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Abstract

3D scene modeling has many applications, including virtual social worlds, massively

multiplayer online games, and production of catalog images. However, scene model-

ing is extremely tedious and challenging, due to the requirement of realism and the

involvement of large numbers of objects. Therefore, automated methods for 3D scene

modeling are needed. A promising approach is to first analyze the existing 3D scenes,

such as the ones in online repositories (e.g. Trimble 3D Warehouse), and then use

the knowledge obtained from the analysis step to create new scenes.

Although a significant amount of research has focused on developing algorithms

for scene analysis and scene modeling, these processes still remain challenging for

two reasons. First, the large variability of 3D scenes makes it hard to capture the

commonality among scenes for scene analysis. Second, the highly constrained space

of realistic 3D scenes makes it challenging to automatically create satisfactory scenes.

This dissertation pushes the limits of existing efforts on analyzing, synthesizing,

and optimizing 3D scenes by reasoning about relationships between objects. First,

it describes an algorithm that segments and annotates 3D scenes by considering re-

lationships between objects in a hierarchical representation. Second, it describes a

tool that optimizes a 3D scene to produce compositions by considering relationships

between objects in the image space and the scene space. Finally, it focuses on style

compatibility between objects, which is a relationship that has never been considered

in previous scene modeling tools, and it presents a method for learning to predict the

stylistic compatibility between 3D furniture models from different object classes.

In this dissertation, we find that relationships between objects are comparatively

stable across scenes, and that they can serve as a strong cue for inferring annotation

and segmentation of scenes. Furthermore, we also find that modeling relationships

between objects helps ensure the realism of synthesized scenes. Therefore, reasoning

about relationships between objects greatly facilitates scene analysis and synthesis.
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Chapter 1

Introduction

3D virtual scenes have been widely used for building virtual social worlds and mas-

sively multiplayer online games, such as Second Life [8]. Recently, furniture com-

panies such as IKEA have begun to produce images for their catalogs by creating

and rendering 3D virtual scenes [27]. Compared to photographing real scenes, ren-

dering 3D virtual scenes provides a more efficient solution with larger flexibility for

customization.

Despite a broad range of applications of 3D scenes, it is tedious and challenging to

create 3D virtual scenes manually. All these applications require the resulting virtual

scenes to be realistic in order to provide users with an immersive experience in games

or ensure that catalog images are indistinguishable from real photos. Consequently,

human modelers have to spend days or even weeks going through huge databases of 3D

shapes, selecting hundreds of objects for the scene, choosing materials for each object,

and carefully placing them in the scene. Therefore, (semi-) automated methods for

scene modeling are needed.

Researchers have proposed several methods for scene modeling [1, 104, 71, 103],

and a promising research direction is to leverage existing 3D virtual scenes [29, 102] to

model new ones. The idea is to first learn what makes a scene realistic from existing

1



3D virtual scenes, and then use the knowledge to create new scenes. In order to

obtain precise knowledge in the first step, the algorithms usually require the training

examples to have perfect segmentation and annotation. Although online repositories

(e.g. Trimble 3D Warehouse [92]) offer a great number of 3D scenes, the scenes

are usually not semantically segmented and annotated, and the algorithms require a

lot of manual work to perform segmentation and annotation in advance. Therefore,

automated methods for segmenting and annotating 3D virtual scenes are needed.

Although a significant amount of research has focused on developing algorithms

for analyzing, synthesizing, and optimizing 3D scenes, these problems still remain

challenging. On the one hand, 3D scenes exhibit large variability in terms of object

classes, object positions and geometries, which makes it hard to capture the common-

ality between scenes for scene analysis. On the other hand, the space of 3D scenes

is highly constrained: the arrangement of objects in a scene has to be plausible (e.g.

a dining table and a dining chair should be close and facing each other); the com-

bination of objects has to be stylistically compatible (e.g. a casual, contemporary

coffee table should not appear in front of a formal, antique sofa). Moreover, if the

goal is to create a 2D composition from the 3D scene, the scene has to satisfy ad-

ditional constraints in order to ensure that the output composition is aesthetically

compelling and/or certain objects are highlighted. All these constraints make it hard

to automatically create satisfactory 3D scenes.

In this dissertation, we find that reasoning about relationships between objects

significantly helps address these challenges. First, although there is large variability

among 3D scenes, spatial relationships between objects, particularly spatial relation-

ships between objects within a semantic subgroup, are comparatively stable across

scenes, which provide a strong cue for scene analysis. Second, reasoning about rela-

tionships between objects can greatly help ensure the plausibility and aesthetics of the

output scenes in scene synthesis. For example, constraining the spatial relationships
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between a chair and a table helps ensure the plausibility of a dining area; modeling

style compatibility helps avoid a combination of different styles in the same room. In

this dissertation, we push the limits of existing efforts on analyzing, synthesizing and

optimizing 3D scenes by reasoning about relationships between objects.

First, we focus on the problem of scene analysis, and we describe an algorithm that

infers the segmentation and annotation of 3D scenes by considering priors of geome-

tries and relationships between objects in a hierarchical representation of scenes [61].

Given a collection of scene graphs with consistent hierarchies and labels, we train a

hierarchical probabilistic grammar to represent the distribution of shapes, cardinali-

ties, and spatial relationships of semantic objects within the collection. Then, we use

the learned grammar to parse new scenes to assign them segmentations, labels, and

hierarchies consistent with the collection. During experiments with the algorithm, we

find that: it works effectively for indoor scenes commonly found online (bedrooms,

classrooms, and libraries); it outperforms alternative approaches that consider only

shape similarities and/or spatial relationships without hierarchy; it robustly handles

moderate over-segmentation in the inputs.

Second, we focus on the problem of scene optimization, and we describe a tool

that optimizes a 3D virtual scene to produce good compositions by considering re-

lationships between objects in the image space and the scene space [63]. We define

an energy function that models a variety of design constraints and image compo-

sition rules that are important for producing effective product images. Given an

initial scene description and a set of high-level constraints provided by a stylist, the

tool automatically generates an optimized scene by locally adjusting the 3D object

transformations, surface materials, and camera parameters. The value of the tool is

demonstrated in a variety of applications motivated by product catalogs. Results of

a perceptual study indicate that our system produces images preferable for product

advertisement compared to a more traditional camera-only optimization.

3



Finally, we focus on a relationship between objects that has never been considered

in existing scene modeling tools: style compatibility [62]. We present a method for

learning to predict the stylistic compatibility between 3D furniture models from dif-

ferent object classes. To do this, we collect relative assessments of style compatibility

using crowdsourcing. We then compute geometric features for each 3D model and

learn a mapping of them into a space where Euclidean distances represent style in-

compatibility. During experiments with these methods, we find that they are effective

at predicting style compatibility agreed upon by people. We also find in user studies

that the learned compatibility metric is useful for a variety of novel interactive tools.

This dissertation makes the following contributions:

• an idea of modeling hierarchical structure for analyzing 3D scenes.

• a probabilistic grammar that characterizes geometric properties and spatial re-

lationship in a hierarchical manner.

• a novel scene parsing algorithm based on dynamic programming that can effi-

ciently update labels and hierarchies of scene graphs based on our probabilistic

grammar.

• an optimization approach that takes into account a large variety of design con-

straints and image composition rules, and simultaneously manipulates object

transformations, surface materials, and the camera view.

• a first method for learning style compatibility between 3D models from different

object classes.

• a part-aware geometric feature vector that encodes style-dependent information.

• a new asymmetric embedding distance that is appropriate for estimating com-

patibility between objects of different classes.
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Chapter 2

Related Work

2.1 Analyzing 3D virtual scenes

Although a lot of research has focused on analyzing individual CAD objects [34, 43,

83, 43, 52, 94], not much work has focused on analyzing 3D virtual scenes. Previous

tools for scene retrieval [30] and scene organization [101] require as input consistently

and semantically segmented and annotated virtual scenes. Therefore, they are not

able to work directly on the scenes downloaded from online repositories.

Researchers have also developed methods on inferring the segmentation and anno-

tation for point clouds or RGBD scans of scenes based on shape [35, 58] and contextual

information [20, 59]. There has also been a body of work that infers such information

in the image domain [79, 80, 107]. Although these methods can be applied to analyz-

ing 3D virtual scenes, they are unable to recover the missing hierarchy of functional

groups in scenes, which is critical for recognition of scene semantics at multiple scales

and context-based disambiguation of object roles (a coffee table is used differently

from a bedside table, even if the two are geometrically similar).

Several algorithms have been proposed to parse buildings [70, 15] and facades [91,

69, 106, 99] using a grammar. However, these methods rely on a high degree of geo-
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metric and spatial regularity, and their grammar definitions and parsing algorithms

are typically specific to those application domains and do not apply to the general 3D

virtual scenes. In the computer vision communities, several algorithms have been pro-

posed to parse images of indoor environments using annotated 3D geometry [21, 108].

While our goal is conceptually similar to these works, our problem setting has two

main differences. First, the number of labels we consider is significantly larger than

that in previous approaches. Second, parsing 3D layouts creates both opportuni-

ties and challenges for modeling geometric and spatial variations. These differences

necessitate novel methods for learning spatial relationships, computing geometric sim-

ilarities, and pruning the parsing search space.

2.2 Synthesizing and optimizing 3D virtual scenes

Several systems have been developed to assist people in creating new shapes or scenes

by combining 3D parts or objects from online repositories. They suggest new parts

or objects based on spatial context [102], probabilistic models [19, 48, 105], physi-

cal simulations [93], and interior design guidelines [71]. Other systems aim to create

scenes completely automatically by learning object compatibilities based on substruc-

ture symmetries [110], spatial contexts [29], and object contacts [1]. These methods

focus on scene plausibility only in 3D, without considering the goal of generating

2D compositions from scenes. In addition, no prior system has explicitly considered

stylistic compatibility when selecting objects or parts to combine in a virtual world.

Our work is also related to scene synthesis based on aesthetic relations [67]. The

method learns the target style of artifact arrangements from a single input exemplar,

and then generates diverse arrangements according to the target style for different

layout dimensions. Rather than styles of arrangements, we focus on learning style

compatibility between objects, and optimizing the 2D composition produced by a 3D
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scene layout. Several other methods have incorporated principles for image aesthet-

ics and compositions in optimization algorithms for camera control in 3D rendering

systems [76, 36, 22, 6, 5].

Scene synthesis is also related to 3D shape retrieval. Researchers previously have

developed search algorithms for 3D models based on shape similarities [31], symme-

tries [51], part structures [82], and other geometric cues [89]. These methods are

generally aimed to retrieve similar shapes from the same object class. Fisher et

al. [28, 30] developed algorithms to perform context-based shape retrieval. Instead

of specifying a shape, the user only needs to specify a region in the scene they are

modeling, and the system returns a list of related objects based on the spatial re-

lationship between the query and other objects in the scene. However, none of the

previous methods have modeled style compatibility between objects or have supported

style-aware scene synthesis or shape retrieval.
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Chapter 3

Analyzing 3D Scenes Using a

Probabilistic Grammar

3.1 Introduction

Given that manually creating 3D virtual scenes is tedious and challenging, researchers

have proposed data-driven methods for synthesizing novel scenes [28, 30, 29, 102, 101],

of which the common idea is to use the knowledge extracted from existing 3D vir-

tual scenes to create new ones. Although the abundance of 3D virtual scenes in

online repositories offers valuable input for the data-driven methods, these methods

require consistently and semantically segmented and annotated input, and thus can-

not directly leverage the typical scenes available in existing online repositories. For

example, consider Figure 3.1(a) that shows a scene downloaded from the Trimble 3D

Warehouse [92]. While this scene has polygons grouped into connected components

and a sparse grouping of connected components into a scene graph hierarchy, many

objects in the scene are not explicitly represented in the scene graph (e.g., curtain,

mattress), few of the scene graph nodes are explicitly annotated with a semantic label

(e.g, “table”, “chair”, etc.), and the scene graph hierarchy is void of any meaning-
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(a) Input (b) Output leaf nodes (c) Output hierarchy

Figure 3.1: Our algorithm processes raw scene graphs with possible over-segmentation
(a), obtained from repositories such as the Trimble 3D Warehouse, into consistent
hierarchies capturing semantic and functional groups (b,c). The hierarchies are in-
ferred by parsing the scene geometry with a probabilistic grammar learned from a
set of annotated examples. Apart from generating meaningful groupings at multiple
scales, our algorithm also produces object labels with higher accuracy compared to
alternative approaches.

ful functional groups (e.g., sleeping area, storage area). This (missing) hierarchy of

functional groups is critical for recognition of scene semantics at multiple scales and

context-based disambiguation of object roles (a coffee table is used differently from a

bedside table, even if the two are geometrically similar).

In this chapter, we focus on the problem of inferring semantic segmentation and

annotation for 3D scenes, and we develop an algorithm that infers such information by

building a consistent representation for the hierarchical decomposition of a scene into

semantic components, which encodes priors of geometries and relationships between

objects in a hierarchical representation of scenes. We achieve it in two stages. First,

given a collection of consistently-annotated scene graphs representing a category of

scenes (e.g., bedroom, library, classroom, etc.), we learn a probabilistic hierarchical

grammar that captures the scene structure. Second, we use the learned grammar

to hierarchically segment and label newly downloaded scenes. For example, for the

scene depicted in Figure 3.1(a), we produce the scene graph shown in Figure 3.1(b),(c),

where every functional object has been separated into a leaf node, annotated with a

semantic label, and clustered hierarchically into labeled semantic groups represented
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by interior nodes of the scene graph. Such a representation is useful for applications

that require not only segmenting scenes into objects and clustering similar objects

into semantic classes (e.g., chairs, beds, lamps), but also establishing functional roles

and relationships of objects (e.g., dining table, bedside lamp, table-and-chairs), which

are critical components of scene understanding.

Achieving such a level of scene understanding is extremely challenging. Previ-

ous methods for predicting part segmentations [49, 52], correspondences [43], and

hierarchies [94] are mainly designed for single objects (e.g., chairs), which exhibit

significantly less variability in the types, numbers, shapes, and arrangements of ob-

jects in comparison to scenes (e.g., bedrooms). Previous methods designed for scenes

usually focus on parsing images [108] and/or work only on special types of layouts,

such as building facades [106].

In our setting, the grammar specification includes hierarchical generation rules,

rule probabilities, distributions of object descriptors, and spatial relationships be-

tween sibling nodes. These parameters are learned from a set of manually and consis-

tently annotated example scene graphs, where consistency means that: i) all function-

ally equivalent objects and groups are assigned the same label, and ii) all hierarchical

parent-child relations are the same across all scene graphs.

The learned grammar is then used to parse new scenes so that labeled object

hierarchies are consistent with the training data.

In comparison to previous work on probabilistic modeling of scenes in computer

graphics, a key aspect of our approach is that we explicitly learn and leverage the

hierarchical structure of scenes. Prominent semantic and functional relationships exist

at multiple scales in most scenes. For example, in Figure 3.1, the bedroom decomposes

functionally into sleeping area and storage area, and each area decomposes further

into objects, such as pillow, bed, cabinet and so on. Since the types of objects,

numbers of objects, and spatial relationships amongst the objects are unique for each
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type of area, representing the scene with a hierarchical representation (probabilistic

grammar) provides great advantages for scene understanding (see also Figure 3.3).

However, using a probabilistic grammar to represent hierarchical relationships

within scenes poses several novel technical challenges. In particular, parsing arbitrary

arrangements of three-dimensional objects with a probabilistic grammar is a distinctly

different challenge from parsing one-dimensional text [84] or two-dimensional facades

[69], which allow exploitation of sequential and grid structures. The space of all pos-

sible groupings is exponentially large and intractable to explore exhaustively. Unfor-

tunately, methods derived for lower-dimensional patterns do not directly carry over.

We develop a new approach for 3D scene parsing, based on dynamic programming

for belief propagation in a pruned search space. Our method binarizes the grammar,

proposes a large set of candidate recursive groupings based on spatial proximity, and

efficiently minimizes an energy function to find the optimal parse tree. The procedure

effectively performs approximate MAP estimation of the most probable output of the

hierarchical model [12].

We use our method to semantically label several datasets drawn from various

publicly available scene repositories, including the Trimble 3D Warehouse [92] and

the Sketch2Scene collection [102]. Our experiments demonstrate that hierarchical

analysis infers more accurate object labels than (i) a descriptor-based shape classifier

that does not incorporate contextual information, and (ii) an approach that uses both

a shape classifier and knowledge of spatial relationships, but no hierarchical structure.

Of particular note is the fact that we are able to better disambiguate similar objects

used in different functional roles, e.g., “study table” vs “meeting table”, which is

difficult to achieve without a rich context model. Our results can be directly applied

for a range of applications including scene retrieval, organization, and synthesis.
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3.2 Related Work

3.2.1 Joint shape analysis

Recently, there has been a growing interest in data-driven shape analysis, which

aims to aggregate information from a collection of related shapes to improve the

analysis of individual shapes. Significant progress has been made in the areas of joint

shape segmentation [34, 43, 83, 41, 109] and joint shape matching [74, 53, 45, 52,

42]. However, these methods are designed for collections of individual objects (e.g.,

chairs) and assume relatively small numbers of sub-parts and largely consistent overall

layouts. This assumption does not hold for 3D scenes, which exhibit significantly

greater variability in type, number, and arrangements of sub-objects.

