
Notes on Differential Geometry

Defining and extracting suggestive contours, ridges, and valleys on a surface requires an

understanding of the basics of differential geometry. Here we collect the necessary background,

specialized to the case of surfaces in 3D and considering only orthonormal bases. For more details,

consult [Cipolla and Giblin 2000, do Carmo 1976, Koenderink 1990].

We begin by considering a smooth and closed surface S and a point p∈ S sitting on the surface.

First-order structure: The first-order approximation of this surface around this point is the

tangent plane there; the unit normal vector n at p is perpendicular to this plane. (We use outward-

pointing normal vectors.) Directions in the tangent plane at p can be described with respect

to three-dimensional basis vectors {su,sv} that span the tangent plane. Generally, the three-

dimensional vector x that sits in the tangent plane is written in local coordinates as [u v]T, where
x= usu+ vsv.

Second-order structure: The unit normal n is a first-order quantity; it turns out that the

interesting second-order structures involve derivatives of normal vectors. A directional derivative

of a function defined on the surface (the unit normal being one possible function) specifies how

that function changes as you move in a particular tangent direction. For instance, the directional

derivativeDxn at p characterizes how n “tips” as you move along the surface from p in the direction

x. (This same relationship can be conveyed by the differential dn(x), which describes how n
changes as a function of a particular tangent vector x.) Since derivatives of unit vectors must be

in perpendicular directions, the derivatives of n lie in the tangent plane. This directional derivative

can be written as:

Dxn= nu su+nv sv, (1)

where
[

nu
nv

]

=

[

L M

M N

][

u

v

]

, (2)

where the entries L,M and N depend on the local surface geometry—see [Cipolla and Giblin 2000]

for details. Note that Dxn depends linearly on the length of x.

Now, suppose we have two tangent vectors x1 = u1 su+v1 sv and x2 = u2 su+v2 sv. The second
fundamental form II at p is a symmetric bilinear form specified by:

II(x1,x2) = (Dx1n) ·x2 = (Dx2n) ·x1

=
[

u1 v1
]

[

L M

M N

][

u2
v2

]

.
(3)
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(This differs in sign from [do Carmo 1976] due to our choice of outward pointing normals.)

Since II is symmetric, we use II(x) as a shorthand to indicate only one vector product has been
performed; so II(x) =Dxn, and II(x1,x2) = II(x1) ·x2 = II(x2) ·x1.
The normal curvature of a surface S at a point p measures its curvature in a specific direction x

in the tangent plane, and is defined in terms of the second fundamental form. The normal curvature,

written as κn(x), is:

κn(x) =
II(x,x)

x ·x
.

Notice how the length and sign of x do not affect the normal curvature. On a smooth surface, the

normal curvature varies smoothly with direction x, and ranges between the principal curvatures κ1
and κ2 at p. These are realized in their respective principal curvature directions e1 and e2, which

are perpendicular and unit length.

The Gaussian curvature K is equal to the product of the principal curvatures: K = κ1κ2, and

the mean curvature H is their average: H = (κ1+κ2)/2. Wherever K is strictly negative (so that
only one of κ1 or κ2 is negative), there are two directions along which the curvature is zero. These

directions, called the asymptotic directions, play a central role in where suggestive contours are

located.

The vector Dxn can be broken into two components; in the direction of x, and perpendicular to

it. The length of the component in the direction of x is simply the normal curvature κn. The length

of the perpendicular component is known as the geodesic torsion τg, and describes how much the

normal vector tilts to the side as you move in the direction of x. If we define the perpendicular

direction x⊥ as:

x⊥ = n×x

then we have:

Dxn= II(x) = κn(x) x+ τg(x) x⊥ (4)

It follows that τg(x) = II(x,x⊥)/x ·x. Furthermore, when x is an asymptotic direction, Dxn is
perpendicular to x and it can be shown that τ2g (x) = −K [Koenderink 1990].

Principal coordinates: Using the principal directions {e1,e2} as the local basis leads to principal
coordinates. In principal coordinates, the matrix in equations (2) and (3) is diagonal with the

principal curvatures as entries:
[

κ1 0

0 κ2

]

.

Given [u v]T = [cosφ sinφ ]T, where φ is the angle in the tangent plane measured between a

particular direction and e1, this leads to the well-known Euler formula for normal curvature:

κn(φ) = κ1 cos
2 φ +κ2 sin

2 φ

and the following for the geodesic torsion:

τg(φ) = (κ2−κ1)sinφ cosφ

(where the sign of τg depends on our definition of x⊥, above).
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Third-order structure: In order to define ridges and valleys, and to analyze how suggestive

contours move across a surface, we will need additional notation that describes derivatives of

curvature. The gradient ∇κr is a vector in the tangent plane that locally specifies the magnitude

and direction of maximal change in κr on the surface.

In the following, we use principal coordinates, as the third-order derivatives are much simpler to

state. In this case, finding derivatives of normal curvatures involves taking the directional derivative

of II in a particular tangent direction x. The result is written in terms of a symmetric trilinear form

C, built from a 2×2×2 (rank-3) tensor whose entries depend on the third derivatives of the surface
[Gravesen and Ungstrup 2002]. Such derivatives have been ingredients in measures of fairness for

variational surface modeling [Gravesen and Ungstrup 2002, Moreton and Séquin 1992].

We write C with either two or three arguments—indicating how many times a vector is

multiplied onto the underlying tensor. Thus, C(x,x) is a vector and C(x,x,x) is a scalar. The
order of the arguments does not matter, as C is symmetric. In principal coordinates, the tensor

describing C has 4 unique entries [Gravesen and Ungstrup 2002]:

P= De1κ1, Q= De2κ1, S= De1κ2, and T =De2κ2

This leads to the first-order approximation of the matrix in equation (3) towards x= ue1+ ve2 as:
[

L M

M N

]

≈

[

κ1 0

0 κ2

]

+u

[

P Q

Q S

]

+ v

[

Q S

S T

]

(5)

(written with the tensor expanded into two matrices on the right to avoid cumbersome notation,

already multiplied once by [u v]T.) Finally, we note how to compute the gradient and directional
derivative of the normal curvature κn using C:

∇κn(x) =
C(x,x)

x ·x
=
gu e1+gv e2
x ·x

,

where
[

gu
gv

]

=

[

Pu2+2Quv+Sv2

Qu2+2Suv+Tv2

]

and
Dxκn(x)

‖x‖
=
C(x,x,x)

‖x‖3
=
Pu3+3Qu2v+3Suv2+Tv3

‖x‖3
.
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