplacian
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Shape and load(s) Concentric Greedy Field-opt-greedy Optimized (Ours)

265.6 mm, 260.8 N⋅mm 266.0 mm, 257.5 N⋅mm270.0 mm, 257.1 N⋅mm 259.3 mm, 370.3 N⋅mm

185.6 mm, 193.3 N⋅mm 212.0 mm, 180.6 N⋅mm 218.0 mm, 174.9 N⋅mm 190.2 mm, 279.7 N⋅mm

758.4 mm, 301.1 N⋅mm 202.0 mm, 230.7 N⋅mm 202.0 mm, 230.5 N⋅mm 232.2 mm, 292.2 N⋅mm

307.1 mm, 67.1 N⋅mm 196.0 mm, 75.4 N⋅mm 236.0 mm, 66.6 N⋅mm 210.2 mm, 102.2 N⋅mm

249.8 mm, 409.7 N⋅mm228.0 mm, 272.0 N⋅mm230.0 mm, 290.2 N⋅mm460.7 mm, 283.9 N⋅mm
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Figure 16: Fiber paths and energy at 1 mm displacement of all methods on additional shapes. Every dotted line indicates a
Dirichlet boundary condition. For the first shape (from top to bottom), optimized achieves significantly higher energy while
using slightly less fiber than all baselines. For the second shape, optimized achieves higher energy while using a similar amount
of fiber as concentric and less fiber than greedy and field-opt-greedy. For the third shape, optimized saves approximately 70% of
fiber usage while achieving similar energy as concentric. It also achieves much higher energy than greedy and field-opt-greedy
while using slightly more fiber. For the last two shapes, compared to other baselines, optimized achieves significantly higher
energy while using a less or comparable amount of fiber.

regularizer and the multi-resolution optimization, showing the
Laplacian regularizer is necessary for the optimization to be stable
and multi-resolution optimization helps reduce the running time.

We would also like to mention some limitations of our method.
First, our simulation simplifies the task by assuming linear elasticity,
restricting to in-plane stress, and treating both plastic and fiber
as isotropic materials with different Young’s moduli and identical
Poisson’s ratio. Lifting these assumptions would introduce greater
mathematical complexity, but would require no conceptual changes
to our approach. Additionally, the planning is not performed in real

time. For example, to plan fiber paths for the shape rectangle with
two holes, our method uses 10 minutes and 18 minutes to generate
the two studied solutions, respectively. Relative to the time required
to design and print a part, this represents only a small increase. In
addition, the hyper-parameters may have to be tuned when the
task changes. For example, if we switch to a much larger shape, the
scale of strain energy and the lengths of fiber paths will change.
We may have to adjust the weight of the Laplacian regularizer,
balancing the optimization stability and the variety of fiber paths,
though this is usually easy to tune in a few tries. Lastly, as our
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(a) Optimized low-resolution path (b) Optimized upsampled path

Figure 17: Optimization resultswith the Laplacian regularizer
disabled. As shown on the left, the optimizer successfully
optimizes the low-resolution path. It fails to optimize the
fiber path after upsampling, as shown on the right.

(a) Multi-res, 293 s, 195.8 N·mm (b) Single-res, 485 s, 190.0 N·mm

Figure 18: Running time and the strain energy at 1 mm dis-
placement for both single-resolution and multi-resolution
optimization. In this case, we save approximately 40% of run-
ning time by multi-resolution optimization.

optimizer is gradient-based, the optimization may be trapped in
a local minimum. Thus a good initialization is important for our
method, and we may have to sample greedy paths several times to
obtain a good one.
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A APPENDIX: FIELD OPTIMIZATION
Given a stress field 𝝈 , we would like to find a fiber field 𝒗 : Ω → R2

such that (1) its direction is aligned with 𝝈 ; (2) it is smooth.We solve
𝒗 by minimizing an objective function that reflects both proprieties:

L(𝒗;𝝈) B 𝛼stress · Lstress (𝒗;𝝈) + 𝛼smooth · Lsmooth (𝒗), (13)

where 𝛼stress and 𝛼smooth are hyper-parameters, and

𝒗 (𝑥,𝑦) B 𝒗 (𝑥,𝑦)/| |𝒗 (𝑥,𝑦) | | (14)

is the normalized 𝒗, as the objective function should be invariant
regardless of the length of 𝒗 (𝑥,𝑦). Note that the objective function
should also be invariant if we randomly flip some 𝒗 (𝑥,𝑦)’s, which
needs some special handling, as we will discuss below.

Consistent with 𝝈 . For a specific point (𝑥,𝑦) ∈ Ω, we calculate
the tension in the stress field 𝝈 along 𝒗 (𝑥,𝑦), which is

𝒗 (𝑥,𝑦)⊺𝝈 (𝑥,𝑦)𝒗 (𝑥,𝑦). (15)

We then integrate it over Ω and get

Lstress (𝒗;𝝈) B −
∬

Ω
𝒗 (𝑥,𝑦)⊺𝝈 (𝑥,𝑦)𝒗 (𝑥,𝑦)d𝑥d𝑦, (16)

where the negative sign indicates we would like to maximize the
tension along the field direction.

Smoothness. We penalize the squared Frobenius norm of the
gradient of 𝒗:

Lsmooth (𝒗) B
∬

Ω
| |∇𝒗 (𝑥,𝑦) | |2𝐹 d𝑥d𝑦. (17)

Note that the penalty should be invariant to flips of 𝒗 (𝑥,𝑦)’s, so we
handle this invariance when calculating the finite difference:

| |∇𝒗̂ (𝑥, 𝑦) | |2𝐹 Bmin

(�������� 𝒗̂ (𝑥 + ℎ, 𝑦) − 𝒗̂ (𝑥, 𝑦)
ℎ

��������2 , �������� 𝒗̂ (𝑥 + ℎ, 𝑦) + 𝒗̂ (𝑥, 𝑦)
ℎ

��������2)
+min

(�������� 𝒗̂ (𝑥, 𝑦 + ℎ) − 𝒗̂ (𝑥, 𝑦)
ℎ

��������2 , �������� 𝒗̂ (𝑥, 𝑦 + ℎ) + 𝒗̂ (𝑥, 𝑦)
ℎ

��������2) ,
(18)

where ℎ is the step size.
In the experiments, we set 𝛼stress to 1 and 𝛼smooth to 0.02. We

use the BFGS optimizer with a gradient tolerance of 1 × 10−6 and
set the maximum number of iterations to 100.
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