Supplementary Material for
Clutter Detection and Removal in 3D Scenes with View-Consistent Inpainting

Fangyin Wei

Thomas Funkhouser

Szymon Rusinkiewicz

Princeton University

The supplementary material includes this document as
well as a video for method overview and qualitative results.
In this document, we first explain in detail the datasets used
to evaluate 3D segmentation and 3D inpainting in Sec. 1.
Then we describe more implementation details in Sec. 2. Fi-
nally, we present additional results of our method in Sec. 3.

1. Datasets
1.1. Clutter Segmentation

We select eight representative scenes from ScanNet test
set to cover as many as the scene types in the dataset as pos-
sible. We use the annotation tool from ScanNet [3] to anno-
tate vertices on clutter objects. In Fig. 1, we show the bird
eye views of all eight scenes that we manually labeled to
evaluate the clutter segmentation models. In particular, the
manual test set covers a wide range of cleanness levels from
rooms with very few common clutter objects to highly clut-
tered rooms. The covered room types include study room,
meeting room, bedroom, bathroom, living room, studio, and
craft room. As we can see from the third column, in origi-
nal ScanNet labels, some clutter objects are unlabeled (e.g.,
second row, objects on the round table) and some objects
are mislabeled (e.g., last row, clutter objects in the dark blue
closet). In comparison, our manually annotated dataset cor-
rectly labels all clutter in the scenes. The time required for
each scene varies from 30 minutes (only for extremely clean
scenes) to hours. This also demonstrates that it is impracti-
cal to annotate a dataset of thousands of scenes with precise
clutter/non-clutter labels.

For all experiments, we sample once every 5 frames from
the raw captured sequences to reduce redundancy and im-
prove efficiency. To render virtual views for clutter segmen-
tation, we use cameras with fixed intrinsics. We randomly
put cameras at a distance of 2-5 meters from the mesh sur-
face looking at the scene to render views for training.

1.2. 3D Inpainting

The metrics used to quantitatively evaluate 3D inpaint-
ing (main Tab. 2) requires ground truth, which is not avail-
able in any existing datasets. Therefore, we construct a syn-

thetic evaluation set. We use the official test split from Mat-
terport3D [1] which originally has 391 rooms. For each
room, we identify regions that belong to non-clutter cat-
egories and have a normalized normal n = (ng,n,,n;)
where |n,| = maz(|ngl, [ny|, |n|) (z is pointing up). In
the meantime, we cut instances that belong to the class pure
clutter from the scenes and drop those instances on the iden-
tified non-clutter regions. We find the convex hull of the
dropped clutter and any surface of the room that is contained
within the convex hull is removed to create holes. In other
words, the original room is the ground truth room after 3D
inpainting, and the room with introduced holes is the input
to different 3D inpainting methods.

Both baseline methods use TSDF representation as input
and output. To create the input, we mask out the TSDF and
color values for the voxels that are within the convex hull.
This is very similar to how FF [7] creates free-form holes in
their methods.

For each hole of the room, we find a view from the
dataset where the hole is placed as close to image center
as possible. We also find other views that have at least 1000
pixel overlap with the centered view. We project the clut-
ter onto all the above views to create holes on RGB-D data.
We then use them to run our RGBD inpainting and mesh
reconstruction.

Below we explain how we compute 3D and 2D met-
rics once the inpainted 3D is obtained (from either our
method or baselines). To evaluate the proposed method’s
3D performance, we compare Chamfer Distance between
our inpainted mesh and groundtruth mesh reconstructed
(using PSR) using original (unmasked) views. To evaluate
baselines’ 3D performance, we compare Chamfer Distance
between marching cubes mesh from predicted TSDF and
marching cubes mesh from groundtruth TSDF. This is fairer
than using mesh reconstructed from PSR as groundtruth for
baseline methods (using PSR results as groundtruth would
result in worse results than using marching cubes results
from TSDF, so we don’t use PSR as groundtruth for base-
lines). To evaluate 2D performance, we render from the
centered view and compute the metrics between the ground
truth renderings (without dropped clutter) and renderings

- — ¢ il "“Pf’ " ' -)
Textured Mesh Manual Label Original Label
Figure 1. Clutter Segmentation Manually-Labeled Evaluation Dataset. We show the bird eye views of all eight scenes (scaled, rotated,

and ceiling surfaces removed for better view) that we manually labeled to evaluate the clutter segmentation model of our method and the
BPNet [6] baseline.

Table 1. Runtime analysis. We compute average Timing based on
scenes that have approximately 200 frames and a 150, 000-vertex
input mesh from original scan data. All GPUs are NVIDIA TITAN
X with 12 GB memory. We can see that it takes slightly over 30
min to process a 200-frame RGB-D sequence, and the majority of
the time is spent on consistency checks and surface reconstruction.