3.2.2 Hierarchical shape analysis

Several previous techniques demonstrate the advantages of a hierarchical representa-

tion. Wang et al. [95] propose hierarchical decompositions of man-made objects into

symmetric subgroups. However, their method does not apply to general indoor en-

vironments where semantic object groups are not necessarily symmetric. Van Kaick

et al. [94] present a method that infers consistent part hierarchies for a collection of

shapes. The method takes as input a set of shapes, each pre-segmented into primitive

parts. Candidate part hierarchies are built up by recursive grouping, and the set of

hierarchies clustered by similarity. Within each cluster, a representative hierarchy is

used as a template to re-parse the shapes. The method assumes that the collection

can be split into discrete clusters, where each cluster contains shapes with essentially

identical part hierarchies. This assumption is often violated in 3D scenes, where

each scene layout is in general only partially similar to others, with corresponding

sub-layouts but no overall commonality. We use a probabilistic grammar to model
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the different regions, at different scales, of different scenes with different rules of a

common generative process.

3.2.3 Layout parsing

In the computer graphics community, grammar-based scene parsing has been an active

research area. However, most existing methods in this area have focused on parsing

cities [91], buildings [70, 15], and facades [69, 106, 99], which exhibit a high degree

of geometric and spatial regularity. The grammar definitions and parsing algorithms

being developed are typically specific to those application domains and do not apply

to the scenes considered in our work.

3.2.4 Inverse procedural modeling

Several researchers have also studied the problem of inverse procedural modeling:

recovering a generative grammar from a set of shapes assumed to have self-repeating

hierarchical structures. For example, Št’ava et al. [86] derived L-systems from plants;

Bokeloh et al. [14] discovered repeating units and connections to form a procedural

model for shapes; while, Talton et al. [88] applied Bayesian Model Merging to induce

a compact grammar for a collection of shapes. These methods are complementary to

ours: they focus on learning a grammar from existing training data for the purpose

of shape synthesis, instead of trying to derive structure for novel data.

3.2.5 Synthesis with probabilistic models

Our work is also related to works on generating new shapes and scenes with data-

driven probabilistic modeling. Chaudhuri et al. [19] and Kalogerakis et al. [48] train

generative models of component-based shape structure from compatibly segmented

and labeled models for shape synthesis, while Fisher et al. [29] and Yeh et al. [103]
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Figure 3.2: Flow chart of our approach. We learn a probabilistic grammar from
consistently annotated training hierarchies. We then leverage this grammar to parse
new scenes (which might include over-segmented objects). The output is a labeled
hierarchy consistent with the grammar and assigned a high probability by it.

characterize spatial relationships among objects in 3D scenes for scene synthesis.

Although these models are very effective for synthesis, they are not applicable to

segmentation and labeling of novel scenes, and do not have a rich representation of

hierarchical context. As we show in our evaluations, hierarchical contexts can greatly

aid recognition tasks and improve accuracy.

3.3 Overview

The main objective of this work is to automatically create consistent annotated scene

graphs for a collection of related scenes. To achieve this goal, our system starts by

learning a probabilistic grammar from a training set of annotated 3D scenes with con-

sistent hierarchical structure. Then, given a new input scene described by unlabeled

non-semantic scene graph, such as the one presented in Figure 3.1(a), we use the

learned grammar to produce a semantic hierarchical labeling of a scene with objects

at the leaves.

Our hierarchical representation and analysis tools are motivated by the obser-

vation that semantic and functional relationships are often more prominent within

some subregions or subgroups of objects. For example, consider the library scene in

Figure 3.3. It contains several meeting and study areas, where each area provides
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(a) Input scene (b) Output hierarchy

Figure 3.3: An example library scene. By grouping objects, we are not only able to
detect interesting intermediate-level structures, e.g. study area and meeting area, but
also distinguish objects based on their functionalities, e.g. study chair and meeting
chair.

a strong prior on spatial relationships between the objects, and types and numbers

of the objects. In particular, meeting area is likely to have chairs arranged so that

people could face one another, while study area is likely to provide more personal

space on a desk (and thus, would have fewer chairs). In addition, hierarchy provides

the necessary context to distinguish functional categories of shapes that otherwise

have very similar geometry such as meeting and study chairs.

Our approach is defined by two stages. In the first stage, we learn a probabilis-

tic grammar from a set of example scenes. In particular, given a set of consistently

annotated hierarchical scene graphs as the training data, we produce hierarchical pro-

duction rules, production probabilities, distributions of object descriptors and spatial

relationships between sibling nodes, which define our grammar (see Section 3.4).

Then, in the second stage of our pipeline, we use the learned grammar to compute

consistent scene graphs for novel 3D scenes. We assume that the new scenes come

from an online repository, and thus unlikely to have semantic annotations or con-

sistent scene graphs. A typical scene from a Trimble 3D Warehouse is missing some

important hierarchical nodes, has nodes that corresponds to meaningless groups, does
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not have objects as leaf nodes, since it further subdivides them into meaningless ge-

ometric parts (which we refer to as an over-segmentation problem). We solve the

challenging problem of matching these geometry soups to meaningful objects, and

then organizing the objects into consistent hierarchies by using an efficient dynamic

programming algorithm (see Section 3.5).

3.4 Probabilistic Grammar

In this section, we first define the probabilistic grammar, and then describe how we

learn the grammar parameters from annotated training data.

3.4.1 Grammar specification

We define an attributed, non-recursive, probabilistic grammar G represented by a

tuple:

G =< L,R,P > (3.1)

where L,R define the topology of the grammar, and P are its probabilistic parameters.

We model G to be non-recursive as object groups in indoor scenes are not expected

to be functionally equivalent to any of the group’s components.

Labels. The label set L is a list containing a label for each object category (e.g., bed,

chair) and object group (e.g., sleeping-area, table-and-chairs). We include a special

label w that denotes the axiom of G. We also include a special label for each object

category that denotes a non-semantic subpart of the complete object, such as the

curtain pieces in Figure 3.1. Introducing these labels helps us parse oversegmented

scenes where the leaf levels of input scene graphs are below the object level.
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Rules. The rule set R comprises production rules of the grammar. Each production

rule r ∈ R is in the form of l → λ, where l ∈ L is the left-hand-side label, and λ is

the set of right-hand-side labels. For example, a production rule could be:

bed → bed-frame mattress.

Since our grammar is non-recursive, λ should not include l or any label that has l in

its expansion. In other words, the labels L can always be topologically sorted.

Probabilities. The parameters P include production probabilities and attributes.

The probability of a production rule l→ λ is the product of two terms. The derivation

term Pnt(l) denotes the probability that a non-terminal with label l is composed of

sub-objects according to the rule, given its parents. The cardinality term Pcard[l, r](i)

denotes the probability that a node with label l, expanded according to the rule, has

exactly i children labeled r. We represent the distribution Pcard[l, r](i) by recording

probabilities for four possible cardinalities: i = 1, 2, 3, 4+, where 4+ denotes cardi-

nalities of 4 or greater. The purpose of the cardinality term is to avoid introducing a

new production rule for each combination of child labels and cardinalities. Instead,

λ = RHS(l) exhaustively lists all possible children of l, and Pcard assigns cardinality

probabilities independently to each child. For example, the observed productions:

storage-area → cabinet trunk

storage-area → closet trunk

are combined into a single production:

storage-area → cabinet closet trunk.
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Thus, our learned grammar has exactly one rule for each left-hand label, with in-

dependent cardinality distributions for each right-hand label. The purpose of this

relaxation is to generalize in a reasonable manner from a small number of training

examples. For instance, in the above example, we generalize to include storage areas

with both cabinets and closets, which is not an uncommon scenario. While this re-

laxation can theoretically miss some co-occurrence constraints, we found it gave good

results in practice.

With this setup, we define the probability that a proposed node x in a parse tree,

with children x.children, matches rule l→ λ as:

Pprod(x) = Pnt(x.label)

×
∏

r∈λ Pcard[x.label, r]
(∑

y∈x.children 1y.label=r

) (3.2)

where x is a node in the parse tree labeled as x.label with a set of children x.children,

and 1 is the indicator function.

Attributes. We identify two types of attributes that are important for scene un-

derstanding: geometry attributes Ag which describe the shape of objects, and spatial

attributes As which describe the relative layout of objects in a group. For example, in

a library scene such as the one in Figure 3.3, Ag would help in distinguishing tables

and chairs since they have distinctive geometry, and As would capture the distinctive

spatial arrangement of chairs in a meeting area in contrast to a study area.

A geometry attribute Ag is associated with each label l ∈ L and represented as a

multivariate normal distribution over 21-dimensional shape descriptors Dg. To build

the shape descriptors, we uniformly sample 1024 points on each shape, and then

compute the following values:
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• Dimensions of the axis-aligned bounding box of a shape (8 dimensions). We

assume that z is pointing up, and we compute zmin, zmax, lz = zmax − zmin, l1 =

max(xmax−xmin, ymax−ymin), l2 = min(xmax−xmin, ymax−ymin), l2/l1, lz/l1, lz/l2

• Descriptors from PCA analysis (7 dimensions). We perform PCA analysis for all

points on the ground plane and on the upward, z-axis, separately. We denote the

mean of z values by zmean, variance on z axis by Vz, and variances on the ground

plane by V1, V2(V1 ≥ V2), and we include zmean, V1, V2, Vz, V2/V1, Vz/V1, Vz/V2.

• Descriptors of “uprightness” (2 dimensions). We compute the fraction of points

that have “up” as the principle direction of their normal. We denote the fraction

by r and include r and 1− r as features.

• Point distribution along the upward direction (4 dimensions). We compute a

4-bin histogram of points according to their z coordinates.

We assume that the individual features in the descriptor are independent, and

model the distribution of the ith feature with a Gaussian Gl,i. Given a new node x,

we estimate the probability of it being labeled l via the geometry attribute Ag[l]:

Pg(l, x) =
∏

i=1...21

1√
2πσl,i

exp

(
−(Dg,i(x)− µl,i)2

2σ2
l,i

)
(3.3)

where σl,i and µl,i are respectively the mean and the variance of Gl,i, and Dg,i(x) is

the ith component of Dg(x).

A spatial attribute As describes a probability distribution over object layouts. We

assume that objects that appear in the same group in the hierarchy have a stronger

prior on their relative spatial relations. Thus, we only capture As for label pairs that

are siblings on the RHS of a rule: the attribute is conditional on the LHS label. To

generalize from sparse training data, we factor the joint distribution of the layout of a

group of objects into a product of pairwise layouts. The relative layout of two nodes
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x and y is described with a 7-dimensional descriptor Ds(x, y):

Ds(x, y) = [x.zmin − y.zmin,

x.zmin − y.zmax,

x.zmax − y.zmin,

Dist(x.box.center, y.box.center),

Dist(x.box, y.box),

Area(x.box ∩ y.box)/Area(x.box),

Area(x.box ∩ y.box)/Area(y.box)]

where x.box is the bounding box of the object x on the ground plane, Dist is the dis-

tance between two points or two bounding boxes. Intuitively, 1-3 represents support

and vertical relationships, 4-5 represents horizontal separations, and 6-7 represents

overlaps between objects.

Note that these pairwise relations are typically not distributed around a single

mean value. For example, the spacing between all pairs of chairs arranged evenly

around a table jumps discretely as the table grows larger and accommodates more

chairs. Thus, we use kernel density estimation [78], a non-parametric technique, to

represent the probability distribution. For each triplet of labels lp, lx, ly, where lp is

the parent of lx and ly according to a grammar rule, we find matching parent-child

triplets p, x, y in training scenes, and store the pairwise descriptor of each such pair

x, y in the set W [lp, lx, ly]. As for the geometry attribute, we assume the individual

features vary independently. The ith dimension of each exemplar descriptor w in the

set is associated with a local Gaussian kernel Kw,i centered at w that describes the

distribution in its proximity. The overall probability at any point in the descriptor

space, for any pair of sibling objects x, y, is the product of the sums of these 1D
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kernels:

Ps(lp, lx, ly, x, y) =
∏
i=1...7

∑
w∈W [lp,lx,ly ]

Kw,i (Ds(x, y)) (3.4)

By taking the product over sums, instead of the sum over products, we again encour-

age generalization from a few examples.

3.4.2 Learning the grammar from consistent labeled hierar-

chies

Scene labeling. Given a collection of 3D scenes from a public repository with

their default (possibly non-semantic) scene graphs, an annotator builds consistent

hierarchies for the scenes. We instructed the annotator to follow the following four

steps:

1. Identify leaf-level objects in each scene either by selecting a node in the existing

scene graph or by grouping multiple non-semantic nodes to form an object.

2. Provide a label for each object in a scene.

3. Group objects that belong to the same semantic group and provide a group

label that is consistent across all scenes. This step is performed recursively

until only one group (the axiom) is left.

4. Summarize the resulting annotations in a form of a grammar. The annotator

is presented with all production rules and is asked to remove redundancies in

the grammar and potentially relabel the scenes that include these redundan-

cies. This step is introduced to favor consistent annotations after all scenes are

labeled.

In our experiments, the annotation took about 15 minutes per scene. The first step

was only required for over-segmented scenes and could take up to 30 minutes for a

scene with 300 segments.
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Grammar generation. The set of all unique labels in the training scenes defines L.

For each non-terminal label l ∈ L, we create a rule (l→ λ) ∈ R, where λ concatenates

all labels that act as children of l across all scenes, generalizing from the individual

observed productions. The derivation probability Pnt and cardinality probability Pcard

of each rule are directly learned from occurrence statistics in training data.

We then proceed to compute the geometric and spatial attributes. The means

and variances of geometry attribute Gaussians are estimated from the set of descrip-

tors of observed instances of each label. The kernel bandwidths (variances) of spatial

attributes, for each pair of observed siblings x, y are chosen differently for each di-

mension, based on the type of relation that we expect to capture. In particular,

for dimensions describing vertical separations, we predefine a small bandwidth of

7.5cm since we expect support and co-planarity relations to hold almost exactly up

to minor misalignments introduced by a modeler. For spatial relations on the ground

plane, we estimate the bandwidth as 0.2×min{x.box.diagonal, y.box.diagonal}, where

a.box.diagonal is the bounding-box diagonal of a, since we expect the variance in these

to be proportional to the object size. For overlap-related dimensions, we predefine a

tiny bandwidth of 0.05cm, since we generally do not expect objects to intersect.

3.5 Scene Parsing

Given a learned grammar G and an input scene graph S, our goal is to produce an

annotated hierarchy H on scene geometry that is a valid parse of S according to G.

We first extract the set of leaf nodes Sleaf from S, which forms a partition of the

scene. These leaves do not necessarily correspond to semantic objects or groups. We

assume that H has Sleaf as leaf nodes, assigning them special “object-subpart” labels

from the grammar in the case of over-segmentation.
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In the rest of this section, we formulate the objective function that is equivalent to

maximizing P (H|S,G) (Section 3.5.1), and propose an efficient dynamic programming

algorithm to find the optimal hierarchy (Section 3.5.2).

3.5.1 Objective function

Given a grammar G and an input scene S, our goal is to produce an annotated hier-

archy H∗ = arg maxH P (H|S,G). We rewrite P (H|S,G) using Bayes’ rule, dropping

the P (S) in the denominator because it does not affect the optimal solution:

P (H|S,G) ∝ P (H|G) · P (S|H,G). (3.5)

P (H|G) is the product of production probabilities of rules Pprod (Equation 3.2) in H:

P (H|G) =
∏
x∈H

Pprod(x)T (x) (3.6)

where T (x) is a weight that is used to compensate for decreasing probability values

as H has more internal nodes. We define T (x) = 1 for leaves and internal nodes that

have a single child, and T (x) = |x.children| − 1 for all others.

P (S|H,G) is the data likelihood, which is the probability of S being a realization

of the underlying parse H. We define the data likelihood of scene as a product of

per-node likelihoods:

P (S|H,G) =
∏
x∈H

Pg(x)T (x)P ∗s (x)T (x) (3.7)

where the geometry term Pg is defined in Equation 3.3 and the full per-node spatial

probability P ∗s (x) is derived from the pairwise terms Ps (Equation 3.4):

logP ∗s (x) =

∑
p,q∈x.children logPs(x.label, p.label, q.label, p, q)

|x.children| × (|x.children| − 1)
(3.8)
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Our final objective function is the negative logarithm of Equation 3.5:

E(H) =
∑
x∈H

E(x) (3.9)

where E(x) = −T (x) log (Pprod(x)Pg(x)P ∗s (x)).

