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Abstract. PatchMatch is a fast algorithm for computing dense approx-
imate nearest neighbor correspondences between patches of two image
regions [1]. This paper generalizes PatchMatch in three ways: (1) to find k
nearest neighbors, as opposed to just one, (2) to search across scales and
rotations, in addition to just translations, and (3) to match using arbi-
trary descriptors and distances, not just sum-of-squared-differences on
patch colors. In addition, we offer new search and parallelization strate-
gies that further accelerate the method, and we show performance im-
provements over standard kd-tree techniques across a variety of inputs. In
constrast to many previous matching algorithms, which for efficiency rea-
sons have restricted matching to sparse interest points, or spatially prox-
imate matches, our algorithm can efficiently find global, dense matches,
even while matching across all scales and rotations. This is especially
useful for computer vision applications, where our algorithm can be used
as an efficient general-purpose component. We explore a variety of vi-
sion applications: denoising, finding forgeries by detecting cloned regions,
symmetry detection, and object detection.

(a) (b) (c) (d) (e)

Fig. 1. Denoising using Generalized PatchMatch. Ground truth (a) is corrupted by
Gaussian noise (b). Buades et al. [2] (c) denoise by averaging similar patches in a small
local window: PSNR 28.93. Our method (d) uses PatchMatch for nonlocal search,
improving repetitive features, but uniform regions remain noisy, as we use only k = 16
nearest neighbors: PSNR 29.11. Weighting matches from both algorithms (e) gives the
best overall result: PSNR 30.90.

1 Introduction

Computing correspondences between image regions is a core issue in many
computer vision problems, from classical problems like template tracking and
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optical flow, to low-level image processing such as non-local means denoising and
example-based super-resolution, to synthesis tasks such as texture synthesis and
image inpainting, to high level image analysis tasks like object detection, image
segmentation and classification. Correspondence searches can be classified as
either local, where a search is performed in a limited spatial window, or global,
where all possible displacements are considered. Correspondences can also be
classified as sparse, determined only at a subset of key feature points, or dense,
determined at every pixel or on a dense grid in the input.

For efficiency, many common algorithms only use local or sparse correspon-
dences. Local search can only identify small displacements, so multi-resolution
refinement is often used (e.g., in optical-flow [3]), but large motions of small ob-
jects can be missed. Sparse keypoint [4, 5] correspondences are commonly used
for alignment, 3D reconstruction, and object detection and recognition. These
methods work best on textured scenes at high resolution, but are less effective
in other cases. More advanced methods [6, 7] that start with sparse matches and
then propagate them densely suffer from similar problems. Thus, such methods
could benefit from relaxing the locality and sparseness assumptions. Moreover,
many analysis applications [8–11] and synthesis applications [12–15] inherently
require dense global correspondences for adequate performance.

The PatchMatch algorithm [1] finds dense, global correspondences an order
of magnitude faster than previous approaches, such as dimensionality reduction
(e.g. PCA) combined with tree structures like kd-trees, VP-trees, and TSVQ.
The algorithm finds an approximate nearest-neighbor in an image for every small
(e.g. 7x7) rectangular patch in another image, using a randomized cooperative
hill climbing strategy. However, the basic algorithm finds only a single nearest-
neighbor, at the same scale and rotation. To apply this algorithm more broadly,
the core algorithm must be generalized and extended.

First, for problems such as object detection, denoising, and symmetry
detection, one may wish to detect multiple candidate matches for each query
patch. Thus we extend the core matching algorithm to find k nearest neighbors
(k-NN) instead of only 1-NN. Second, for problems such as super-resolution,
object detection, image classification, and tracking (at re-initialization), the
inputs may be at different scales and rotations, therefore, we extend the matching
algorithm to search across these dimensions. Third, for problems such as object
recognition, patches are insufficiently robust to changes in appearance and
geometry, so we show that arbitrary image descriptors can be matched instead.