Step Time Device Output size
Clutter Segmentation 2s GPU 150, 000 points
Mask Projection 30s GPU 200 images
Image Inpainting 50s GPU 200 images 320 x 240
Depth Completion 80s GPU 200 images 304 x 228

Consistency Checks 18min GPU
Surface Reconstruction 11min ~ CPU

200 images 304 x 228
1,500,000 vertices

from our method or baselines.

2. Implementation Details

We show in Tab. | the average timing of each step for
a 200-frame sequence. Specifically, we compute average
Timing based on scenes that have approximately 200 frames
and a 150, 000-vertex input mesh from original scan data.
All GPUs are NVIDIA TITAN X with 12 GB memory. We
can see that it takes slightly over 30 min to process a 200-
frame RGB-D sequence, and the majority of the time is
spent on consistency checks and surface reconstruction.

We find empirically Cross Entropy loss for two classes
works better than Binary Cross Entropy loss.

2.1. Clutter Definition

Our focus is to propose a new type of scene segmenta-
tion based on shared properties (e.g., across clutter) rather
than common benchmark semantic categories. Therefore, a
concrete clutter definition is crucial to test our method but
the exact form can be very flexible.

The definition we chose for our result is as follows: an
uninstalled object is considered clutter if it’s moved at any
time within 3 months and with probability > 95% so that
the ToU between the bounding boxes before and after the
movement is < 0.5. We want to note that although we need
a concrete definition to run the experiments, our proposed
techniques for clutter segmentation and 3D inpainting are
general and not specifically tailored to work for only one
definition. For example, one can easily extend the current
clutter definition to be with variable time length (e.g., 1 or 9
months) without affecting the effectiveness of our proposed
methods.

2.2. Clutter Segmentation

The model is implemented in PyTorch, trained with
batch size 16 on two NVIDIA TITAN X with 12 GB mem-
ory. Following BPNet [6], we use SGD optimizer with base
learning rate of 0.01 and employ a poly learning rate sched-
uler with the power set to 0.9. Momentum and weight decay

are set to 0.9 and 0.0001, respectively. The model is trained
in total for 100 epochs.

During testing, we run the inference on the same mesh
multiple times (each time with different camera views) un-
til all camera views have been used. We accumulate the
model’s predicted class probability for the final 3D segmen-
tation results.

After projecting the 3D segmentation masks onto RGBD
images, we further dilate the 2D masks with 6 iterations
(pixels) to account for the misalignment between 3D recon-
struction and 2D captures. The final masks are applied to
color and depth images to remove regions with clutter.

2.3. Depth Completion

As introduced in main paper, we adopt NLSPN [10]
that performs non-local depth propagation for image-guided
depth completion. The model was originally designed for
the task of sparse depth completion that predicts the com-
plete depth map from hundreds of sampled pixels. One of
the method’s key components is the deformable convolu-
tion [1 1] whose effective sampling field can be the entire
image. Therefore, despite its different original goals, this
method is still proper for our usage of completing the dense
map with (potentially big) holes. We retrain the model on
our depth maps with synthetic holes for depth completion.
We explain below in detail how we prepare the training data.

We use captured depth data with modifications. Since
there is no ground truth depth map before and after clutter
removal, we need synthesize training data by ourselves. To
do so, we start from a captured depth map d;. We assume
m is the mask for the coarse clutter/non-clutter groupings
(main paper Sec. 3.2.1) of d;. We use the clutter mask mq
from a second view to mask out regions on d; . In the mean-
time, we make sure that the regions originally masked as
clutter in m; are not masked out. By copying and pasting
mgy from another view, we make sure that the masks during
training have realistic boundaries of clutter objects. By not
masking clutter from mq, we guarantee that the depth com-
pletion model does not need to hallucinate clutter objects
out of the hole areas. And this is exactly the expected be-
haviors of a depth completion model. We note that since the
clutter/non-clutter grouping is very noisy, the training data
created as described above still contains noise. However, we
empirically find the model trained this way already works
much better than using pre-trained model weights trained
on the sparse-to-dense depth completion task.

The model is implemented in PyTorch, trained with
batch size 12 on one NVIDIA TITAN X with 12 GB mem-
ory. Following NLSPN [10], we use Adam optimizer with
B1 = 0.9, B2 = 0.999 and initial learning rate of 0.001. The
model is trained in total for 20 epochs. We set the propaga-
tion time of each forward pass as 18.

Table 2. Ablation on Segmentation Loss. We compare our area-
sensitive loss with original Cross Entropy (CE), balanced Cross
Entropy (BCE) [2], median frequency loss (MF) [5], and Focal
Loss (FL) [9]. Note: hyper-parameters were set for other meth-
ods (8 in BCE and ~ in FL) using best practices suggested in the
original papers.

Method Manual Test Set (clean)
IoUNC) ToU(C) mloU

CE 0.33 048 0.66
BCE 0.74 0.38 0.56
FL 0.83 045 0.64
MF 0.84 0.54 0.69
Ours 0.84 0.58 0.71

Table 3. Ablation on Consistency Checks. sp, cp, cv stand for
single-frame pruning, cross-frame pruning, and cross-frame vot-
ing, respectively.