3.5.2 Algorithm

The main challenge in optimizing Equation 3.9 is the size of the solution space. For

example, if there are n nodes at the leaf level, even a single group can be formed in

2n− 1 different ways. Previous approaches such as Zhao and Zhu [108] use simulated

annealing, which requires a good initial guess and typically takes a long time to con-

verge. While this approach is feasible for a small number of labels (e.g., 11 labels are

used in the bedroom grammar of [108]) we had to develop an alternative technique to

handle the typical scenes available in online repositories (e.g., there are 132 semantic

labels in our grammar for the bedroom scenes presented in our work).

Our idea is to conduct a dynamic programming optimization. We start by rewrit-

ing the objective function recursively, as

E(H) = Ē(Root(H))

Ē(x) = E(x) +
∑

y∈x.children

Ē(y)
(3.10)

where Ē(x) represents the total energy of the subtree rooted at node x, and Root(H)

is the root node of H. This recursive formulation naturally leads to a dynamic

programming optimization where we choose the optimal tree structure and labels in

a bottom-up manner. We define a state in our dynamic programming for a node

x and a label l, and we store a variable Q(x, l) for the state that represents the
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optimal energy of the subtree rooted at node x and label l. Given this definition,

E(H) = Q(Root(H), w).

Since it is impractical to conduct dynamic programming algorithm directly due to

the large search space, we propose two relaxations that lead to an approximated but

efficient solution. First, we precompute a set of good candidate groups and assume

that the hierarchy only includes nodes from these groups. Although this reduces the

search space significantly, the number of ways to map a collection of nodes to the

right-hand-side of a grammar production is still exponential if the branching factor

of the grammar is not limited. Thus, inspired by grammar binarization techniques in

natural language processing [26], we convert each rule with more than two right-hand

labels into a set of rules with only one or two children. This reduces the number of

states in a dynamic programming solution from exponential to polynomial in n. After

we get a valid parse with the binarized grammar, we transform it to a valid parse

with the original grammar. Although there are no guarantees that this procedure

produces the optimal parse with respect to the original grammar, our experiments

demonstrate that it produces semantic hierarchies with high accuracy.

In summary, our scene parsing works in three steps. First, it creates candidate

nodes based on spatial proximity. Next, it binarizes the grammar. Finally, our

method finds the optimal binary hierarchy with an efficient dynamic programming

algorithm and then converts it to a valid hierarchy of the original grammar.

Proposing candidate groups

Given a scene S with a set of leaves Sleaf, our algorithm narrows down the search

space by proposing a set of candidate groups C from which we build the hierarchy

H. Each group X ∈ C is a subset of leaves in Sleaf, and our grouping heuristic for

constructing X stems from the assumption that only shapes that are close to one

another produce semantically meaningful groups.
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We iteratively build the set of subsets C, increasing the cardinality of subsets with

each iteration. In the first iteration, we set C1 = Sleaf, i.e., all subsets of cardinality

1. In iteration k, we enumerate all subsets of cardinality k that can be created by

merging pairs of subsets in Ck−1. Each subset is scored using a compactness metric

M that favors tight arrangements of nearby objects. Specifically, for a given subset

X, we build a graph A on X where the weight of an edge is the distance between

bounding boxes of its endpoints. M(X) is the cost of the minimum spanning tree

of A. We add the c most compact new subsets to Ck. The iterations terminate

when k = |Sleaf|. Note that this procedure guarantees that the maximal size of C is

O(c|Sleaf|2). We set c = 5 in our experiments.

Grammar binarization

The goal of this step is to produce a grammar that is similar to the input grammar,

but has a branching factor ≤ 2, i.e., each rule has one or two right-hand labels.

We derive the binarized grammar G2 =< L′,R′,P′ > from the original grammar

G =< L,R,P > by splitting each rule into multiple equivalent rules. First, for each

label l ∈ L we add two labels to L′: l itself, which we call a full label, and l′, which

we call a partial label of l. Then, we decompose each production rule (l → λ) ∈ R

into a set of rules with at most two right-hand labels:

l → l′k for each k ∈ λ

l → jk for each j, k ∈ λ

l → k for each k ∈ λ

l → l′l′

l′ → l′k for each k ∈ λ

l′ → jk for each j, k ∈ λ

l′ → l′l′.

(3.11)
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Since the binarized grammar lacks the cardinality term, we introduce recursion to

represent multiple instances of the same object. There are many possible binarization

expansions that would lead to a language that is equivalent to the original grammar,

each with a different number of rules and a different number of states to be searched

when parsing. We did not aim to minimize the number of rules, since more rules lead

to more states in the dynamic programming algorithm, thus the algorithm is more

likely to find a lower energy solution. We will discuss more details next.

Dynamic programming

Now we describe an efficient dynamic programming algorithm for minimizing the

Equation 3.9. Note that given the two relaxations described above, the solution of

our algorithm can only approximate the optimal solution.

In order to define the state transfer equations, we introduce an auxiliary variable

for each state [x, l], K(x, l), which represents the annotated partition of x into nodes

with full labels that produces Q(x, l). K(x, l) is an array of pairs, and each pair

consists of a descendant of x and its label. Now we can define the state transfer

equations as follows,

Q(x, l) = min{Qu(x, l), Qb(x, l)}

Qu(x, l) = min
l′∈RHS(l)

E2(x, l,K(x, l′)) + S(x, l′)

Qb(x, l) = min
y,z∈Part(x)
ly ,lz∈RHS(l)

E2(x, l,K(y, ly) ∪K(z, lz))

+ S(y, ly) + S(z, lz)

S(x, l) =
∑

[y,ly ]∈K(x,l)

Q(y, ly)

(3.12)

where Qu is the optimal energy of applying grammar rules with a single right-hand

child (l → k in Equation 3.11), and Qb is the optimal energy of applying grammar
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rules with two right-hand children (all other rules in Equation 3.11). Part(x) is the

set of partitions of X into two subsets from C. E2 is similar to E, but nodes and

labels are specified in the argument list. RHS(l) is the set of right-hand-side labels

derivable from l in G2. S(x, l) is the total energy of partition K(x, l). K(x, l) can be

updated accordingly given the optimal l′, y, z, ly, lz for computing Q(x, l).

Note that there are no guarantees that Q(x, l) is the optimal energy of the

subtree rooted at node x and label l. If K̄(·, ·) represents the optimal K(·, ·),

and {[yi, lyi ], [zi, lzi ]} represents all binary partitions of K̄(x, l), Q(x, l) is subopti-

mal when none of yi, zi is in Part(x), or none of K̄(yi, lyi) ∪ K̄(zi, lzi) constructs

K̄(x, l). Redundancy in grammar binarization (Equation 3.11) leads to a larger set

of {[yi, lyi ], [zi, lzi ]}, which is likely to enable our algorithm to find a lower energy

solution. As we will show in Section 3.6, we can always find solutions with reason-

ably low energies (i.e. equal to or lower than the ground-truth hierarchy) in our

experiments.

Given the state transfer equations, the only remaining problem is to compute

Q(x, l) in the correct order. To ensure that the values on the right-hand-side of

the binary term Qb(x, l) are available, we compute Q(x, l) in the order of increasing

cardinality of X. This ensures that Q(y, ly) and Q(z, lz) are computed before Qb(x, l).

Among the states (x, l) with the same x, we compute Q(x, l) based on the topological

order of label l in G2, which ensures Q(x, l′) is available when computing Qu(x, l) if l′

is derivable from l.

Finally, we transform the optimal binary hierarchy arg min E(H) to a hierarchy

in the original grammar G by removing all nodes with partial labels and attaching

their children to their parents.
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(a) Ground-truth hierarchy (b) Ground-truth leaf nodes

Figure 3.4: Each test data set includes (a) a manually-created hierarchical grammar
and (b) a set of scene graphs with manually-labeled nodes representing a “ground
truth” parse of the scene.

3.6 Results

3.6.1 Datasets and evaluation methods

Datasets: We tested our algorithms on scene graphs representing three types of

scenes downloaded from the Trimble 3D Warehouse: Bedroom (77 scenes), Classroom

(30 scenes), and Library (8 scenes).

For two types of these scenes, we additionally created small datasets with simple

scene graphs representing 17 bedrooms and 8 libraries, respectively. These scenes have

only the basic objects commonly found in such scenes and thus serve as a “clean”

dataset for testing the core elements of our algorithms independent of the noise found

in real-world data sets.

For each scene graph in all five of these data sets, we enforced a canonical scal-

ing (one unit equals one inch), removed polygons representing walls and floors, and

removed scene graph nodes representing small parts of objects. While these steps

could be performed automatically, we performed them manually for this experiment

to avoid confounding our main results with errors due to preprocessing heuristics.
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Evaluation methods: To evaluate the results of our scene parsing algorithm, we

manually specified a hierarchical grammar for each type of scene (Figure 3.4(a)) and

manually assigned a ground-truth parse for each input scene graph (Figure 3.4(b)).

Then, we tested our parsing algorithms in a series of leave-one-out experiments.

Specifically, for each scene, we trained a grammar on the other scenes of the same type,

used that grammar to parse the leaf nodes of the left-out scene, and then measured

how accurately the topology and labels of the predicted scene graph match those of

the ground truth parse. Note that since the resulting scene graphs are all valid parses

of the probabilistic grammar they have consistent hierarchical parent-child relations.

To measure the label consistency of a predicted parse with the ground truth, we

used precision, recall, and F1 score (F-measure) statistics. Since the interior nodes

of the predicted scene graph can be different than those of the ground truth for the

same scene, calculation of the standard form of those metrics is not possible. Instead,

we computed measures that account for the fractions of surface area labeled correctly.

For example, to compute precision for a particular label l, we computed the fraction

of all surfaces in the subtrees rooted at nodes predicted to have label l that appear

in a subtree rooted at a node labeled l in the ground truth. Our final results are

averages weighted by surface area over all label types and all scenes.

3.6.2 Benefit of hierarchy

Hierarchical parsing results. In our first experiment, we evaluate how well the

scene graphs predicted by our hierarchical parsing algorithm match the ground-truth

data. Figure 3.5 shows the results: the height of each bar indicates the average F1

score for a different dataset, where 1.0 is perfect and higher bars are better. On

average, our method achieves almost 100% accuracy on small datasets, and 80%

on the Trimble 3D Warehouse datasets. Example parsing results can be seen in

Figure 3.6. These examples show that our algorithm is able to create functionally
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Figure 3.5: Performance of object grouping. Our method achieves almost 100% on
illustrative datasets, and ∼80% on Trimble 3D Warehouse scenes.

relevant hierarchies for many different types of scenes, even though the input scene

graphs have very little hierarchy, if any at all. For example, it correctly parses the

sleep areas (bed, nightstand, etc.) and storage areas (closets, cabinets, etc.) in the

bedroom scenes in the top two rows; and, it differentiates teacher areas from student

desk areas in the classroom shown in the third row, even though the shapes of the

individual objects (desk and chairs) are geometrically very similar. Incorrectly labeled

nodes are highlighted in red – errors usually occur due to limited amounts of training

data.

Comparison to alternative methods. In a second experiment, we test whether

parsing scenes with our hierarchical grammar provides more accurate object labels

than simpler alternatives. To test this hypothesis, we compare our results with the

following two alternative methods:

• Shape only. This method selects the label that maximizes the geometry term

Eg for each input node. It is representative of previous methods that perform

object classification based solely on similarities of shape descriptors.

• Flat grammar. This method executes our algorithm using a flattened gram-

mar that has only one production rule that connects all terminals directly to

the axiom. The geometric and spatial attributes of the flattened grammar are

learned from ground-truth flattened graphs. Thus, this method is representa-
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Input Output leaf nodes Output hierarchy
Bedroom1

Bedroom2

Classroom1

Library1

Figure 3.6: Examples of parsing results. We show the leaf nodes of the input scene
graph (column 1), and the leaf nodes (column 2) and hierarchy (column 3) output
by our algorithm. Red labels indicate either wrong labels or incorrect segmentation.
In column 3, to save space, we merge a child with its parent if it is the only child,
and use ‘/’ to separate the labels of the child node and the parent node. Also to
save space, we use ‘X’ to represent multiple occurrences of the same geometry in the
parse tree (note that we do not detect identical geometries in our algorithm; this
is only for visualization purposes). The input scenes of the top three examples are
oversegmented.
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Figure 3.7: Performance of object classification. Using a hierarchical grammar clearly
outperforms alternatives.

tive of previous methods that leverage spatial context, but not hierarchy, for

object classification [28, 30, 29, 102].

Results are shown in Figure 3.7: each set of bars shows a comparison of our

method (blue bar on right) with the two alternatives running on a given test dataset.

Since the alternative methods predict labels only for objects (i.e., do not produce

hierarchy), we compare their results only for labels predicted at leaf nodes by our

algorithm.

From the results we see that methods based on parsing with our probabilistic

grammar (green and blue) outperform a method based purely on matching shape

descriptors. Moreover, we find that parsing with a hierarchical grammar (blue) is

better than with a flat grammar (green). Figure 3.8 shows representative failures

of alternative methods (highlighted with red labels). The method based only on

matching shape descriptors fails when geometries of different object classes are similar

(e.g., short book shelf vs. study desk in the library example; console table vs. study

desk in the bedroom example). The method based on flattened grammars fails when

spatial relationships between objects are context dependent (e.g., the relation between

the study chair and the short book shelf is wrongly interpreted in the library example).
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Shape only Flat grammar Ours
Library

Bedroom

Figure 3.8: Comparison to alternative methods. Classifying objects only by their
geometry (first column) cannot differentiate between objects of similar shape in dif-
ferent categories, e.g. short bookshelf and study desk, or console table and study
desk. Even if contextual information is leveraged, relations among objects can be
wrongly interpreted (e.g. short book shelf and study chair (second column top), chair
and bed (second column bottom)) in the absence of a hierarchy of semantic contexts
at various scales. Our method exploits such a hierarchy to yield more accurate object
recognition. The inset images of the third column show the object groups predicted
by our method. Black labels are correct, and red labels are incorrect.

3.6.3 Generalization of our approach

Handling over-segmentation. In a third experiment, we test whether our method

is able to parse Bedroom scene graphs with moderate levels of over-segmentation.

In this test, the leaves of the input scene graphs are not necessarily representative

of basic category objects, but instead can represent parts of objects as determined

by the leaf nodes of the scene graphs originally downloaded from the Trimble 3D

Warehouse. We call this new data set “Bedroom-oversegmented.”
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Figure 3.9: Performance on over-segmented bedroom scenes. Our method signifi-
cantly outperforms shape-only classification in most object categories except mat-
tresses, which are rarely over-segmented, and can be distinguished from other classes
based on their distinctive geometry. Our method outperforms the “flat” grammar,
with spatial relations but no hierarchy, in all object categories except for chairs.

This test is much more difficult than the previous one, because it requires the pars-

ing algorithm to determine what level of each input scene graph represents the basic

category objects in addition to assigning labels and creating a meaningful hierarchy.

We compare the methods described above with a few changes. In our method and

the flat grammar method, the grammar is augmented with an extra layer of labels

at the bottom of the hierarchy representing object parts (e.g., “part of a chair”).

These new types of labels are necessary to allow the parser to find an appropriate

“segmentation” of the scene by assigning them to over-segmented nodes of the input

scene graphs while grouping them into new interior nodes with basic object category

labels.

Results of this experiment are shown in Figure 3.9, with the overall results shown

in the left set of three bars and results for individual object labels shown to the right.

Not surprisingly, the shape-only method (red bars) performs the worst. Since it

does not parse the scene and therefore cannot create new nodes representing groups

of leaf nodes, it is unable to correctly label any objects not represented explicitly by

a node in the input scene graph. Also since it does not leverage spatial relationships

when assigning labels, it is difficult for it to distinguish some object classes from
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others with similar shapes. Our parsing method using a hierarchical grammar has

better overall performance than using a flattened grammar. This is because it better

captures the spatial and cardinality distributions specific to semantic groups of objects

represented by interior nodes of the grammar. For example, without those cues, bed

frame can be easily confused with bed, as they share similar geometries and spatial

relationships.

Parsing other datasets. In a fourth experiment, we test whether our algorithm can

learn a hiearchical grammar on one data set and then use it to parse a different data

set. For this test, we downloaded the Sketch2Scene Bedroom dataset [102] and then

parsed each of the Bedroom scene graphs using the grammar learned our Bedroom

dataset. Since the Sketch2Scene dataset was constructed by retrieval using keywords,

it includes scenes that are obviously not bedrooms, which were excluded from our

experiments. Additionally, we excluded Sketch2Scene scenes that were very similar

(or duplicate) with any in our dataset. In the end, we were left with 90 scenes for

testing.

We ran our parsing algorithm (and the two alternative methods) trained on our

Bedroom set to predict a scene graph hierarchy for each of the 90 scenes in the

Sketch2Scene bedroom dataset without any change to the algorithm or parameters

– i.e., the algorithm was frozen and parameters learned before even looking at the

Sketch2Scene data for the first time.