The resulting generalized algorithm is simple and fast despite the high dimen-
sional search space. The difficulty of performing a 4D search across translations,
rotations, and scales had previously motivated the use of sparse features that
are invariant to some extent to these transformations. Our algorithm efficiently
finds dense correspondences despite the increase in dimension, so it offers an
alternative to sparse interest point methods. Like the original PatchMatch algo-
rithm, our generalized algorithm is up to an order of magnitude more efficient
than kd-tree techniques. We show how performance is further enhanced by two
improvements: (1) a new search technique we call “enrichment” that generalizes
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“coherent” or locally similar matches from spatial neighborhoods to neighbor-
hoods in nearest neighbor space and (2) a parallel tiled algorithm on multi-core
machines. Finally, for k-NN and enrichment, there were many possible algo-
rithms, so we performed extensive comparisons to determine which worked best.

In summary, our main contributions are: (1) an extended matching algorithm,
providing k nearest neighbors, searching across rotations and scales, and descrip-
tor matching (Section 3.2-Section 3.5); (2) acceleration techniques, including a
new search strategy called “enrichment” and a parallel algorithm for multi-core
architectures (Section 3.3, Section 3.6) We believe this Generalized PatchMatch
algorithm can be employed as a general component in a variety of existing and
future computer vision methods, and we demonstrate its applicability for image
denoising, finding forgeries in images, symmetry detection, and object detection.

2 Related work

When a dense, global matching is desired, previous approaches have typically
employed tree-based search techniques. In image synthesis (e.g., [16]), one
popular technique for searching image patches is dimensionality reduction (using
PCA) followed by a search using a kd-tree [17]. In Boiman et al [18], nearest-
neighbor image classification is done by sampling descriptors on a dense grid
into a kd-tree, and querying this tree. Other tree structures that have been
employed for querying patches included TSVQ [19] and vp-trees [20]. Another
popular tree structure is the k-means-tree that was successfully used for fast
image retrieval [21]. The FLANN method [22] combines multiple different tree
structures and automatically chooses which one to use according to the data.
Locality-sensitive hashing [23] and other hashing methods can be used as well.
Each of these algorithms can be run in either approximate or exact matching
mode, and find multiple nearest neighbors. When search across a large range
of scales and rotations is required, a dense search is considered impractical due
to the high dimensionality of the search space. The common way to deal with
this case is via keypoint detectors [4]. These detectors either find an optimal
local scale and the principal local orientation for each keypoint or do an affine
normalization. These approaches are not always reliable due to image structure
ambiguities and noise. The PatchMatch algorithm [1] was shown to find a
single nearest neighbor one to two orders of magnitude faster than tree-based
techniques, for equivalent errors, with running time on the order of seconds
for a VGA input on a single core machine. This paper offers performance
improvements and extends it to dense k-nn correspondence across a large range
of scales and rotations. The Generalized PatchMatch algorithm can operate on
any common image descriptors (e.g., SIFT) and unlike many of the above tree
structures, supports any distance function. Even while the algorithm naturally
supports dense global matching, it may also be constrained to only accept
matches in a local window if desired.

Section 4 investigates several applications in computer vision, and prior work
related to those applications is mentioned therein.
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3 Algorithm

This section presents four generalizations of the PatchMatch algorithm suitable
for a wide array of computer vision problems. After reviewing the original
algorithm [1], we present our extensions, including k-nearest neighbors, matching
across rotations and scale, and matching descriptors. We finally show how
performance can be improved with a new search strategy called “enrichment,”
and a parallel tiled algorithm suitable for multi-core architectures.

3.1 The PatchMatch algorithm

Here we review the original PatchMatch algorithm as proposed by Barnes et al. [1].
It is an efficient randomized approach to solving the following problem: for every
p × p patch in image A, find the approximate nearest neighbor patch in image
B, minimizing the sum-squared difference between corresponding pixels.

A nearest-neighbor field (NNF) is a function f : A 7→ R2, defined over all
possible patch coordinates (locations of patch centers) in image A, for some
distance function D between two patches. Given patch coordinate a in image A
and its corresponding nearest neighbor b in image B, f(a) is simply b.1 We refer
to the values of f as nearest neighbors, and they are stored in an array whose
dimensions are those of A.

Note that the NNF differs from an optical flow field (OFF). The NNF uses
no smoothness constraints and finds the best match independent of neighboring
matches. The OFF is defined by ground truth motion and is often computed
with smoothness constraints.