ID sp cp cv L1(}) L2(]) PSNR(1) SSIM(1) LPIPS({) CD(cm)({)

a 0.034 0.075 21.820 0.860 0.201 9.013
b v 0.029 0.051 22.403 0.873 0.189 5.245
c vV Vv 0.023 0.043 22965 0.880 0.171 2.612
d v v v 0019 0035 23820 0.891 0.150 0.931

Effect of Alpha on 3D Inpainting Effect of Beta on 3D Inpainting

‘‘‘‘‘‘ Bet

Figure 2. Ablation on «, 5 on 3D geometry and rendered image.

3. More Results
3.1. Ablation on Segmentation Loss

Tab. 2 shows an ablation study comparing different
losses designed to combat imbalance. Our per-instance
area-sensitive loss performs the best. BCE [2] and FL [9]
perform worse than the CE baseline for clutter segmenta-
tion. MF [5] improves over CE by re-weighting classes
based on cumulative class surface area, but it is worse than
ours. Since clutter usually comprises many small object
instances, per-instance weighting is advantageous for this
task.

3.2. Ablation on Consistency Checks

Tab. 3 studies the contribution of each consistency
check on reconstruction for 100 Matterport3D test scenes
(Sec. 1.2). Every consistency check improves the 3D in-
painting, especially the mesh reconstruction quality.

3.3. Ablation on ¢, 8

Fig. 2 studies the effects of varying a and 8 on 3D in-
painting. [is relatively high because there are limited over-
lapping views for the same region; a lower § increases the
sensitivity to noise.

3.4. Qualitative Results

In Fig. 3, we show additional qualitative results for our
entire pipeline of object removal and 3D inpainting, where
we compare with baselines of 3D inpainting. The layout is
the same as in the main paper. Alongside input mesh tex-
ture and geometry, we first show our predicted 3D clutter
segmentation. Then we show the texture and geometry of
our final inpainted mesh. In the last two columns, we com-
pare with the geometry from Poisson surface reconstruction
(PSR) [8] and a hole-filling algorithm. For fair comparison,
the input meshes (first two columns) are also reconstructed
using the same Poisson surface reconstruction settings as
described in main paper Sec. 3.3.3. The mesh used to vi-
sualize segmentation (third row) is from original ScanNet
dataset. This is a much smoothed and simplified version
than the mesh reconstructed using Sec. 3.3.3.

In Fig. 4 and Fig. 5, we show additional results of 3D in-
painting compared with two baselines, SPSG [4] and FF [7].
We can see that our method outputs results of higher reso-
lution than prior work that uses volumetric representations.
The proposed method also fills in the hole with more coher-
ent texture and geometry compared to baselines.

Input Texture Input Geometry Our Segmentation Our Texture Our Geometry PSR Geometry

Hole-filling Geometry
iy AT

w

N y

= S

i

» o - n " e, B w B
Figure 3. Additional results for automatic clutter removal and 3D inpainting. Each row shows a rendered view of an input 3D scene,
together with our clutter segmentation and a rendered view of the scene with inpainted color and geometry. We compare the latter to

removing clutter and filling the resulting holes with either Poisson Surface Reconstruction (PSR) or a triangulation-based hole-filling
algorithm.

Input SPSG

Figure 4. Additional results for 3D inpainting. The first column shows a rendered view of an input 3D scene, The second and third rows
are results from baseline SPSG and FF. The fourth column is results of proposed method. The last column is ground truth mesh.

SPSG

Figure 5. Additional results for 3D inpainting. The first column shows a rendered view of an input 3D scene, The second and third rows
are results from baseline SPSG and FF. The fourth column is results of proposed method. The last column is ground truth mesh.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej
Halber, Matthias Niessner, Manolis Savva, Shuran Song,
Andy Zeng, and Yinda Zhang. Matterport3d: Learning
from rgb-d data in indoor environments. arXiv preprint
arXiv:1709.06158, 2017. 1

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In CVPR, pages 9268-9277, 2019. 4

Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niefner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, pages 5828-5839, 2017. 1

Angela Dai, Yawar Siddiqui, Justus Thies, Julien Valentin,
and Matthias NieBner. Spsg: Self-supervised photometric
scene generation from rgb-d scans. In CVPR, pages 1747—
1756, 2021. 4

David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convo-
lutional architecture. In ICCV, pages 2650-2658, 2015. 4
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and Tien-
Tsin Wong. Bidirectional projection network for cross di-
mensional scene understanding. In CVPR, 2021. 2, 3
Ru-Fen Jheng, Tsung-Han Wu, Jia-Fong Yeh, and Winston H
Hsu. Free-form 3d scene inpainting with dual-stream gan.
BMVC,2022. 1,4

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006. 4

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In ICCV,
pages 2980-2988, 2017. 4

Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So
Kweon. Non-local spatial propagation network for depth
completion. In ECCV, 2020. 3

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
CVPR, pages 9308-9316, 2019. 3