To evaluate the results, we use the manually-specified ground truth labels for

all basic object category objects provided with the Sketch2Scene dataset. Since the

Sketch2Scene data has no hierarchy, we evaluate our results only for leaf nodes. Since

the Sketch2Scene ground-truth label set is different from ours, we created a mapping

from our label set to theirs so that labels predicted by our parser could be compared

to their ground truth. Unfortunately, the Sketch2Scene label set is coarser-grained

than ours, often not separating functionally different objects with similar shapes
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Figure 3.10: Parsing scenes in the Sketch2Scene dataset [Xu et al. 2010]. We reuse
the grammar learned in Section 3.6.2 to parse scenes in Sketch2Scene, and compare
the performance to those of alternative methods. Using a flattened grammar is not
effective because spatial relations are not discriminatory enough without meaningful
object groups. Shape-only classification performs comparably to our method in ob-
ject categories where geometry is distinctive, but is surpassed by our method when
contextual information is important for disambiguation (e.g. desk and bed).

(e.g., nightstand, cabinet, and closet) are all mapped to one label called cabinet in

the Sketch2Scene. This reduction of ground-truth labeling granularity and the lack

of hierarchy in the ground truth hides key differences in the evaluation of our results,

but we use it none-the-less since it provides an objective evaluation of our method

with respect to a third-party data set.

As in the previous experiments, we compare the performance of our hierarchical

parsing algorithm to the shape-only and flat-grammar methods. Results are shown

in Figure 3.10. Note how the results for this new data set are similar to the ones

previously reported for the leave-one-out experiment. Hierarchical parsing provides

the best average results overall (“All leaves”) and significant improvements for most

object labels (e.g., desk). This result verifies the robustness of the algorithm to handle

different input scene graphs.

Interestingly, the flat grammar method performs worse than shape-only for several

object categories. This is because spatial attributes learned for pairs of objects within

a scene are mixed in the flat grammar (e.g., the spacing between desks and chairs

is learned from all pairs across the entire room rather than just the pairs within the

37



Figure 3.11: Impact of size of training set. Labeling accuracy increases on all datasets
with more training examples.

same study area). By leveraging hierarchy we can learn relations between objects

that belong to the same group, and thus learn stronger layout priors.

3.6.4 Sensitivity analysis

Impact of training set size. We tested how the performance of our algorithm is

affected by the size of the training set. For each scene graph, we trained a grammar

on X% of the other scenes selected randomly (for X = 10%, 40%, 70%, and 100%),

used that grammar to parse the scene, and then evaluated the results. Figure 3.11

shows that the results. From this test, it seems that training on approximately 40% of

the scenes provides results approximately as good as training on 100% in all datasets

except for Library, which has only 8 scenes in total.

Impact of individual energy terms. We ran experiments to show the impact

of each energy term on the final results by disabling each one and re-running the

first experiments. The results of this experiment (Figure 3.12) suggest that the per-

formance becomes worse if we disable any of the energy terms. Interestingly, terms

have different impact on different datasets. For instance, the geometry term is more
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Figure 3.12: Impact of individual energy terms on object classification. Each energy
term contributes to the overall performance in each dataset.

important in bedrooms, while the spatial and cardinality terms are more important

in libraries, probably because hierarchical structure is more prominent there.

Impact of optimization approximations. We next ran experiments to evaluate

the impact of approximations made by our parsing algorithm to narrow the search

space, i.e., proposing candidate groupings based on spatial proximity and binarizing

the grammar.

To evaluate the approximations, we compare the output of our algorithm to

the output of exhaustive search. Because the computation complexity of exhaus-

tive search is exponential in the size of input, we do this comparison only for the

small dataset of bedrooms, where each scene contains no more than 10 nodes. Our

experiment result shows that our approximations are able to get the globally optimal

solutions in 16 out of the 17 cases. In the only failure case, the candidate node selec-

tion algorithm misses one internal node in the ground truth. On average, exhaustive

search takes 35 minutes for the scene with 10 leaf nodes, while our method takes only

3 seconds.

We also evaluate the impact of our approximations on parsing the Trimble 3D

Warehouse scenes. Since it is impractical to get the globally optimal solution for
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Figure 3.13: Fraction of ground truth internal nodes missing from the predicted
hierarchies. The Y-value of each point on a curve denotes the fraction of scenes in
which the number of missing ground truth internal nodes is at most the X-value. For
libraries, our algorithm successfully proposes all ground-truth nodes, except one, in
the entire dataset. Oversegmented input scene graphs are in general more challenging
for our method.

these scenes, we study the impact of our approximations only with statistics gathered

during the search.

First, to evaluate the impact of selecting candidate nodes based on spatial proxim-

ity, we measure the fractions of internal ground truth nodes that are not considered as

candidate nodes by our algorithm (Figure 3.13). The results show that the approxi-

mation misses very few nodes for cases where the input scene graph is well-segmented

at the leaf nodes, but provides mixed results when the input is over-segmented.

Second, to evaluate the impact of grammar binarization, we investigate how often

our algorithm outputs a hierarchy with higher energy than the ground-truth hierarchy.

If we consider only the examples where the ground-truth solution is included in our

search space (85% of scenes), then there is only one case where our method produces

a solution with higher energy than the ground-truth, which indicates that grammar

binarization is not significantly affecting the accuracy of our final results.

Timing results. We measured the computational complexity of our parsing algo-

rithm on the Bedroom data set. Figure 3.14 shows the result relating the number
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Figure 3.14: Relationship between number of input leaf nodes and running time on
oversegmented bedroom scene graphs. Our method scales reasonably well for complex
scenes.

of input leaf nodes and the running time. Our algorithm is far from real-time, but

scales well for scenes with large numbers of input leaf nodes.

3.7 Discussion

This chapter presents a method for parsing scene graphs using a hierarchical proba-

bilistic grammar. Besides this main idea, we offer two technical contributions. First,

we formulate a probabilistic grammar that characterizes geometric properties and

spatial relationship in a hierarchical manner. Second, we propose a novel scene pars-

ing algorithm based on dynamic programming that can efficiently update labels and

hierarchies of scene graphs based on our probabilistic grammar. Experimental results

show that: i) the hierarchy encoded in the grammar is useful for parsing scenes rep-

resenting rooms of a house; ii) our algorithms can be used to simultaneously segment

and label over-segmented scenes; and iii) the grammar learned from one data set can

be used to parse scene graphs from a different data set (e.g., Sketch2Scene). To the

best of our knowledge, this is the first time that a hierarchical grammar has been

used to parse scene graphs containing 3D polygonal models of interior scenes. So,
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the highest-level contribution of this chapter is demonstrating that this approach is

feasible.

Our method is an early investigation and thus has several limitations that suggest

topics for future work. First, our current grammar does not capture the correlations

between co-occurrences of sibling labels. For instance, couch and chair are inter-

changeable in a rest area, so the occurrences of them are highly related. It would be

interesting to augment the grammar with higher-order relationships, which might be

leveraged to improve prediction accuracy. Second, our algorithm learns the proba-

bilistic grammar from labeled examples, which may not always be available. It would

be nice to develop methods to detect repeated shapes and patterns in scenes and

use them to derive grammars automatically, although it would be hard to guarantee

the semantic relevance of such grammars. Finally, we focus mainly on methods for

representing and parsing scenes with a grammar. Although there are several obvious

applications for these methods in computer graphics, including scene database explo-

ration, scene synthesis, semantic labeling of virtual worlds, etc., it would be nice to

explore applications in computer vision, robotics, and other fields.
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Chapter 4

Composition-Aware Scene

Optimization for Product Images

4.1 Introduction

Many applications of 3D scene modeling have emerged in the last decade. One major

category of the applications is to provide users with an immersive experience in the

synthesized 3D scenes, for example, modeling 3D virtual scenes for building virtual

social worlds and massively multiplayer online games [8]. Rather than taking the

synthesized 3D scenes as the output of the scene modeling process, another growth

application of scene modeling is creation of images for product advertisements and

catalogs [27, 85, 87]. As photorealistic rendering algorithms have improved, it has

become practical to synthesize images that are indistinguishable from photographs

for many types of scenes commonly found in product advertisements (e.g., kitchens,

bathrooms, living rooms, etc.). As a result, several furniture and home goods com-

panies are beginning to create product images for their catalogs by synthesizing and

rendering 3D models rather than photographing physical objects [85]. For example,
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IKEA has reported that 75% of scenes shown in its most recent catalog were rendered

from 3D models [87].

There are many advantages to creating catalog images from 3D models [27]. Ren-

dering virtual scenes is much less expensive than photographing real scenes because it

does not require building physical sets in large photo studios, storing physical objects

in large warehouses, and scheduling actors, stylists, and photographers to meet for

photo shoots. Moreover, digital assets make it easier to customize images in a variety

of ways, such as producing multiple images of the same scene with different objects of

interest, adapting scene composition to the resolution and aspect ratio of the display

device, adapting the size and placement of text labels for different languages.

Despite these advantages, producing good product images from 3D models is still

difficult. Based on interviews with professionals who work on product catalogs, we

learned that the typical workflow for a stylist (person who designs scenes for product

images) is to first create an approximate scene layout with the appropriate objects

(furniture, accessories, etc.) in roughly the desired configuration (e.g., a sofa with

an end table on the left, a lounge chair on the right, and a coffee table with some

plants and coasters sitting on top). Based on this rough layout, the stylist will then

carefully refine the positions, orientations and materials of objects as well as the

camera viewpoint to compose several different images of the scene that highlight

different objects of interest, fit different display devices (e.g., iPhone, desktop, print,

etc.), and in some cases, target different cultures (e.g., IKEA makes 62 variants of

its catalog for 43 countries). This refinement step is challenging because it requires

taking into account the image-space position, size, visibility, and color contrast of

objects of interest, as well as the overall composition of each image. As a result,

stylists often spend multiple days refining the initial rough scene layouts to produce

all the necessary product images.
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In this chapter, we focus on the problem of scene modeling for creation of product

images. We present a tool that facilitates the creation of product images by auto-

matically refining rough scene layouts to produce good compositions. Our tool starts

with an approximate scene description provided by a stylist that includes which ob-

jects should appear in the scene, which objects rest upon which other objects, and

which materials can be used for which objects, plus an initial configuration for ob-

ject positions/orientations, surface materials, lighting parameters, and (optionally)

camera views. Our tool then optimizes the camera view, object transformations and

surface materials to meet user-specified design goals (e.g., highlight these objects of

interest, fit the image within a specific form factor, leave space for a text box) while

maintaining the compositional quality of the image.

The main contribution of our work is an optimization approach that takes into

account a large variety of design constraints and image composition rules that are im-

portant for producing effective product images. Since the plausibility and the quality

of image compositions is determined by scene layouts in both the 2D image space and

the 3D scene space, we define a (highly non-convex) energy function that takes into

account object positions and relationships between objects in both spaces. We then

introduce an iterative optimization procedure that minimizes the energy. One key

feature of our method is that we simultaneously manipulate object transformations,

surface materials, and the camera view, all of which have a significant impact on the

quality of the resulting image. We show that our approach produces better results

than a more traditional camera-only optimization, and we also demonstrate how our

tool can help create product images for a variety of practical applications.
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4.2 Related Work

Our work draws upon previous work in image composition and aesthetics, image

analysis and optimization, virtual camera control, and automatic scene synthesis.

4.2.1 Image composition and aesthetics

Our work is inspired by composition “rules” that have been established to guide pho-

tographers and graphics designers towards better scene compositions and aesthetics

[2, 10, 23, 38, 55, 68, 90]. Well-known examples include the “rule of thirds,” visual bal-

ance, diagonal dominance, and color contrast. Although previous work has considered

subsets of these rules for automatic image composition, one of our key contributions

is in determining a set of rules suitable for product images and applying these rules

to a challenging 3D scene optimization problem. Compared to existing methods, our

approach considers a larger set of 3D scene parameters — object transformations,

surface materials, and the camera view — that are important for generating effective

product images.

4.2.2 Image analysis and optimization

Several papers have used these rules to quantify [24, 25] and enhance the composi-

tional and aesthetic quality of images. However, all previous methods operate only

on edits to 2D images: for example, rotating and cropping images [50, 60, 47], or

adjusting locations of foreground regions [11, 64] – they do not optimize 3D scene

parameters, such as cameras, materials, and/or object transformations, as our sys-

tem does. Our work is also related to the technique that allows the user to alter the

composition after 3D rendering [39], but our system is able to automatically optimize

the composition by refining 3D scene layouts and materials.
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4.2.3 Camera optimization

Several methods have incorporated principles of image aesthetics and composition in

optimization algorithms for camera control in 3D rendering systems [76, 36, 22, 6,

5]. While these papers provide motivation for our work, they consider only camera

control – we additionally optimize object transformations and surface materials, which

can significantly improve image compositions, but require solving a more difficult

optimization problem.

4.2.4 Scene optimization

Several recent papers have proposed methods for automatically placing objects in

scenes to produce plausible furniture layouts based on examples and design guidelines

[104, 29, 71]. These methods focus on scene plausibility without concern for any

particular camera viewpoint and/or image composition principles. As a result, they

produce scenes that may not support generation of aesthetic images from any camera

viewpoint. Our work is also related to arrangement synthesis based on aesthetic

relations [67]. Instead of optimizing relations among objects, our goal is to optimize

the 2D composition produced by a 3D scene layout.

We believe that ours is the first system to optimize aesthetics and composition

of rendered images with simultaneous control over camera parameters, object trans-

formations, and surface materials. We investigate this optimization problem for the

novel application of image synthesis for product catalogs.

4.3 Overview

The core of our work is a method for optimizing 2D compositions of rendered 3D

scenes by adjusting camera parameters, object transformations, and surface materials.
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Our system works with a database of 3D object models, where each model is an-

notated with an object class (e.g. chair, table) and a list of possible materials. Each

object class is associated with a set of 1-4 canonical views, which can be manually

specified or predicted automatically [13, 36, 81]. Some object classes are also associ-

ated with a set of semantic spatial constraints. For examples, picture frames on walls

should not be rotated, and the distance between a dining chair and a dining table

should be maintained.

Given the model database, a stylist begins the process of creating a set of product

images by specifying a scene configuration, which consists of a set of object models,

light sources, and a rough location/orientation for every object. With the rough scene

in place, the stylist can instruct our system to create a specific image by specifying

an image configuration, which consists of desired aspect ratio and focus objects OF

to highlight. The stylist may optionlly specify initial camera parameters and context

objects OC that should remain visible for context.

From this input, our system optimizes the scene description to generate a set of

rendered images. In particular, our method optimizes the following scene parameters

(plus other application-specific variables described in Section 4.6), with the degrees

of freedom listed in parentheses:

• Camera (6): position (3), direction (2), and field of view (1) (camera roll is

constrained to be zero).

• Object transformations (3 per object): position of the object centroid

on its support surface (2) and rotation of the object around the normal of its

support surface (1).

• Materials (1 per object): choice of a material/texture definition amongst a

list of possible candidates.
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Our system optimizes these parameters according to an energy function that ac-

counts for image composition, aesthetic principles, and object focus, while maintain-

ing 3D spatial constraints and 2D image space layout constraints.

The following sections describe our energy function and optimization procedure

in detail.

4.4 Energy Function

Figure 4.1: Effects of disabling energy function terms. For each energy term, we
compare the result with the term disabled (left) to our result (right). The focus
object(s) is specified in the parentheses.

Our energy function estimates how effectively an image advertises the product(s)

it depicts.
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F The 2D image frame (viewport)
O The set of all objects
OF/OC Focus/context objects
Oi An object in set O
Pi Oi’s projection into image space
Vi the part of Pi visible to the camera
V(·) Volume in scene space
A(·) Area in image space
B(·) Boundary contour in image space
F(·) Projection onto XY plane in scene space
R(·) Diagonal radius
C2(·)/C3(·) Centroid in screen/scene space
d2(·, ·)/d3(·, ·) Euclidean distance in screen/scene space
c(·, ·) Color difference in L*ab space

Table 4.1: Symbols used in the energy function definition.

To design the energy function, we interviewed professionals responsible for creating

scenes for popular product catalogs, worked with them to identify a set of principles

important for product image composition, and encoded how well those principles are

satisfied into a mathematical error function. We interviewed two professionals: 1) a

professional stylist who lays out scenes for Pottery Barn catalogs, and 2) the lead of

image synthesis for IKEA catalogs. They identified twelve different factors as critical

for composition of product images. The following lists these factors, grouped roughly

into six categories, along with an explanation of why each is important (Figure 4.1).

Our energy function is the summation of the value of each energy term.

E = Ert + Ece + Ecl + Esa+

Esr + Eco + Esu + Ecv+

Etv + Evb + Ecc + Eir

(4.1)

Next, we will provide the definition of each energy term. Symbols used in the

definition can be found in Table 4.1. In the rest of this section, we use w to represent

the weight of the term with the same subscripts.
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• Object placement within the 2D frame. For product advertisements, some

of the most significant factors affecting image quality are the positions of focus

objects, which we encode with the following terms.