The randomized algorithm works by iteratively improving the nearest-
neighbor field f until convergence. Initially, the nearest neighbor field is filled
with random coordinates, uniformly sampled across image B. Next, the field is
iteratively improved for a fixed number of iterations, or until convergence. The
algorithm examines field vectors in scan order, and tries to improve each using
two sets of candidates: propagation, and random search.

The propagation trials attempt to improve a nearest neighbor f(x) using
the known nearest neighbors above or to the left. The new candidates for
f(x) are f(x − ∆p) + ∆p, where ∆p takes on the values of (1, 0) and (0, 1).
Propagation takes a downhill step if either candidate provides a smaller patch
distance D. (On even iterations, propagation is done in reverse scan order, and
candidates below and to the right are examined, so information propagates up
and left.) Propagation converges very quickly, but if used alone ends up in a
local minimum. So a second set of trials employs random search: a sequence of
candidates is sampled from an exponential distribution, and f(x) is improved
if any of the candidates has smaller distance D. Let v0 be the current nearest
neighbor f(x). The candidates ui are constructed by sampling around v0 at
an exponentially decreasing distance: ui = v0 + wαiRi, where Ri is a uniform
random in [−1, 1] × [−1, 1], w is the maximum image dimension, and α is a

1 Our notation is in absolute coordinates, vs relative coordinates in Barnes et al. [1]
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ratio between window sizes (α = 1/2 was used). The index i is increased from
i = 0, 1, 2, ..., n until the search radius wαi is below 1 pixel. For more details,
see Barnes et al. [1].

3.2 k-Nearest neighbors

For problems such as denoising, symmetry detection, and object and clone
detection, we wish to compute more than a single nearest neighbor at every
(x, y) position. This can be done by collecting k nearest neighbors for each
patch. Thus the NNF f is a multi-valued map, with k values. There are many
possible modifications of PatchMatch to compute the k-NN. We have compared
the efficiency of several of these against a standard approach: dimensionality
reduction with PCA, followed by construction of a kd-tree [17] with all patches of
image B projected onto the PCA basis, then an independent ε-nearest neighbor
lookup in the kd-tree for each patch of image A projected onto the same basis.

Since each of these algorithms can be tuned for either greater accuracy or
greater speed, we evaluated each across a range of settings. For PatchMatch, we
simply computed additional iterations, and for kd-trees we adjusted the ε and
PCA dimension parameters. The relative efficiency of these algorithms is plotted
in Figure 2. We also compare with FLANN [22], a package that includes kd-tree,
k-means tree, a hybrid algorithm, and a large number of parameters that can be
tuned for performance.

Heap algorithm. In the most straightforward variant, we associate k nearest
neighbors with each patch position. During propagation, we improve the nearest
neighbors at the current position by exhaustively testing each of the k nearest
neighbors to the left or above (or below or right on even iterations). The new
candidates are fi(x−∆p)+∆p, where ∆p takes on the values (1, 0) and (0, 1), and
i = 1 . . . k. If any candidate is closer than the worst candidate currently stored
at x, that worst candidate is replaced with the candidate from the adjacent
patch. This can be done efficiently with a max-heap, where the heap stores
the patch distance D. The random search phase works similarly: n samples
are taken around each of the k nearest neighbors, giving nk samples total.
The worst element of the heap is evicted if the candidate’s distance is better.
When examining candidates, we also construct a hash table to quickly identify
candidates already in our k list, to prevent duplicate entries.

Details of the additional strategies tested can be found in supplementary
material. Briefly, they include variants of the heap algorithm in which fewer
than k samples are taken from the neighbor list for propagation and/or search
(“P best,” “P random”, “RS best”, “RS random”, “P varying”, “RS varying”);
variants of the heap algorithm where k is changed over time (“Increase k”,
“Decrease k”); and modifications of the original 1NN algorithm in which no heap
is used but the sequence of candidates is retained (“List 1-NN”, “Run 1-NN k
times”). Some of these algorithms complete single iterations faster than the basic
heap algorithm described above, but convergence is slower as they propagate less
information within an iteration. In general, the original heap algorithm is a good
choice over a wide range of the speed/quality curve.
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Fig. 2. Left: Performance of k-PatchMatch variants, with k = 16, averaged over all
images in Figure 4, resized to 0.2MP, and matched against themselves. Error is average
L2 patch distance over all k. Points on each curve represent progress after each iteration.
Right: Comparison with kd-tree and FLANN, at 0.3 MP, averaged over the dataset.

We find the basic heap algorithm outperforms kd-tree over a wide range
of k and image sizes: for example, our algorithm is several times faster than
kd-tree, for k = 16 and input images of 0.1 to 1.0MP. In our comparisons
to the kd-tree implementation of Mount and Arya [17] and FLANN [22], we
gave the competition the benefit of the doubt by tuning all possible parameters,
while adjusting only the number of iterations for our heap algorithm. FLANN
offers several algorithms, so we sampled a large range of algorithmic options
and parameters, indicated by the + marks in Figure 2. FLANN can also
automatically optimize parameters, but we found the resulting performance
always lies within the convex hull of our point-sampling. In both cases, this
extensive parameter-tuning resulted in performance that approached – but
never exceeded – our heap algorithm. Thus, we propose that the general k-
PatchMatch heap algorithm is a better choice for a wide class of problems
requiring image patch correspondence. With additional optimization of our
algorithm, the performance gap might be even greater.

3.3 Enrichment

In this section we propose one such optimization for improving PatchMatch
performance further. The propagation step of PatchMatch propagates good
matches across the spatial dimensions of the image. However, in special cases we
can also consider propagating matches across the space of patches themselves:
For example, when matching an image A to itself – as in non-local-means
denoising (Section 4.1) – many of a patch’s k nearest neighbors will have the
original patch and some of the other k − 1 patches in their own k-NN list.

We define enrichment as the propagation of good matches from a patch to its
k-NN, or vice versa. We call this operation enrichment because it takes a nearest
neighbor field and improves it by considering a “richer” set of potentially good
candidate matches than propagation or random search alone. From a graph-
theoretic viewpoint, we can view ordinary propagation as moving good matches
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Fig. 3. Left: Comparison of the heap algorithm with and without enrichment. As in
Figure 2, times and errors are averaged over the dataset of Figure 4 at 0.2 megapixels
and k = 16 neighbors. Right: Searching across all rotations and scales.

along a rectangular lattice whose nodes are patch centers (pixels), whereas
enrichment moves good matches along a graph where every node is connected to
its k-NN. We introduce two types of enrichment, for the special case of matching
patches in A to other patches in A:

Forward enrichment uses compositions of the function f with itself to
produce candidates for improving the nearest neighbor field. The canonical case
of forward enrichment is f2. That is, if f is a NNF with k neighbors, we construct
the NNF f2 by looking at all of our nearest neighbor’s nearest neighbors: there
are k2 of these. The candidates in f and f2 are compared and the best k overall
are used as an improved NNF f ′. If min() denotes taking the top k matches, then
we have: f ′ = min(f , f2). See the supplementary material for other variants.

Similarly, inverse enrichment walks the nearest-neighbor pointers back-
wards to produce candidates for improving the NNF. The canonical algorithm
here is f−1. That is, compute the multi-valued inverse f−1 of function f . Note
that f−1(a) may have zero values if no patches point to patch a, or more than
k values if many patches point to a. We store f−1 by using a list of varying
length at each position. Again, to improve the current NNF, we rank our cur-
rent k best neighbors and all neighbors in f−1, producing an improved NNF f ′′:
f ′′ = min(f , f−1). Note that in most cases the distance function is symmetric, so
patch distances do not need to be computed for f−1. Finally we can concatenate
inverse and forward enrichment, and we found that f−1 followed by f2 is fastest
overall. The performance of these algorithms is compared in Figure 3.

In the case of matching different images A and B, inverse enrichment can be
trivially done. Forward enrichment can be applied by computing nearest neighbor
mappings in both directions; we leave this investigation for future work.

3.4 Rotations and scale

For some applications, such as object detection, denoising or super-resolution, it
may be desirable to match patches across a range of possible rotations or scales.
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Without loss of generality, we compare upright unscaled patch a in image A,
with patch b in image B that is rotated and scaled around its center.