– Rule of thirds. In general, focus objects should align with vertical or

horizontal lines that divide the viewport into thirds and/or be centered at

the intersections formed by them [4, 5, 17, 24, 36, 60, 96].

Ert =
wrt
R(F )2

∑
Oi∈OF

(
w2

h2
dh(C2(Pi))2 +

h2

w2
dv(C2(Pi))

)2

where w and h are the width and height of the bounding box of Pi, respec-

tively, and dh and dv stand for minimum distance to the closest horizontal

and vertical third lines respectively.

– Centeredness. For some product images (e.g., zoomed views of single

objects), focus objects should appear in the center of the image [2].

Ece =
wce
R(F )2

∑
Oi∈OF

d2 (C2(F ), C2(Pi))2

– Clearance. Since other objects should not compete with the focus objects

in the composition, we introduce a term to penalize objects that are close

to focus objects.

For an object Oi, we consider its signed distance to the bounding circle of

a focus object in image space (a negative distance means Oi is inside the

bounding circle), and normalize the distance by the radius of the bounding

circle in order to avoid favoring small objects. We use r(Oi) to denote the

minimum of all the distances,

r(Oi) = min
Oj∈OF

d2(C2(Pi), C2(Pj))−R(Pj)

R(Pj)
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The clearance term is then defined as,

Ecl =
wcl
N

∑
Oi∈OF

(
e−max{0,r(Oi)}2 + max {0,−r(Oi)}2

)

where N = |O \OF|. The max {0,−r(Oi)}2 term handles the case where

Oi is inside a focus object’s bounding circle.

• Object saliency within the 2D frame. The visibility and image-space size

of objects contribute to their perceived importance [6, 5, 7, 76].

– Visibility. An object is perceived as less important if it is partially oc-

cluded by another object or partially clipped by the frame. Thus, focus

objects should be more visible than context objects. To quantify the effect

of visibility on saliency, we use the following term:

Vr(Oi) = max

{
0, r − A(Vi)

A(Pi)

}2

+ D(Oi)

where A(Pi) is the total area of the object projection Pi assuming no

occlusions by other objects or clipping by the image frame. A(Vi) and

A(Pi) can be computed efficiently using hardware occlusion queries [37].

We introduce the term D(Oi) to encourage objects outside the frame to

move towards the center of the frame:

D(Oi) =

 d2(C2(F ), C2(Pi))2, if A(Vi) = 0

0, else

– Object size. Similarly, focus objects should take up more image space

than context objects, since larger objects are perceived as more important.

To quantify the effect of object size on saliency, we introduce the following
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term:

Sr(Oi) = max

{
0, r − A(Vi)

A(F )

}2

where A(Vi) is the area of the visible part Vi of Oi, r is the minimum

required size of Oi. We describe how we choose r later.

Visibility and object size are both essential for focus objects. However, for

context objects, we observe that there are two scenarios. If the context object

is small compared to the focus object, visibility is important while its absolute

size in the viewport is not (e.g. items on the dining table in Figure 4.3 left). On

the other hand, if the context object is largely occluded, it must maintain some

minimum size in the composition. To handle these cases, we compute both

energies Vr and Sr for each context object and select the minimum. Thus, the

complete form of our object saliency energy term is

Esa = wsf
∑
Oi∈OF

(
Vvf (Oi) + Ssf (Oi)

)
+

wsc
∑

Oi∈OC

min {Vvc(Oi),Ssc(Oi)}

There are four parameters that reflect parameter r in the visibility term Vr. In

all experiments, we set vf = 100%, sf = 10%, vc = 80%, sc = 5%. which means

a focus object is required to be fully visible and cover 10% of the viewport; a

context object is required to be at least 80% visible or cover at least 5% of the

viewport.

• Object constraints within the 3D scene. Scene plausibility and physical

laws both impose constraints on object positions. We therefore introduce several

terms to enforce these constraints.
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– Semantic constraints. Semantic spatial constraints that are specified in

the model database should be satisified during the optimization.

We consider two types of constraints. The first type is defined for a single

object class, which constrains the object to only transform in a subspace

in 3D, e.g. a picture frame cannot rotate. We implemented it as hard

constraints – i.e. the degrees of freedom are reduced in the optimization.

The second type is defined for a pair of object classes, which constrains

the change of the pairwise distance between two objects, e.g. the distance

between a dining table and a dining chair cannot change drastically in

the optimization. We implemented it as soft constraints using the method

similar to [16, 71]:

Esr = wsr
∑

{Oi,Oj}∈C

σi,jd3(C3(Oi), T
−1
i (C3(Oj)))

2

where C is a set of constrained object pairs, and T−1i is the initial transfor-

mation from the scene space into the local coordinate frame of object Oi,

and σi,j controls how much the spatial relationship can change. σi,j can be

set by the stylist empirically in practice, and we set σi,j = 1 by default in

all of the results shown in our work.

– Collision relationships. Object inter-penetrations should be avoided to

improve the physical plausibility of the scene.

Eco = wco
∑

Oi∈O
A(Vi)>0

∑
Oj∈O
A(Vj)>0

V(Oi ∩Oj)

V(Oi)

– Support relationships. The support relationships that exist in the input

scene layout must be maintained during the optimization. We infer the

support relationships in the input scene layout by using the method similar
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to [28]. Then we penalize placement of an object off its support object by

measuring the fraction of its projected area outside its support surface [29]:

Esu = wsu
∑
Oi∈O

(
1− A(F(Oi) ∩ F(Si))

A(F(Oi))

)2

where Si is the object supporting object Oi.

• Camera placement. Product images generally depict scenes from viewpoints

that are “natural” for people. We introduce two terms that capture the notion

of natural viewpoints.

– Canonical views. In most product images with one focus object, stylists

favor canonical views of the object class [13, 36, 81]. We manually defined

a set of 1-4 canonical view directions for each object class [13, 36], and

then deviations from them are measured as:

Ecv = wcv min
i
||(θ, φ)− (θ̂i, φ̂i)||

where (θ, φ) is the view direction of the camera, and {(θ̂i, φ̂i)} are canonical

view directions for the object class.

– Typical views. Product images that depict large scenes with multiple

focus objects often use camera viewpoints that match how a human would

typically see the scene.

Etv = wch(h− h0)2 + wcaφ
2

where h is the height of camera off the floor, h0 = 5ft is the typical height

of a human eye, and φ is the pitch of the camera (where 0 is horizontal).

This term penalizes viewpoints that deviate from a typical human eye

height and tilt the camera upwards/downwards.
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• Image composition. Several well-established composition guidelines are used

by stylists to create aesthetically pleasing images. We have included several in

our system.

– Visual balance. Images whose “center of mass” is close to the center of

the image frame generally have better aesthetics [2, 60, 64].

Evb =
wvb
R(F )2

d2

(
C2(F ),

∑
C2(Pi)A(Pi)∑
A(Pi)

)2

We penalize by the distance between the frame centroid and the center of

mass of all objects in the frame.

– Color contrast. Greater color contrast at object contours can help a

viewer understand boundaries between shapes in a scene [54, 98].

Ecc =
wcc
R(F )2

∑
Oi∈OF

∑
p∈B(Vi)

1(
avgq∈N(p)\Vic(p, q)

)2
+ ε

where N(p)\Vi denotes the neighborhood of pixel p, excluding the visible pixels

in Vi.

• Regularization. Finally, we add a regularization term that encourages small

changes to the scene with respect to the initial configuration provided by the

stylist.

Eir = wir
∑
Oi∈O

(
x2i
σ2
t

+
y2i
σ2
t

+
θ2i
σ2
r

)
+

5∑
i=0

c2i
σc[i]2

where (xi, yi, θi) describe the translation and rotation of object Oi, respectively,

and ci describe the change to camera parameters, with σt = 0.5, σr = 0.5, σc =

[0.17, 0.17, 20, 20, 20, 0.17] controlling the flexibility of object movement and

camera manipulation.

56



These energy terms are weighted by coefficients that adjust for scale differences

and control their effects on the final results. By default, the weights are set to wrt

= 10000, wce = 10000, wcl = 500, wsf = 10000, wsc = 500, wsr = 100, wco = 10000,

wsu = 10000, wcv = 10000, wch = 10000, wca = 10000, wvb = 20000, wcc = 1.0, and

wir = 1.0. These weightings were determined empirically and are kept the same for

all examples in our work, except that wce = wcv = 0 for overview images of scenes

(e.g., session A in Figure 4.2, Figure 4.5, 4.7 and 4.8), and wrt = wch = wca = 0

for zoomed-in images of specific objects (e.g., session B in Figure 4.2, Figure 4.4 and

4.6). It is not expected that a user has to tweak these weights to get good results for

specific scenes.

The large number of terms in this energy function reflects the inherent complexity

of composing a good product image. The necessity of each and every term has been

confirmed by our experts and validated experimentally. As an example, Figure 4.1

shows the effects of removing some of the energy terms: each omission yields a product

image of inferior quality. Overall, our conclusion is that composition of product

images is very difficult as many competing considerations must be balanced.

4.5 Optimization

Our optimization procedure searches for camera parameters, object placements, and

surface materials that minimize the energy function.

This is a difficult optimization problem for several reasons: 1) there are many

free variables (six for the camera, three for each object transformation, one for each

surface with multiple candidate materials); 2) some of the variables are continuous

(camera and object transformations) while others are discrete (surface materials);

and 3) the energy function is highly non-convex, with strong dependencies between
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multiple variables (e.g., camera and object movements). As a result, we can only

hope to find a good local minimum.

Our approach is to decompose the problem into two simpler, more tractable op-

timizations that we interleave in an iterative algorithm. Within each iteration, the

first step is to optimize the discrete choices of materials with camera parameters and

object transformations fixed. Then, we optimize the continuous camera parameters

and object transformations with the materials fixed. The iterations terminate when

neither step changes the scene significantly in the same iteration.

4.5.1 Discrete optimization

We use a discrete steepest-descent algorithm to optimize materials. The input to the

algorithm is a scene and a list of candidate definitions for each surface material, and

the output is a selection of one candidate definition for each material that minimizes

the energy function. Note that the color contrast term Ecc is the only one affected

by material switches. Higher color contrast for focus objects corresponds to a lower

overall energy.

The algorithm first builds a list of visible objects with multiple candidate mate-

rials. Then, it iteratively optimizes the materials for each such object in order from

the one with the lowest to the highest color contrast. For each object, the algorithm

selects the material switch that produces the highest color constrast. The algorithm

stops iterating over the objects when no material switches are possible to improve the

color contrast further, which usually occurs within 2-3 iterations through all objects.

4.5.2 Continuous optimization

We use a continuous steepest-descent algorithm to optimize camera parameters and

object transformations. The following paragraph describes how the direction and

magnitude of each step is computed.
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Since the energy function contains terms whose partial derivatives are difficult to

compute analytically (e.g., visibility), we compute the derivative of the energy with

respect to each free variable via finite differences. Of course, a brute force implementa-

tion of centered differences for each variable would be extremely slow: a typical scene

has approximately 150 free variables (3 for each of ∼50 object transformations plus

6 camera parameters), and thus the energy would have to be computed 300 times for

each steepest descent step. Instead, we use a technique similar to stochastic gradient

descent. Specifically, we keep estimates for all partial derivatives and re-estimate only

a subset after most steps. Specifically, every k steps, we estimate partial derivatives

for all variables, except ones for transformations of objects outside the view frustum,

and make a move along the direction of steepest descent determined by all partial

derivatives. We also build a list of objects T that have non-zero partial derivatives.

Then, during the intervening steps, we re-estimate partial derivatives only for the

camera parameters and k randomly selected objects from T and make a steepest

descent move based on these derivatives. We choose k =
√
|T |, which provides a

nice trade-off between efficiency and accuracy, leveraging the fact that fewer objects

have significant effect on the energy as the optimization converges. To compute the

magnitude of each steepest descent step, we conduct a line search along the direction

of the estimated derivative.

4.5.3 Timing

The full optimization procedure takes approximately 20 minutes for the most com-

plex examples in our work. The discrete optimization step is usually very fast (<10

seconds), since there are relatively few (∼10) candidate materials in most scenes.

The continuous optimizations are slower, since there are many possible object trans-

formations in most scenes (∼60 objects per scene in our examples) and computing

partial derivatives for each transformation variable requires rendering the scene mul-
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tiple times. In our experience, computing partial derivatives takes ∼90 seconds for

all variables (every k steps), but only ∼10 seconds for our randomly chosen subsets

(intervening steps), at no observed accuracy difference. All times are reported for a

2660 MHz Intel Core i7 processor with 8 GB of memory.

4.6 Applications

In this section, we describe several applications of our scene optimization framework.

These applications were chosen based on the suggestions of the same two professionals

we interviewed to determine the relevant rules for creating effective product images.

4.6.1 Refining rough compositions

The primary application of our system is to facilitate the refinement stage of digital

catalog image creation. Given a set of focus objects and a rough scene configuration

as initialization, we can apply the optimization procedure described in the previous

section to automatically adjust the camera, object positions, and materials.

To evaluate whether our system can assist this application, we ran an informal

experiment in which we asked a user with formal training in image composition to

go through the full process of creating and refining a scene for a product image using

an interactive modeling tool, and then investigated how our tool could have helped

during the modeling process. We instructed the user to create a 3D scene motivated by

an image highlighting a dining room table and chair in the IKEA catalog (Figure 4.3

left), which she could refer to as she modeled. During the session, she started with

a set of objects, candidate materials, and a random camera viewpoint (Figure 4.2,

A0), and then edited the scene interactively to achieve the final result shown in

Figure 4.3 left. We then asked her to further refine the composition to recreate the

image in Figure 4.3 right, which highlights the three goblets on the dining table. The
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Figure 4.2: Snapshots of an interactive session (top row) and the results of refining
them by our optimization tool (second row). In the first session (left), the user’s goal
is to achieve the composition in Figure 4.3 left, while in the second session (right),
her goal is to achieve Figure 4.3 right. The plots on the bottom show the evaluation
of these scenes using our energy function, with the blue representing the energy of
interactive snapshots and the red points representing our optimized results. Note
that the dotted section of the lefthand blue curve has been compressed to save space.

experiment was performed exactly once with no feedback from the system regarding

composition quality.

During these interactive sessions, we logged a “snapshot” scene file every 10 sec-

onds representing the user’s progress (several examples are shown in the top row of

Figure 4.2). After the session was finished, we used the snapshot scenes to: 1) analyze

whether our energy function explains changes made interactively by the user, and 2)

to study at what point in the modeling process our optimization procedure could

have been used to assist the user by refining the scene automatically.

The blue curve in the plot at the bottom of Figure 4.2 shows the value of our

energy function for each snapshot of the user’s interactive session. Note that for

each session, the curve reveals two phases: a period of “large-scale layout” when the

scene energy goes up and down (A0 → A47 and B0 → B11), followed by a period

of “fine-scale refinements” where the energy decreases almost steadily (A47 → A92
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and B11→ B39). This behavior suggests that the energy function correctly captures

image quality differences of improvements made by the user.

The second row of images in Figure 4.2 shows the results of running our optimiza-

tion procedure on each of the snapshot scenes shown in the top row, and the red dots

in the plot below show the energy function of the optimized results (connected by a

green curve). Note that the optimized results of the snapshots (bottom row) captured

in the latter half of each user session (A47-A92 and B11-B39) are qualitatively simi-

lar to the final scene created by the user (top-right image), and their corresponding

energy function values are comparable, or even less. These results suggest that more

than half of the time the user spent on scene refinement could have been off-loaded

to the computer.

4.6.2 Generating detail images from an overview

In many cases, catalogs provide an overview image that shows how various objects can

fit together in a room, and then one or more detail images that focus on individual

products of interest. Detail images are almost never simply cropped and zoomed-

in versions of the overview image. Stylists typically choose different viewpoints and

move objects slightly in order to highlight the shape and relevant features of the focus

object (e.g. Figure 4.3).

To reduce this effort, stylists can use our system to automatically create detail

images. For each detail object, our optimization framework initializes all object

positions to the arrangement in the overview image and generates a set of candidate

detail images using each canonical view of the detail object as a different starting

point for the camera. By default, we choose the candidate image with the lowest

energy as the result.

As a test of our method, we generated detail images for three scenes: a kitchen,

study, and living room. For each scene, we generated detail images for 20 random
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Figure 4.3: Overview and detail images in IKEA catalog. In addition to the overview
image on the left, IKEA provides a detail image that advertises the glasses on the
table. Note how the viewpoint and object positions are adjusted from the overview
image (reprinted with permission from the 2013 IKEA catalog).

objects. In many cases, our optimization was able to put the camera close to canon-

ical views only by moving objects that would otherwise occlude the detail object.

For example, the gray chair is moved to different positions in Figure 4.4(b) and Fig-

ure 4.4(c) in order to reduce occlusions for different focus objects. Overall, most of

our detail images produce reasonable compositions, and our perceptual study (Sec-

tion 4.7) indicates that our full optimization produces better results than camera-only

optimizations in a large majority of cases.