To search a range of rotations θ ∈ [θ1, θ2] and a range of scales s ∈ [s1, s2], we
simply extend the search space of the original PatchMatch algorithm from (x, y)
to (x, y, θ, s), extending the definition of our nearest-neighbor field to a mapping
f : R2 7→ R4. Here f is initialized by uniformly sampling from the range of
possible positions, orientations and scales. In the propagation phase, adjacent
patches are no longer related by a simple translation, so we must also transform
the relative offsets by a Jacobian. Let T(f(x)) be the full transformation defined
by (x, y, θ, s): the candidates are thus f(x − ∆p) + T′(f(x−∆p))∆p. In the
random search phase, we again use a window of exponentially decreasing size,
only now we contract all 4 dimensions of the search around the current state.

The convergence of this approach is shown in Figure 3. In spite of searching
over 4 dimensions instead of just one, the combination of propagation and
random search successfully samples the search space and efficiently propagates
good matches between patches. In contrast, with a kd-tree, it is nontrivial to
search over all scales and rotations. Either all rotations and scales must be added
to the tree, or else queried, incurring enormous expenses in time or memory.

3.5 Matching with arbitrary descriptors and distance metrics

The PatchMatch algorithm was originally implemented using the sum-of-squared
differences patch distance, but places no explicit requirements on the distance
function. The only implicit assumption is that patches with close spatial
proximity should also be more likely to have similar best-nearest-neighbors,
so that PatchMatch can be effective at propagating good nearest neighbors
and finding new ones. This turns out to be true for a variety of descriptors
and distance functions. In fact, the algorithm can converge even more quickly
when using large-area feature descriptors than it does with small image patches,
because they tend to vary relatively slowly over the image. In general, the
“distance function” can actually be any algorithm that supplies a total ordering,
and the matching can even be performed between entirely different images —
the rate of convergence depends only on the size of coherent matching regions.
Thus, our matching is quite flexible.

In this paper we explore several examples. In Section 4.3 we implement
symmetry detection with a modified L2 patch distance that is robust to changes
in luminance. In Section 4.4, we perform label transfer by sampling a SIFT
descriptor at every pixel. Our matching algorithm performs a global search, so
two matched objects can be present in different regions of the image.

3.6 Parallel tiled algorithm

Barnes et al. proposed a parallel variant of PatchMatch using “jump flooding” for
the propagation phase [1]. This algorithm was intended for GPU usage. However,
on the CPU, this approach is less effective than serial propagation and converges
more slowly in each iteration.
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Fig. 4. Dataset of 36 input images for denoising.

On a multi-core architecture, we propose parallelizing PatchMatch by divid-
ing the NNF into horizontal tiles, and handling each tile on a separate core.
Because the tiles are handled in parallel, information can propagate vertically
the entire length of a tile in a single iteration. To ensure information has a chance
to propagate all the way up and down the image, we synchronize using a critical
section after each iteration. To prevent resource conflicts due to propagation
between abutting tiles, we write back the nearest neighbors in the last row of
the tile only after synchronization. Note that both propagation/random search
and forward enrichment can be parallelized using this tile scheme.

We observe a nearly linear speed-up, on our 8 core test machine. Our timing
values in this paper use only one core unless otherwise indicated. See the
supplementary material for details.

4 Vision applications

This section investigates several possible applications for the generalized Patch-
Match algorithm: denoising, clone detection, symmetry detection, and object
detection.

4.1 Non-local means denoising

For image denoising, Buades et al. [2] showed that high-quality results could
be obtained by non-local means denoising: finding similar patches within an
image and then averaging these. Subsequent work [24, 25] showed that this patch-
based method could be extended to obtain state-of-the-art results by performing
additional filtering steps. While Buades et al. [2] searched for similar patches only
within a limited search window, Brox et al. [26] showed that a tree-based method
could be used to obtain better quality for some inputs. However they do increase
the distance to far away patches so searching is still limited to some local region.