4.6.3 3D views for room planner

Home furnishing companies have recently started to provide online tools that let users

create arrangements of furniture customized for their own rooms, e.g. IKEA’s Home

Planner. After designing a room in this manner, users often want images of the room

to share with others and to help them evaluate the design. Thus, another application
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(a) Overview (b) Speaker (c) Shelf

Figure 4.4: Detail images generated from overview. From an overview image of a
living room (a), we automatically generate detail images that highlight the speaker
(b) and shelf (c). Notice how the chair moves to the right in (b) and to the left in (c)
to provide an unobstructed view of the focus object (results without moving objects
can be found in Figure 4.9).

of our system is to provide an automated solution for generating well composed images

of user-designed rooms.

After generating the 3D arrangement of objects, the user selects a set of focus

objects (likely the objects he is considering for purchase) and then asks our system

to generate a composition. Unlike the previous two applications, we do not expect

the user to provide an initial viewpoint for the scene. As a result, we modify our

optimization to first search globally for the best camera parameters, which we then

use as an initialization to our full optimization.

For our global camera search, we first generate a set of “plausible” initial camera

parameters. We sample camera positions within the walls of the room at roughly 2 ft

intervals and restrict the height to be at human eye level; we take 100 samples for the

camera direction with a polar angle between π/2 (looking horizontally) and π/2+0.28

(looking slightly down); and we consider 4 uniformly spaced field-of-view values from

0.3 to 0.6. We then prune very poor samples based on the fractional image-space

area of every focus object bounding box within the viewport (threshold = 50%).

Next, we do k-means clustering (with k = 4) of the camera parameters. Within each

cluster, we pick the camera with the lowest energy as the initial viewpoint and run
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(a) Initializations (b) Our method (c) Camera-only (opti-
mal)

(d) Camera-only (initial
as (b))

Figure 4.5: Optimizing without a starting camera for a room planner application.
Our system starts by sampling plausible cameras to generate a set of initial views
(a), which are then optimized (b). Running camera-only optimization over all initial
views yields (c), while starting from the same initialization as (b) yields (d).

our optimization. Finally, we pick the optimized composition with the lowest energy

as our result. Without parallelizing the optimization for different initial viewpoints,

the entire process took 40 to 60 minutes in our experiments.

We used this optimization procedure to generate the results in Figure 4.5. Here,

we chose the couch, coffee table and ottoman as the focus objects. In the final

composition (Figure 4.5(b)), all of the focus objects are visible and the image provides

a good overview of the scene from a plausible camera angle. For comparison, we

show the result of a camera-only optimization in Figure 4.5(c), which uses a different

initial viewpoint than Figure 4.5(b). In Figure 4.5(d), we show the camera-only

result generated from the same initial viewpoint as image (b). With the capability

of moving objects, our full optimization is able to achieve a better balance between

multiple factors, and achieve a better overall composition.

4.6.4 Object replacement

Multinational furniture companies like IKEA usually customize their catalog images

for different countries to match cultural preferences. This customization often involves

choosing different materials or replacing objects within a scene. In many cases, the

size and shape of new objects can be significantly different from the original, which
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(a) Original (b) Objects replaced (c) Optimized

Figure 4.6: Object replacement. From the original composition (a) the chair, side
table and coffee table are replaced (b). Our optimization eliminates collisions and
produces a better composition for these objects (c).

means that a stylist will have to spend a significant amount of additional effort ad-

justing the camera parameters and object positions to achieve a good composition for

each customization. As with the previous applications, our optimization framework

can automatically make these adjustments to reduce the amount of human effort

required to perform these cultural customizations.

Figure 4.6 shows an example where we replace the grey seat, side table and coffee

table. When we swap in the new objects, there is a collision between the chair

and plant, and in general, the composition feels cramped. When we optimize the

composition, the collision is resolved and the camera pulls back to keep all the relevant

objects in the frame.

4.6.5 Text-incorporated composition

Most catalog images have text overlays that describe the depicted scene. Such text

is typically positioned over regions with nearly constant color so that it is easy to

read and often appears in roughly the same location on every page (e.g., corners) so

that the viewer knows where to look to find textual information. Our optimization

framework can automatically position text based on all of these criteria.
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In addition to a set of focus objects and an initial composition, the stylist also

specifies a set of rectangles R where she would like overlay text to appear in the

frame. Our system treats each rectangle as just another object in the scene, but one

that only has a 2D position and can only move within the viewport.

We apply the visibility and inertia terms to text rectangles as well. Specifically,

the overlapping region of a focus object or a context object with a text rectangle is

treated as occlusion.

We introduce two extra terms to make the text with constant color stand out.

First, we use a contrast term Etc to keep the background light or dark, so the text

can be made a contrasting color.

Etc = wtv
∑
Ri∈R

min
wb=w,b

1

A(Ri)

∑
p∈R

1

dl(p, wb)2 + ε

where p is a pixel in the rectangle Ri, dl(·, ·) is the difference between the luminance

of two pixels, w is white and b is black, wtc = 2.0.

Second, we use a variance term Etv to keep a low variance in luminance within

each rectangle to reduce clutter behind overlaid text.

L̄Ri
=

1

A(Ri)

∑
p∈Ri

L(p)

Etv = wtv
∑
Ri∈R

1

A(Ri)

∑
p∈Ri

(
L(p)− L̄Ri

)2
where wtv = 10000.

Figure 4.7 presents a composition optimized with two different initial positions

for the text. Notice how the objects in the scene are moved to create low contrast,

low variance regions of the image where the text can be overlaid.
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(a) Input (b) Ours (c) Camera-only

Figure 4.7: Retargeting for different text layouts. The artist provides a rough position
for the text box and specifies the champaign bottle and the goblet as focus objects.
Our optimization adjusts object positions, viewpoint and text positions to increase
contrast, reduce clutter and remove occlusion of the focus objects. By contrast, only
optimizing the camera produces an inferior result. Note how the readability of the
text is reduced due to the fruit bowl.

(a) Input (b) Ours (c) Camera-only

Figure 4.8: Retargeting for different aspect ratios (focus objects: champagne bottle
and goblet). We start with the initial aspect ratio 1:2 (left), and retarget it to a
different aspect ratio 4:3 (middle). We compare our result to the one where only the
camera is optimized (right).

4.6.6 Retargeting for different aspect ratios

Our system can also automatically retarget catalog images to aspect ratios that are

appropriate for different display formats. Simple cropping is usually not sufficient to

create a good retargeted composition because the relative arrangement of objects in

image space remains fixed. In contrast, our optimization framework has the ability
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to adjust camera parameters and object positions to produce good compositions for

different aspect ratios. For this application, we use the viewpoint and object positions

from the input composition as initialization and solve for a new image with the

specified dimensions.

In Figure 4.8, we start with the optimal composition in one aspect ratio and then

retarget it to another. For comparison, we generate images using our optimization

method but without adjusting object positions. Notably, the greater flexibility creates

better retargeted images.

4.7 Perceptual Study

A natural question to ask when considering our system is whether the additional

freedom afforded by moving objects makes a positive impact on the results, or if – to

the contrary – similarly good results could be obtained by performing a camera-only

optimization. We investigated this question by asking people to compare 36 pairs of

compositions created using our optimization procedure with object movement enabled

(our method) and disabled (camera-only).

Study design: Our selection of scene compositions to compare includes all the

examples shown in Section 4.6, plus thirty detail images generated for different objects

in three scenes: living room, study, and kitchen (Figure 4.9). For each of the three

scenes, we selected – from among all the large furniture and a random subset of the

smaller objects – the ten objects where the detail image generated with camera-only

optimization differed most from the full optimization.

We showed these pairs of scene compositions to study participants in randomized

order, with images in each pair flipped left-right randomly. For each pair, the user

selected a radio button to indicate that one composition was better at showcasing the
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Our method

Camera only

Figure 4.9: A subset of the image pairs compared in our perceptual study. Our system
is able to satisfy multiple composition constraints simultanuously, which cannot be
achieved by changing viewpoint only.

specified focus objects (listed in the title), or that the two compositions are of the

same quality.

We administered the study to two groups: experts who work professionally on

scene layout for catalog images, and non-experts.

The first group was recruited through personal contacts and completed a single-

page web-based survey without compensation. Given the small number of experts in

this field, we were only able to administer the survey to four participants.

The second group was recruited through Amazon Mechanical Turk, and each

participant was compensated 10 cents. To exclude “lazy” participants from our re-

sults, we tested the consistency of each participant’s responses. Specifically, each

participant completed a multiple-page (one comparison per page) survey, where each

comparsion was asked twice, with compositions swapped left-right. We excluded any

input from participants for each question where their two answers for the same pair

were inconsistent, and we excluded all input from any participant whose answers

were inconsistent for more than 25% of the questions. After running the study for

200 participants, these consistency checks yielded 49 to 75 answers per comparison.
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ID Ours Camera only No preference
Expert 1 22 12 2
Expert 2 17 14 3
Expert 3 22 11 3
Expert 4 21 12 3

Table 4.2: Expert study. Our method is preferred in general.

Figure 4.10: Amazon Mechanical Turk Study results. We asked participants to
compare 36 pair of images generated with full optimization (top) and camera-only
optimization (bottom). Bars represent the proportion of participants who favored
each image (dark blue: full, red: camera-only, light grey: no preference).

Study results: Results of the expert study and the Amazon Mechanical Turk

study are summarized in Table 4.2 and Figure 4.10 respectively. Generally, we find

that full scene optimization is preferred to camera-only optimization. If the “no

preference” answer is treated as half a vote for our optimization result and half a

vote for camera-only, our optimization results received ≥ 75% of the votes in 20

cases, 50%-75% of the votes in 13 cases, and < 50% of the votes in 3 cases in the

Mechanical Turk study. With a significance level of 0.05, our method is significantly

preferred in 26 cases, while the camera-only optimization is significantly preferred in

2 cases. In the remaining 8 cases, the null hypothesis (i.e. no preference) cannot be

rejected. Note that the Holm-Bonferroni method was used in the analysis to control

the familywise error rate in our experiments. According to comments provided by

participants, the main benefits of our full optimization are that it moves objects to

avoid unwanted occlusions, generates better contrast, and avoids awkward camera

views in the final composition.
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4.8 Discussion

In this chapter, we have introduced a technique for optimizing 2D compositions of 3D

scenes. Our key contribution is an optimization approach that simultaneously adjusts

camera parameters, object transformations, and surface materials. Our results and

user evaluation show the benefits of optimizing over all of these scene parameters

simultaneously. In particular, the comparisons between images generated by only ad-

justing the camera and those generated by our full optimization clearly indicate that

moving objects and altering materials significantly improves the quality of composi-

tions in many cases. We have demonstrated how our optimization framework benefits

a variety of applications related to the creation of digital catalog images.

Our system has several limitations. First, the current implementation of our op-

timization procedure does not run at interactive rates. This is largely because speed

has been sacrificed for flexibility in our prototype; we believe a production-oriented

implementation could likely run orders of magnitude faster. In particular, the compu-

tation of partial derivatives, which is the bottleneck of the speed of our optimization,

is highly parallelizable, because partial derivatives with respect to different free vari-

ables could be computed independently. Second, we use OpenGL rendering during

our optimization, which does not account for global illumination effects that can im-

pact the composition of the final image. Third, there may be additional composition

rules that could improve the quality of the results. Early on in the project, we imple-

mented energy terms for diagonal dominance, symmetry, and focusing with vanishing

points, but found them less useful in our target applications. Using our system to sys-

tematically investigate which energy terms are most effective for which applications

would be an interesting topic of further study.

Given that companies are increasingly relying on computer-generated imagery for

catalogs and other product advertisements, there are many opportunities for future

work related to the automated generation of such images. For example, we imagine
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new advertising applications that choose furniture arrangements based on how a room

will look from key viewpoints (e.g., the front door). Film, game, and real-estate

companies could automatically optimize scenes for sequences of camera viewpoints

(e.g., for movie shots or virtual tours). On-line advertisers could adapt product

images to wide varieties (millions) of user preferences with automatically optimized

aesthetics. We believe composition-aware scene modeling is a useful approach for all

of these applications and as such represents a promising research direction for the

computer graphics community.
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Chapter 5

Style Compatibility for 3D

Furniture Models

5.1 Introduction

In scene modeling, ensuring the plausibility and realism of synthesized 3D scenes is

one of the biggest challenges because scene plausibility and realism are determined by

many factors. For example, since a scene usually has well-defined functionalities (e.g.

a living room should provide seats and make it easy for people to have a conversation),

objects need to be selected and arranged so that (virtual) humans are able to interact

with the scene in a reasonable way. While many existing tools help users select the

appropriate categories and placements of objects when modeling a 3D scene [71, 104],

they generally ignore style compatibility — the degree to which objects “exist together

in harmony” [72]. For example, while the scene shown in Figure 5.1(a) has a plausible

spatial arrangement of objects appropriate for a living room, it contains a mish-mash

of different styles — e.g., a casual contemporary coffee table appears in front of a

formal antique sofa. The jarring juxtaposition of incompatible styles diminishes the

plausibility of this scene.
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(a) Ignoring style compatibility (b) Optimizing style compatibility

Figure 5.1: This chapter proposes a method to learn a metric for stylistic compatibility
between furniture in a scene. (a) The image on the left shows a plausible furniture
arrangement, but with a randomly chosen mix of clashing furniture styles. The scene
on the right has the same arrangment but with furniture pieces chosen to optimize
stylistic compatibility according to our metric.

In this chapter, we develop a mathematical representation of style compatibility

between objects that can be used to guide 3D scene modeling tools. More specifically,

we consider the compatibility of furniture in indoor scenes, because furniture exhibits

a diverse range of distinct styles, some of which are more compatible than others, and

because indoor scenes account for a large fraction of scene modeling tasks. Our work

focuses on understanding how the geometry of 3D models influences their stylistic

compatibility. We leave the study of compatibility for other properties (materials,

colors, etc.) for future work.

There are three main challenges in developing a style compatibility metric for

furniture shapes. First, a person’s notion of furniture style usually combines many

subtle factors [73] that would be hard to encode in a hand-tuned mathematical

function. Instead, we learn a metric from examples. Second, furniture shapes are

influenced by both function and style, with functional requirements reflected largely

in the gross shapes and arrangements of parts, and styles reflected largely in the

geometric details of parts (e.g., fluted legs, wing-tipped backs, etc.). Accordingly, we

introduce part-aware shape features aimed at capturing the geometric details related

to style. Third, style compatibility requires comparisons of models from different

object classes, which may have different dimensionalities and distributions of features.
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We introduce a compatibility metric based on class-specific mappings that transform

geometric features to a class-independent feature space.

In our approach, we first collect crowdsourced preference data about which fur-

niture models people consider to be compatible (Section 5.3). Our system performs

a consistent segmentation of models within the same object class and computes a

part-aware geometric feature vector for each model (Section 5.4). We then learn a

compatibility metric using the part-aware geometric features and crowdsourced pref-

erences (Section 5.5); quantitative evaluation shows that this method gives more

accurate predictions than existing methods (Section 5.6). The learned metric can

then be used to reason about style compatibility in retrieval and interactive modeling

applications (Section 5.7).

The main contribution of our work is in proposing the first method for learn-

ing style compatibility between 3D models from different object classes. In particu-

lar, our method introduces a part-aware geometric feature vector that encodes style-

dependent information, and presents a new asymmetric embedding distance that is

appropriate for estimating compatibility between objects of different classes. Fur-

thermore, we demonstrate the utility of our learned metric in three novel style-aware

scene modeling applications: retrieving furniture that is stylistically compatible with

a query; suggesting a piece of furniture to include in an existing room; and helping

people interactively build scenes with compatible furniture.

5.2 Related Work

5.2.1 Shape styles

Researchers have developed methods to model styles of 2D and 3D shapes [100, 57, 66].

For example, Xu et al. [100] investigate style variations that are caused by anisotropic

part scaling. Li et al. [57] propose a method to classify and synthesize 2D shapes styles
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according to curvature features. Rather than focusing on a specific source of shape

style variation, our work develops a method to quantify style compatibility, which is

usually determined by multiple aspects of shape styles.

Huang et al. [44] propose a fine-grained classification approach by learning a dis-

tance metric from a 3D model collection with partial and noisy labels. Kalogerakis et

al. [48] develop a probabilistic model based on shape similarity and learned probability

distributions for co-occurrences of discrete clusters of parts. Both of these approaches

aim to capture style variations within a 3D model collection of a single object class

and are not directly applicable to predicting style compatibility for different object

classes within a scene.

5.2.2 Similarity metric learning

Our work is related to similarity metric learning in other domains. Researchers have

used crowdsourced data to learn similarity metric for fonts [75] and illustration styles

[32]. Relative attributes have been learned from visual features for image analysis

[77] and from shapes for 3D model creation [18]. We build on this work, but focus

on learning compatibility rather than similarity, which entails a different crowd study

design, as well as a new distance function for heterogeneous data (e.g., comparing

tables to chairs).

In concurrent work, Lun et al. [65] measure 3D style similarity based on similar-

ity of object elements. Their method, unlike ours, may generalize to object classes

unseen in the training data. However, theirs may perform poorly for objects without

corresponding elements (e.g., floor lamp and sofa). In contrast, our work aims to

quantify style similarity across classes, and is not dependent on geometric similarity.
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5.2.3 Shape-based retrieval

Our work is informed by prior work on shape-based retrieval of 3D models. Re-

searchers previously have developed search algorithms for 3D models based on simi-

larities in shapes [31], symmetries [51], part structures [82], and other geometric cues

[89]. However, these methods are generally geared toward retrieving similar shapes

from the same object class. No previous system has considered stylistic compatibility

between objects of different classes in a 3D model retrieval system.

5.2.4 Virtual world synthesis

Several systems have been developed to assist people in creating virtual worlds by

combining 3D models from online repositories, including ones that suggest new ob-

jects for a scene based on spatial context [28], probabilistic models [19, 48], physical

simulations [93], and interior design guidelines [71]. Other systems have aimed to

create scenes completely automatically, for example learning object compatibilities

based on substructure symmetries [110], spatial contexts [29, 30], and object contacts

[1]. However, no prior system has explicitly considered stylistic compatibility when

selecting objects to combine in a virtual world.

5.3 Crowdsourcing Compatibility Preferences

The first step in our process is to collect data for object compatibility using crowd-

sourcing. Our study is based on previous methods for crowdsourcing similarity. How-

ever, we focus on style compatibility rather than similarity, and modify the study

questions appropriately. We gather compatibility preferences in the form of triplets

(A,B,C). Each triplet represents a human evaluation whether reference object A is

more compatible with object B or with object C. For example, given a sofa A, a

human rater might be asked to judge whether chair B or chair C is more compatible
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Figure 5.2: Style compatibility study. In each task, we fix one furniture piece (e.g.,
the dining table), and show six different pieces of another object class (e.g., dining
chair) with it. In each pair, the two furniture pieces are shown in the arrangement
of a typical scene (e.g., chair next to table). We ask the rater to select the two
pairs that are stylistically most compatible. In this example, most raters select the
bottom-middle and the bottom-right pairs.

with it. B and C are always from the same object class, and A is always from a

different class.

To gather triplets efficiently, we use the grid technique proposed by Wilber et

al. [97]. Each task evaluates six target objects together with a reference object A.

The worker is shown a grid of six images, each one pairing A together with a different

target object (Figure 5.2). The rater must select the two target objects that are

most compatible with A. Each response is then converted to 8 triplets: each of

which consists of one object that is selected, one object that is not selected, and the

reference object. As demonstrated by Wilber et al. [97], this format is more efficient

than asking the participant to pick the best between two.

In our experiments, we first collected 3D furniture models for two types of scenes,

dining rooms and living rooms, from the Digimation Archive model collection and

Trimble 3D Warehouse. We collected 3 object classes for dining rooms: 50 dining

chairs, 34 dining tables, and 21 ceiling lamps. We collected 7 object classes for living

rooms: 49 coffee tables, 39 sofas, 37 chairs, 36 arm chairs, 42 end tables, 28 table

lamps, and 23 floor lamps.
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Then, we crowdsourced preference data for all pairs of classes linked in Figure

5.3 using Amazon Mechanical Turk. For each pair of object classes, we randomly

generated 50 questions and picked 4 to use as control questions to test participant

consistency; responses to the control questions were not used for learning. We split the

questions into two Human Intelligence Tasks (HITs). Each HIT includes 25 questions

and the 4 control questions, and each control question is asked twice with images

in different orders. Each HIT was done by 50 different participants. To filter out

lazy participants, we excluded a response if the participant (1) spent less than 15

seconds per question on average (filtering 57% of all responses) or (2) had less than

5 selections in common amongst the two sets of control questions (filtering 40% of

the responses that are kept from (1)). This process yielded 20,200 responses (on 2956

unique triplets) for objects found in dining rooms, and 63,800 responses (on 8909

unique triplets) for objects in a living room.

Analyzing this data, we find that raters on Amazon Mechanical Turk strongly

agree on a minority, but significantly-larger-than-random, subset of the triplets.

Among the 1,919 unique living room triplets for which at least 10 valid responses

were collected, the number where 90% of raters agreed is 5 times larger than random

(10% vs. 2%), and it is 7 times larger for the 598 such triplets in dining rooms (14%

vs. 2%). This result is consistent with our subjective impression that each object in

our data set contains just a few others for which it is strongly compatible (e.g., an

IKEA table and an IKEA chair) or incompatible (e.g., an IKEA table with an ornate

antique chair). People detect these important cases consistently, but there are many

cases for which triplet comparisons are not meaningful, e.g., an IKEA table with a

Queen Anne chair versus a Chippendale chair. We leave exploration of this particular

hypothesis for future work.
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(a) Dining room (b) Living room

Figure 5.3: Pairs of object classes for which style compatibility preferences are col-
lected in our study. We chose pairs with close proximity and functional interactions.

5.4 Part-aware Geometric Features

Our next goal is to define a feature vector x of geometric properties indicative of

an object’s style. This problem is challenging because stylistic differences between

objects in the same class are often due to subtle deviations from a common overall

shape. Therefore, often-used shape descriptors geared for object classification, which

aim to capture the overall shape of an object, are not appropriate for our task.

Our key observation is that furniture styles are often strongly connected to char-

acteristic features of individual parts. For example, chairs of Queen Anne style often

have cabriole legs and vase-shaped splats, while chairs of Gustavian style have fluted

legs and oval-shaped backs [73]. As a result, we are motivated to describe objects

with part-aware geometric features.

Our approach is to compute a consistent segmentation of all objects within the

same class, compute geometric features for each part separately, and then represent

each object by the concatenation of feature vectors for all of its parts and its entire

shape. This approach has the advantage that distinctive features of one part are not

blended with features of another. For example, curvature histograms computed for

the carved back of a Chippendale chair are kept separate from those of its smooth

seat cushion. The result is a part-aware geometric feature vector that is better suited
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for characterizing styles. Unlike previous methods, our approach produces feature

vectors with higher dimensionality for object classes with more parts.

Our implementation leverages the consistent segmentation algorithm of Kim et

al. [52]. Given a collection of models of the same object class and a single template,

the algorithm produces a consistent segmentation and labeling for all models. For each

labeled part and for the entire shape, we compute a geometric feature vector with

79 dimensions representing curvatures for different neighborhoods, shape diameter

functions, bounding box dimensions, and surface areas, all computed with methods

based on Kalogerakis et al. [48].

5.5 Learning Compatibility

Given the crowdsourced triplet data and the part-aware geometric features, our next

goal is to learn a measure of the compatibility between a pair of models from dif-

ferent object classes. In particular, let xi, xj be feature vectors for models i and

j, possibly with different dimensionalities. We want a function d(xi,xj) that scores

compatibility, with lower values being more compatible. A key challenge is that dif-

ferent object classes may have feature vectors with different elements, and so direct

distance computation is not possible.

Previous work [56, 75, 32] has employed distance functions of the form

dsymm(xi,xj) = ||W(xi − xj)||2 (5.1)

In the simplest case, W may be a diagonal matrix, representing scaled Euclidean

distance between feature vectors. Alternatively, it may be represented as a K × D

embedding matrix that projects the input feature into a K-dimensional space for

comparison [56]. The above distance assumes that all objects have the same type of

feature vectors.
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In order to handle heterogeneous furniture types, we propose to learn a separate

embedding matrix Wc for each class c. The distance function is then:

dasymm(xi,xj) = ||Wc(i)xi −Wc(j)xj||2 (5.2)

In other words, objects are compared by first projecting them into a shared, K-

dimensional embedding space, but using a separate projection matrix for each class.

For example, a table would be projected as y1 = Wtablex1, which could then be

compared to a chair y2 = Wchairx2 (Figure 5.4). We refer to this as the asymmetric

embedding distance. This model is related to Canonical Correlation Analysis [40] and

Neighborhood Components Analysis [33], but trained in a supervised manner in order

to predict compatibility from triplets.

Note that this formulation does not require that each vector even have the same

dimensionality; in principle, it could be used for compatibility of different types of

entities, such as material and geometry, or images and colors.

Given a distance function, learning proceeds similar to previous work [75, 32].

The probability that a rater evaluates object A as more compatible to B than to C

is modeled as a logistic function:

PA
B,C =

1

1 + exp(d(xA,xB)− d(xA,xC))
(5.3)

Learning is performed by minimizing the negative log-likelihood of the training triplets

D with regularization:

E(W1:M) = − 1

|D|
∑

(A,B,C)∈D

logPA
B,C +

λ

M

∑
1≤c≤M

R(Wc) (5.4)

where |D| is the number of triplets, M is the number of object classes, and R is the

regularization term.
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Style Feature Space

Wtable Wchair
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Figure 5.4: Mapping into shared feature space. We learn separate embedding matrices
for each object class that map shapes into a shared feature space where objects that
are stylistically compatible are close to each other. Here, old-fashioned chairs and
tables are clustered at the top, while modern objects are clustered in bottom left.
Feature vectors for different classes may have different dimensionality based on the
number of parts.

For learning, we represent each mapping as a product of two matrices: Wc =

Wopt
c WPCA

c . The first matrix WPCA
c is obtained by performing 21-dimensional Prin-

cipal Components Analysis (PCA) on each object class separately. The second matrix

is the obtained by optimizing E(W1:M) using BFGS [111], for either the symmetric

or asymmetric model. The PCA step is used for two reasons: first, it allows us to

directly compare the symmetric and asymmetric models, since the symmetric model

cannot be used on our heterogeneous input features; second, it makes optimization

faster, since the input dimensionality is very large.

Regularization can be used to perform feature selection, i.e., to zero out the

weights for dimensions after PCA analysis. Feature selection is used because we
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believe that some of the dimensions are not helpful for measuring compatibility, but

it is difficult a priori to know which dimensions are necessary. Previous work has

used the L1-norm to sparsify weight vectors [32]. However, applying the L1-norm to

the entries of the embedding matrix (R(Wc) = |Wc|1), would only have the effect of

sparsifying individual matrix entries, rather than eliminating entire dimensions.

We instead use Group Sparsity for regularization:

R(Wc) =
1

KD

∑
1≤`≤D

||w`||2 (5.5)

which applies the L2-norm to each column w` of the component Wopt
c of the embed-

ding matrix Wc. As shown by Bach et al. [3], this has the effect of sparsifying entire

columns of the matrix. It can be interpreted as applying the L1 norm to the mag-

nitude of the column; it is a generalization of applying L1 to the individual matrix

entries.

We use K = 8 and λ = 2 in all experiments, except where noted. Our algorithm

was implemented in Python. We set the maximum number of iterations in BFGS to

be 2000, and it takes up to 70 minutes to solve W1:M .

5.6 Results: Triplet Prediction

We ran a series of experiments to test how well our algorithm is able to predict the

relative style compatibility between furniture of different object classes, using hold-

out triplet data. We consider our basic algorithm, as well as variants with the novel

aspects described in the previous sections disabled to investigate their impact on the

results. This section presents a summary of the results.

As discussed previously, many of the triplets in the crowdsourcing study described

in Section 5.3 are inherently ambiguous, e.g., two furniture items are equally similar

or dissimilar to the reference object. Thus, we formed the test set for our prediction
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experiments by only considering triplets where raters had strong agreement. Specif-

ically, we include a crowdsourced triplet in the test set if: (1) at least 75% of raters

agreed on the most-compatible object, and (2) there are sufficient numbers of triplets

to estimate this percentage, evaluated by a Binomial Test and comparing the p-value

to a threshold. Aiming for ∼ 250 triplets, we set the threshold to 0.05 for the dining

room test set, which yields 264 triplets; and 0.01 for the living room test set, which

yields 229 triplets (the null hypothesis is that people do not have a preference in the

triplet).

For each test triplet, we trained our algorithm using all crowdsourced triplets in

the same scene (living room or dining room) that do not share any data with the

test triplet. We then ran our algorithm to predict the relative compatibility of the

two candidate objects and check to see whether it matches the object selected by

the majority of people. Our overall accuracy measure is the percentage of triplets for

which the prediction matches.

Table 5.1 shows the overall accuracy of our algorithm (Ours) in comparison to a

random prediction (Random) and to selections made by people (People). Since the

test set only contains triplets for which people strongly agree, it is not surprising

that they have high accuracy in this evaluation (93%, 99%). Euclidean distance on

PCA-reduced feature vectors (Euclidean) performs above chance, though not much

better for the more-complex living room arrangement. Our method does not achieve

as high accuracy (73%, 72%) as people, but it does perform significantly better than

random (50%, 50%).

By using Group Sparsity, we discard 0 to 9 of the 21 input PCA dimensions,

depending on the object class experimented on.

Impact of part-aware geometric features. We ran a second experiment to test

how part-aware geometric features help capture style characteristics. To test this, we
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Method Dining room Living room
Chance 50% 50%

Euclidean 69% 58%
Ours 73% 72%

People 93% 99%

Table 5.1: Accuracy of style compatibility rankings generated by random, Euclidean
distance on non-part-aware features (with PCA), our method, and people for triplets
of furniture models. The test set is filtered for consistency among human raters,
hence the high scores among human raters.

Method Dining room Living room
No part-aware, Symmetric 63% 55%

Part-aware, Symmetric 63% 65%
No part-aware, Asymmetric 68% 65%

Part-aware, Asymmetric (Ours) 73% 72%

Table 5.2: Impact of part-aware features and asymmetric embedding. Accuracy of
style compatibility rankings for our algorithm with and without part-aware features
and asymmetric embedding enabled.

compare our results to an alternative method, in which the same set of geometric

features are computed without separating them according to the consistent part seg-

mentation. Results are shown in Table 5.2. The accuracy of our method (73%, 72%)

is clearly better than that of the method without part-aware features (68%, 65%).

Impact of asymmetric embedding. In a third experiment, we test whether

asymmetric embedding outperforms symmetric embedding. Since asymmetric em-

bedding has more free variables than symmetric embedding, it is not suitable to as-

sume symmetric embedding works with the same set of parameters as our algorithm.

To make a fair comparison, we ran the method of symmetric embedding multiple

times with different combinations of parameters, and compared the best result to the

one of our method with the default parameters (K = 8, λ = 2). Results are shown

in Table 5.2. The performance of our algorithm (73%, 72%) is significantly better

than the alternative method (63%, 65%). These results indicate that it is beneficial
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to learn different embeddings for different object classes, since the geometric features

of different object classes are usually incomparable.

One key finding is the importance of using part-aware features together with

the asymmetric model. For the dining room scenario, part-aware features provide no

advantage when used with the symmetric model. This is likely because the symmetric

model is not designed for heterogeneous features. However, when combined with the

asymmetric model, they provide a significant boost over the non-part-aware features.

Impact of shared models. In a fourth experiment, we test whether it is better to

learn a single model for all possible compatibility tasks, or to learn separate models

for each type of object pairing. We will use the notation X → Y to denote the task

of, given an object of class X, return compatible objects of type Y . For example,

chair → table is the task of finding a table to go with a specific chair, and a triplet

of this type would ask which of two tables better matches a given chair.

We compare the following alternatives:

• Same-task triplets. For each possible task (X → Y ), a separate model is

learned from the X → Y subset of the training triplets. Depending on the

number of tasks involved (Figure 5.3), an object class can have up to 6 different

embedding matrices Wc associated with it, one for each of its tasks.

• Same-pair triplets. For each pair of objects (X → Y and Y → X tasks), a

separate model is learned from the corresponding subset of the training triplets.

An object class can have 1 to 3 different embedding matrices associated with

it.

• All triplets. One embedding matrix is learned for each class, jointly optimized

over all training triplets.
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Training set Dining room Living room
Same-task triplets 61% 65%
Same-pair triplets 73% 66%
All triplets (Ours) 73% 72%

Table 5.3: Impact of shared models. Accuracy of style compatibility rankings for our
algorithm using different training sets.

The same dimensionality is used in each case, and so far fewer parameters are learned

in our method than in the alternative methods.

Results are shown in Table 5.3. The results of our method are better than or

comparable to the method of training on a subset of the triplets, which indicates that

more training examples are helpful, even when they are not examples of the same

kind of task.

5.7 Applications

In this section, we investigate the utility of the proposed style compatibility metric

in three applications: shape retrieval, furniture suggestion, and scene building. In

each case, a classic application in computer graphics is extended to consider style

compatibility.

5.7.1 Style-aware shape retrieval

In many cases, people want to retrieve models that are stylistically compatible to a

query model of a different object class. For example, in an online furniture shopping

system, a potential customer may look for dining chairs that are compatible to the

dining table in his/her dining room.