Our kNN algorithm can be used to find similar patches in an image, so it
can be used as a component in these denoising algorithms. We implemented the
simple method of Buades et al. [2] using our kNN algorithm. This method works
by examining each source patch of an image, performing a local search over all
patches within a fixed distance r of the source patch, computing a Gaussian-
weighted L2 distance d between the source and target patch, and computing a
weighted mean for the center pixel color with some weight function f(d).

To use our kNN algorithm in this denoising framework, we can simply choose
a number of neighbors k, and for each source patch, use its k-NN in the entire
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image as the list of target patches. To evaluate this algorithm, we chose 36 images
as our dataset (Figure 4). We corrupted these images by adding to each RGB
channel noise from a Gaussian distribution with σ = 20 (out of 256 grey levels).
If the dataset is denoised with Buades et al (using an 11x11 search window) the
average PSNR is 27.8. Using our kNN algorithm gives an average PSNR of 27.4,
if the number of neighbors is small (k = 16). Counterintuitively, our algorithm
gives worse PSNR values because it finds better matches. This occurs because
our algorithm can search the entire image for a good match, therefore in uniform
regions, the patch’s noise pattern simply matches similar noise.

One solution would be to significantly increase our k. However, we found
that Buades et al and our algorithm are complementary and both are efficient.
Therefore, we simply run both algorithms, and list all target patches found
by each, before averaging the patches under a weight function f(d). We train
the weight function on a single image and then evaluate on the dataset. This
combined algorithm has an average PSNR of 28.4, showing that our kNN
matching can improve denoising in the framework of Buades et al. The best
results are obtained on images with repeating elements, as in Figure 1.

We also compared our results with the state-of-the-art BM3D algorithm [24].
For our dataset, BM3D produced an average PSNR of 29.9, significantly out-
performing our results. However, we intentionally kept our denoising algorithm
simple, and hypothesize that more advanced algorithms [24, 25] that are based
on local search for speed, could do even better with our kNN algorithm.

4.2 Clone detection

One technique for digitally forging images is to remove one region of an image by
cloning another region. For example, this can be done using Adobe Photoshop’s
clone brush. Such forgeries have been a concern in the popular press of late, as
fake photos have been published in major newspapers.

Methods of detecting such forgeries have been proposed recently [11, 27].
These methods propose breaking the image into either square or irregularly
shaped patches, applying PCA or DCT to discard minor variations in the image
due to noise or compression, and sorting the resulting blocks to detect duplicates.

We can apply our kNN algorithm for the purposes of detecting cloned regions.
Rather than sorting all blocks into a single ordered list, we can consider for each
patch, its k-NN as potentially cloned candidates. We identify cloned regions by
detecting connected “islands” of patches that all have similar nearest neighbors.

Specifically, we construct a graph and extract connected components from
the graph to identify cloned regions. The vertices of the graph are the set of
all (x, y) pixel coordinates in the image. For each (x, y) coordinate, we create a
horizontal or vertical edge in the graph if its kNN are similar to the neighbors
at (x+ 1, y) or (x, y+ 1), respectively. We call two lists A and B of kNN similar
if for any pair of nearest neighbors (ax, ay) ∈ A and (bx, by) ∈ B, the nearest
neighbors are within a threshold distance T of each other, and both have a patch
distance less than a maximum distance threshold. Finally, we detect connected
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(a) original (b) forged (c) detected forgery

Fig. 5. Detecting image regions forged using the clone
brush. Shown are (a) the original, untampered image, (b)
the forged image, (c) cloned regions detected by our kNN
algorithm and connected components. Imagery from [11].

Fig. 6. Symmetry detec-
tion using a regular lattice
(superimposed white dots).

components in the graph, and consider any component with an area above a
minimum cloned region size C (we use C = 50) to be a cloned region.

Examples of our clone detection implementation are shown in Figure 5. Note
that cloned areas are correctly identified. However, the area of the clone is not
exactly that of the removed objects because our prototype is not robust to noise,
compression artifacts, or feathering. Nevertheless, we believe it would be easy to
adapt the algorithm to better recover the complete mask.

4.3 Symmetry detection

Detecting symmetric features in images has been of interest recently. A survey
of techniques for finding rotational and reflective symmetries is given by
Park et al. [28]. Methods have also been developed for finding translational
symmetries in the form of regular lattices [8].