To investigate this application, we have implemented a style-aware shape retrieval

system. The system asks the user to give a query model and a target object class,
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Figure 5.5: Style-aware shape retrieval. Given a query (dining table), our system
returns 5 dining chairs that are most stylistically compatible to the query as predicted
by our learned metric. We also list the 5 most incompatible models for comparison.
The numbers are the compatibility distance d between the chairs and the query, with
lower values being more compatible.

and then it returns a ranked list of models in the target object class that are most

compatible to the query according to the metric learned by our algorithm.

Figure 5.5 shows two examples. Given a dining table on the left, our system

returns the 5 dining chairs shown on the left as the most compatible stylistically (for

comparison, the 5 least compatible are shown on the right). We observe that these

retrieval results are generally consistent with our expectations: the system returns

heavy and ornamented chairs when the query table is heavy and ornamented, and it

returns chairs with simple designs to match the more streamlined table.

5.7.2 Style-aware furniture suggestion

When people create a virtual scene or furnish their homes, they may want to search

for a model of a known object class that is compatible to the rest of the scene. For

example, the user may want to find a coffee table compatible with a particular sofa,

chair, and end table that currently are in his living room. In contrast to the style-

aware shape retrieval application, the suggestions should be compatible with multiple

objects in a scene, rather than a single object.
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Figure 5.6: Style-aware furniture suggestion. Both scenes are manually created by
people except for the coffee tables. Our system suggests different coffee tables given
different sets of furniture pieces in the scene to maximize style compatibility.

We have implemented a style-aware furniture suggestion system to test this ap-

plication. We define a compatibility energy for an entire scene as the sum of compat-

ibility distances between all objects in the scene:

F ({xi}) =
∑

(xi,xj)∈P

d(xi,xj) (5.6)

where {xi} are the models in the scene, P is the set of linked model pairs shown

in Figure 5.3, and d(xi,xj) is the compatibility distance between xi and xj (Equa-

tion 5.2). Then, given the query object class, we enumerate all candidate models of

the object class, and return the one that minimizes the compatibility energy F .

Evaluation. We conducted user studies to evaluate the quality of suggestions made

by our algorithm (two examples are shown in Figure 5.6) compared to random sug-

gestions and people’s selections. To generate test data, we asked people to create

stylistically compatible living room scenes using the experimental setup described in

the following subsection. In total, participants created 14 sets of scenes that cor-

respond to the 14 different starting configurations of the room. From this data, we

selected exactly 14 test scenes by selecting the most compatible scene for each starting

configuration, as judged by workers on Amazon Mechanical Turk. Then, for each test

scene, we removed objects one at a time and used our system to automatically suggest

a replacement. We also generated 10 suggestions by picking objects randomly from

91



Ours vs. Random Ours vs. People
Table lamp 54% 41%
Arm chair 55% 33%
End table 55% 43%

Coffee table 56% 30%
Chair 57% 37%

Floor lamp 58% 45%
Sofa 63% 44%

Overall 57% 39%

Table 5.4: Style-aware furniture suggestion results. Comparison of style compatibil-
ities of furniture suggestion by our algorithm versus alternative methods. For each
column titled “A vs. B,” the table lists the percentage of tasks where the furniture
suggested by A is preferred by Amazon Mechanical Turk workers to the one suggested
by B.

the same object class. In summary, we have a total of 98 test configurations (14 test

scenes, 7 objects per scene) with three different types of resulting scenes per configu-

ration: the original scenes where all objects are selected by the participant (People),

scenes generated with our automatic suggestions (Ours), and scenes generated with

random suggestions (Random).

We used Amazon Mechanical Turk to obtain all pairwise comparisons between

these three types of scenes for each test configuration. Since we generated 10 random

suggestions per configuration, there are 980 unique comparisons for both Random

vs. Ours and Random vs. People. In addition, there are 98 comparisons for Ours

vs. People. In our study, each HIT includes between 14 and 20 comparisons, 8 of

which are repeated to test participants’ consistency. If a participant gives inconsistent

answers for more than 2/8 of these questions, we exclude their responses from our

analysis. Each unique comparison was done by 30 different participants, and in the

end, we kept 48,766 responses for analysis, which is 55% of all responses.

Table 5.4 summarizes the results from this experiment. Overall, 57% of the partic-

ipants preferred Ours to Random, 61% preferred People to Ours, and 65% preferred

People to Random. The results indicate that the preference order is Random < Ours
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Figure 5.7: Interface of style-aware scene builder. The user is allowed to free (in
gray) or fix (in orange) any number objects in the scene, and our system suggests
combinations of free objects in order of style compatibility (at the bottom of the
window). When the user selects any suggestion from the list (red box), the relevant
models are updated in place within the scene.

< People. It is not surprising that people’s selections are most preferred, particularly

since these selections are picked from the scenes with the highest overall compatibility

among all the scenes that were created in the first step. However, our suggestions are

still preferred to the people’s selections in 39% of the time, which indicates even if

the user has selected an object that is fairly compatible to the rest of the scene, our

learned metric can still produce a better suggestion in many cases.

5.7.3 Style-aware scene building

The metric learned by our method can also provide suggestions to help people create

stylistically compatible scenes in interactive design tools. This feature could help

designers of interior spaces, virtual worlds, and immersive games create more plausible

scenes.
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To investigate this application domain, we have implemented an interactive scene

builder augmented with the compatibility metric learned by our algorithm. The input

to the system is a set of prescribed object classes, an initial scene with a prescribed

spatial layout, and a database of 3D models labeled by object class. During an

interactive session, the user iteratively replaces models by other models from the

same object class in an effort to make the furniture more compatible (Figure 5.7).

At any time, the user is allowed to fix/free any number of objects in the scene,

and our system suggests combinations of models from the database that are not

currently fixed. Then, the user is able to choose one of the suggestions to perform

the replacement. This procedure repeats until the user is satisfied with all models in

the scene.

Our goal is to help people find compatible scenes efficiently, so the suggestion

list should have two properties. First, the suggestion list should be ranked by the

compatibility energy (Equation 5.6). Second, the suggestion list should be diverse,

so that the user can navigate efficiently in the search space. In order to meet both

properties, we take the following strategy in our system: we maintain a candidate

set of models, which initially includes all the models. Each time we aim to pick the

suggestion that leads to the scene with the lowest compatibility energy, and remove

all the models in the suggestion from the candidate set. We repeat this until no

new suggestion can be generated, i.e., models from one object class are used up.

This strategy ensures that the suggestion list is ranked in an increasing order of the

compatibility energy, and all suggestions are disjoint.

In contrast to style-aware furniture suggestion (Section 5.7.2), we aim to update

multiple models at the same time in the interactive system, and thus the search space

is prohibitively large. Fortunately, the acyclicity of the graph formed by pairs of

object classes that are selected as semantically connected (Figure 5.3) allows us to

use dynamic programming to quickly find the optimal solution. Specifically, we first
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pick one object class as the root of the graph to convert the graph to a tree T . Each

node in T represents an object class, and has a set of models as candidate (only one

candidate model if the object class is fixed). Then, we define a state as an object class

C and a model m in the class (the state is denoted as (C,m)), and the energy of the

state E(C,m) as the lowest compatibility energy of the subtree rooted at C in T . We

update the energies of all states in a bottom-up manner: starting with the leaf level

of T , the energy is simply 0 for all states at leaves. Given the energies of the states of

child nodes, we determine the energy of a state at a parent node (Cp,mp) by picking

a model mc for each child node Cc such that d(mc,mp)+E(Cc,mc) is minimal. In our

experiments with the living room database, with pre-computed geometric features of

all the models, the suggestion list can update in the interactive rate (< 60 ms) on 2.3

GHz Intel Core i7.

Evaluation. We conducted a user study to evaluate the utility of the style-aware

scene suggestions in our interactive scene builder system. We compare two conditions:

the scene builder with suggestions ordered by our learned compatibility metric (Ours),

and the same interface with randomly ordered suggestions (Random).

We recruited 12 participants (graduate students) who are not involved in the

project and asked them to perform 16 different scene modeling tasks with the scene

builder interface, half using Ours and half using Random (without being told which

was which). We set up each task by selecting a single reference object to fix and

then randomly generating the rest of the scene. From this starting configuration,

participants were asked to improve the style compatibility of the scene while keeping

the fixed object. Using the living room dataset, we generated two tasks per object

class by selecting one “modern” and one “old-fashioned” reference object. In addition

to these 14 tasks, we created 2 additional warm-up tasks whose results were excluded

from our subsequent analyses. The tasks were presented in the same order for all
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Figure 5.8: Style-aware scene building. Preferences from Amazon Mechanical Turk
for the style compatibility of scenes created with our system’s suggestions versus
the alternative. The tasks are ranked by the descending order of the percentages of
votes that favor the results creating by using our system (red bars). We show the
initial scene of each task at the bottom, with the fixed object highlighted in cyan.
The results of using our system are preferred in 13 out of 14 tasks, with statistical
significance in 8 of them (in red boxes).

participants, with the two warm-up tasks first. Participants were given 3 minutes for

each task.

To evaluate the two conditions, we asked Amazon Mechanical Turk workers to

compare the results created using Ours vs. Random. For each scene modeling task,

we obtained 6 scenes created using Ours and 6 using Random, resulting in a total of

504 unique comparisons (14 tasks, 36 comparisons per task). We designed each HIT

to include 18 of these comparisons. For each, we asked workers to indicate which scene

is more stylistically compatible with the option of specifying no preference. As with

the furniture suggestion analysis, we repeated 8 questions and excluded responses

with more than 2/8 inconsistent answers. Each comparison was done by 30 different

participants. After filtering for consistency, we ended up with 10,322 answers to

analyze, which is 47% of all responses.

Overall, we received 5,760 votes that favor the results created using Ours, and

4,135 votes that favor Random, and 427 “No preferences”. This indicates that par-

ticipants do have a preference in most of the cases. If we treat “No preference” as

a half vote for each system, 58% of all the votes favor our system. While the num-
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bers may seem to show a relatively small effect, we note that it is very difficult to

demonstrate a significant difference in this experiment, because the suggestions have

to be good enough to impact how quickly and effectively people can find compatible

objects with a highly functional interface that allows scrolling through lists, iterative

refinement, undo, etc. Nonetheless, our results are comparable to those obtained in

other subjective evaluations for aesthetic suggestion interfaces [75, 32].

Moreover, if we look at the data for individual tasks (Figure 5.8), the results of

using our system are preferred in 13 out of 14 tasks, and there are clearly some tasks

where our system appears to have a larger impact. If we take the null hypothesis that

people have no preference between the scenes created using Ours vs. Random, Ours

is significantly preferred in 8 tasks (with p < 0.05), and the null hypothesis cannot

be rejected in the remaining 6 tasks. There were no tasks where the Random scenes

were significantly preferred. Note that we used the Binomial Test for significance

and applied Holm-Bonferroni corrections for multiple comparisons. Based on these

results, our system seems to be particularly helpful when the fixed object is small (e.g.,

table lamp, end table) and/or of modern style. This may be because the participants

usually had few cues in these situations, and our system was able to give them some

useful guidance. In general, we expect the impact of our system to be greatest when

the task is challenging and randomly browsing through the database is unlikely to

produce good results.

In an effort to understand the utility of our suggestions in more detail, we analyzed

the ranks of the suggestions selected by participants using the two different interfaces.

In Figure 5.9, we compare the means and standard errors of the ranks of scenes

selected by users in the list of suggestions, with Ours in red and Random in blue. We

find that people selected suggestions with better rankings in our system on average

(in 11 of 14 tasks). If two distributions are considered to be significantly different

when the effect size is larger than 0.8, then the participants selected suggestions with

97



Figure 5.9: Style-aware scene builder analysis. Comparison of the ranks of sugges-
tions selected by users of the scene builder with our algorithm (red bars) versus the
alternative (blue bars). Black lines represent standard errors. The participants se-
lected suggestions with smaller ranks using our system than the alternative in 11 out
of 14 tasks, with statistical significance in 5 of them (in red boxes).

better ranks using our system in 5 tasks (in red boxes), and there is no significant

difference in the remaining 9 tasks.

5.8 Discussion

This chapter presents a method for computing style compatibility between 3D fur-

niture models using crowdsourced data and distance learning technique. Besides

proposing the first method for learning style compatibility between 3D models from

different object classes, we offer two technical contributions. First, we introduce

a part-aware geometric feature vector that is better suited for characterizing style-

dependent information. Second, we present a new asymmetric embedding distance

that is appropriate for estimating compatibility between objects of different classes.

The main conclusions are two-fold. First, our quantitative results show that it is

possible to learn a compatibility metric for furniture of different classes from these

triplets, with greater accuracy using part-aware geometric features and with joint em-

beddings of individual object classes. Second, our user studies show that the learned

metric can be used effectively to achieve higher style compatibility in applications

ranging from shape retrieval to scene building.
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Our system is a first investigation of style compatibility for 3D models and thus

suffers from several limitations. First, it considers only a simple set of geometric

features and thus cannot detect fine-grained style variations, such as types of orna-

mentation. Second, it considers only geometric properties, and, in future work, it

would be interesting to investigate how materials [46], colors, construction methods,

affordances, and other properties of 3D models determine style compatibility. Third,

it is targeted only at furniture within interior environments, whose styles have a rich

history, but perhaps unique properties that do not extend to other object and scene

types. Investigating how the proposed techniques could be used in systems for model-

ing avatars, garments, architecture, cities, or other domains where style is important

could provide a fruitful line of research for future study.
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Chapter 6

Conclusion and Future Work

6.1 Summary

This dissertation describes several algorithms on analyzing, synthesizing, and opti-

mizing 3D scenes by reasoning about relationships between objects. First, we present

a method for parsing 3D virtual scenes using a hierarchical probabilistic grammar,

and experimental results show that modeling hierarchy significantly improves infer-

ence of segmentation and annotation of 3D virtual scenes. Second, we introduce a

technique for 2D compositions of 3D scenes that adjusts camera parameters, object

transformations, and surface materials. We take into account design principles and

user’s constraints by modeling object positions and relationships between objects in

both the image space and the scene space. Third, we present a method for comput-

ing style compatibility between 3D furniture models using crowdsourced data and

distance learning technique, and experimental results show that the learned metric

can be used effectively to create scenes with higher style compatibility in applications

ranging from shape retrieval to interactive scene building.

In this dissertation, we find that reasoning about relationships between objects

greatly facilitates scene analysis, scene optimization, and scene synthesis. First, re-
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lationships between objects are strongly related to the plausibility and aesthetics of

scenes. For example, we have shown that style compatibility between furniture mod-

els is important for scene plausibility, and color contrast between adjacent objects in

the image space is critical for the quality of compositions created from 3D scenes.

Therefore, it is effective to impose constraints in scene synthesis and optimization

by modeling relationships between objects. Second, relationships between objects,

particularly the ones between objects within a semantic subgroup, are comparatively

stable across scenes. Because relationships between objects are related to the plausi-

bility and semantics of 3D scenes, scenes usually share similar relationships, even if

they are very different in other aspects, such as geometry and object positions. For

example, the spatial relationships between beds and nightstands are nearly invari-

ant, although the sizes and geometries of nightstands can be significantly different in

different bedrooms. This is because a nightstand needs to be reachable from a bed

beside it. Consequently, relationships between objects provide a strong cue for scene

understanding.

6.2 Future Work

We identify several directions for future work on analyzing, synthesizing, and opti-

mizing 3D virtual scenes.

First, it would be interesting to explore other sources of scene examples that the

knowledge of scene realism can be learned from. Although virtual scenes provide

opportunities for data-driven scene modeling, the number of 3D virtual scenes in

online repositories is still not comparable to the numbers of many other sources of

scenes. For example, there are millions of high-quality product images of indoor

scenes on the Internet, which are great examples for learning design constraints and

image composition rules. Furthermore, as RGB-D cameras become more popular and
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cheaper, it will become easier to acquire a large number of scans of real scenes, which

would provide even more opportunities for data-driven scene modeling. However,

similar to the scenario of virtual scenes, scene analysis tools would probably require

good segmentation and annotation on the exemplar images or RGB-D scans in order

to maximize the usefulness of the data, which would require better representations of

scene grammars and more sophisticated analysis tools.

Second, it would also be interesting to investigate other factors that are related to

scene plausibility and scene semantics. This dissertation majorly focuses on spatial

relationships between objects in the scene space and the image space, and style com-

patibility between objects that is solely computed from geometric properties. One

factor that has not been fully investigated is materials. In this dissertation, we con-

sider materials for maximizing color contrast when generating compositions of virtual

scenes, but we believe materials may play a larger role in ensuring the plausibility of

a scene in scene synthesis. We leave a thorough investigation for the role of materi-

als in scene synthesis for future work. Furthermore, we also imagine materials can

provide a strong cue for scene understanding. In particular, materials are strongly

related to object categories, as pointed out by previous work [46, 9]. Therefore, it

would be fruitful to consider materials when inferring segmentation and annotation

on images or RGB-D scans. Besides materials, many other properties of 3D models,

such as construction methods and affordances, could also be strongly related to scene

plausibility, and we leave them for future work.
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