Because our kNN algorithm matches repeated features non-locally, it can
be used as a component in symmetry detection algorithms. Symmetries have
been detected using sparse interest points, such as corner detectors or SIFT
or edge interest points [28]. In contrast to sparse methods, our algorithm can
match densely sampled descriptors such as patches or SIFT descriptors, and
symmetries can be found by examining the produced dense correspondence field.
This suggests that our algorithm may be able to find symmetric components even
in the case where there are no sparse interest points present.

To illustrate how our method can be used for symmetry detection, we propose
a simple algorithm for finding translational symmetries in the form of repeated
elements on a non-deformed lattice. First we run our kNN algorithm. The
descriptor for our algorithm is 7x7 patches. We calculate patch distance using
L2 between corresponding pixels after correcting for limited changes in lighting
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Fig. 7. Detecting objects. Templates, left, are matched to the image, right. Square
patches are matched, searching over all rotations and scales, as described in Section 3.4.
A similarity transform is fit to the resulting correspondences using RANSAC.

by normalizing the mean and standard deviation in luminance to be equal. We
find k = 16 nearest neighbors, and then use RANSAC [29] to find the basis
vectors v1 and v2 that form the lattice. We classify as inliers the coordinates
where the distance between the lattice and all of the kNN is small. A result of
our symmetry detection is shown in Figure 6.

4.4 Object detection

Methods for object detection include deformable templates [30], boosted cas-
cades [31], matching of sparse features such as SIFT [5], and others. Our algo-
rithm can match densely sampled features, including upright patches, rotating
or scaled patches, or descriptors such as SIFT. These matches are global, so that
correspondences can be found even when an object moves across an image, or
rotates or scales significantly. Provided that the descriptor is invariant to the
change in object appearance, the correct correspondence will be found.

In Figure 7 we show an example of object detection. Similar to the method
of Guo and Dyer [32], we break the template into small overlapping patches.
We query these patches against the target image, searching over all rotations,
and a range of scales, as per Section 3.4. A similarity transform is fit from the
template to the target using RANSAC. We calculate patch distance using L2,
after correcting for lighting as we did in symmetry detection. The result is that
we can find objects under partial occlusions and at different rotations and scales.

For greater invariance to lighting and appearance changes, a more complex
local appearance model is needed. However it is straightforward to incorporate
more complex models into our algorithm! For example, suppose we have
photographs of two similar objects with different appearance. We might wish
to propagate labels from one image to the other for all similar objects and
background. The SIFT Flow work [33] shows that this can be done using
SIFT features correspondence on a dense grid combined with an optical-flow like
smoothness term. The resulting field is solved using a coarse-to-fine approach
and global optimization (belief propagation). Like most optical flow methods,
SIFT Flow assumes locality and smoothness of the flow and thus can fail to
align objects under large displacements. As shown in Figure 8, we can correctly
transfer labels even when objects move a large amount. We do this by densely
sampling SIFT descriptors and then matching these as described in Section 3.5.



The Generalized PatchMatch Correspondence Algorithm 13

(a) (b) (c) (d) (e) (f) (g)
Fig. 8. Label transfer using our method with SIFT descriptors. (a) car A; (b) car B;
(c) labeled A; (d) A warped to match B using SIFT Flow [33] as well as the transferred
label mask in (e); (f) A warped to B using our method and the transferred label mask
in (g). Our flow is globally less smooth but can handle arbitrarily large motions.

5 Discussion and future work

This paper generalizes the PatchMatch algorithm to encompass a broad range of
core computer vision applications. We demonstrate several prototype examples,
but many more are possible with additional machinery. For example, example-
based super-resolution can use PatchMatch, using a single [34] or multiple [12]
images. Section 4.4 shows an example of transferring labels using correspon-
dences without a term penalizing discontinuity, but in other settings a neigh-
borhood term is necessary for accurate optical flow [3, 6]. Finally, although we
demonstrate object detection, our speed is not competitive with the best sparse
tracking methods. It is possible that some variations of this approach using fewer
iterations and downsampled images could be used to provide real-time tracking.
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