
View and Path Planning for Scaling 3D

Acquisition to Many Objects

Xinyi Fan

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

Adviser: Professor Szymon Rusinkiewicz

June 2018

c© Copyright by Xinyi Fan, 2018.

All rights reserved.

Abstract

Demand for high-volume 3D scanning of real objects is rapidly growing in a wide

range of applications, including quality-control for manufacturing, online retailing,

entertainment with virtual reality, as well as archaeological documentation and re-

construction. Fully realizing the potential of 3D acquisition requires scanning large

numbers of objects with high quality and at reasonable cost. Although mature tech-

nologies exist for high-fidelity 3D model acquisition, deploying them at scale continues

to require non-trivial manual labor.

This dissertation focuses on studying practical 3D acquisition for large numbers

of objects. The problem is challenging, because it is hard to automatically find a

proper set of scanner views that can not only completely cover the surface of multiple

objects with different shapes, but also capture high fidelity surface model of the

objects. Furthermore, it is non-trivial to position a 3D scanner at each of the desired

views accurately and efficiently.

We propose a prototype system for multi-object 3D acquisition, which allows non-

expert users to scan large numbers of physical objects within a reasonable amount of

time, and with greater ease. Our system uses novel planning algorithms to control a

structured-light scanner mounted on a calibrated motorized positioning system. We

demonstrate the ability of our prototype to safely, robustly, and automatically acquire

3D models for large collections of small objects.

We propose an objective function for automated view and path planning, taking

into account both accuracy and efficiency of the scanning system. We analyze dif-

ferent approaches to optimize for the objective, and discuss their performance and

practicality.

In addition, we address the problem of surface inaccessibility to further refine our

multi-object 3D acquisition system. We explore solutions for improvement from both

the hardware and software ends.

iii

Acknowledgements

First, and foremost, I would like to thank my advisor, Szymon Rusinkiewicz, for his

guidance, support, and encouragement throughout my entire journey at Princeton.

This work would not have been possible without his thoughtful insight and endless

patience.

I would also like to thank my committee, consisting of Tom Funkhouser, Adam

Finkelstein, Peter Ramadge, and Yuxin Chen, for their time and interest in this work,

and their constructive feedback.

Great thanks to Benedict Brown and Linguang Zhang, for their aid and support

in the project that led to this thesis. Thanks to Tim Weyrich, Camillo J. Taylor,

James Bruce, Joanna Smith, and Lara Laken, for their suggestions and feedback

about this work. Thanks to David Radcliff from EE Lab, Larry McIntyre and Barry

Runner from the machine shop, for their technical support. I was fortunate to work

on various projects with a number of great collaborators: Benedict Brown, Sema

Berkiten, Linguang Zhang, Vladimir Kim, Jovan Popović, Amit Bermano, James

Bruce, and Fanglu Liu. Even though not all of these projects directly go into this

thesis, I value the experience of working with them, which has a great impact on the

shaping of my research and career. Special thanks to Vladimir Kim and James Bruce,

for their mentorship during my internships at Adobe Creative Technology Lab and

Google Research.

During my PhD years, I have had the honor to be a part of the Princeton Graphics

and Vision Group, which has been an invaluable resource of ideas, support, and

friendship. I am grateful to all the members from the group, including Sema Berkiten,

Cynthia Lu, Thiago Pereira, Ohad Fried, Nora Willett, Maciej Halber, Linguang

Zhang, Fisher Yu, Yiming Liu, Tianqiang Liu, Pingmei Xu, Elena Sizikova, Kyle

Genova, Riley Simmons-Edler, Zeyu Jin, Huiwen Chang, Shuran Song, Yinda Zhang,

Andy Zeng, Amit Bermano, Angel Xuan Chang, Manolis Savva, Adam Finkelstein,

iv

Tom Funkhouser, Olga Russakovsky, Jianxiong Xiao, Aleksey Boyko, Linjie Luo,

Vladimir Kim, KatieAnna Wolf, Reid Oda, and many others. Thanks for forming all

the coffee and tea “trains”. Special thanks go to those who have been my officemates,

and have continuously supported my project by bearing with the noise made by the

stepper motors in earlier versions of my scanning system. I am also grateful to all the

reviewers and participants in the TigGraph retreats over the years, for their helpful

suggestions and feedback on my research projects.

I thank the following funding sources for sponsoring this work: National Science

Foundation under grant CCF-1027962, IIS-1012147, and IIS-1421435.

I would also like to thank Jeffrey Dwoskin for the LATEX template and document

class that has been used in the creation of this work.

Last but not least, thanks to all my dear friends, for making my PhD life a happy

one. My deepest gratitude goes to my family, for their endless love and support. I

dedicate my thesis to them.

v

To my family.

vi

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . ix

List of Figures . x

1 Introduction 1

1.1 3D Acquisition at Scale . 1

1.2 Statement of Problem . 2

1.3 System Design . 4

1.4 Dissertation Outline . 7

2 Prototype Multi-object 3D Acquisition System 9

2.1 System Design for Scanning Multiple Objects 10

2.2 System Pipeline . 11

2.3 Scene Exploration . 14

2.4 Positioning in the “World” . 19

3 Scanning 23

3.1 3D Scanning Techniques . 23

3.2 Implementing A Structured-Light Scanner 25

3.2.1 Illumination Pattern Design 25

3.2.2 Scanner Calibration . 28

vii

4 Planning 30

4.1 Related Work . 30

4.2 Objective Setup . 32

4.2.1 Search Space Discretization 33

4.2.2 View Quality Metric . 35

4.2.3 Overlap-Aware Heuristics . 37

4.3 Sequential View and Path Optimization 41

4.3.1 Optimizing the View Planning Objective Function 41

4.3.2 Discussion on Performance . 44

4.3.3 Path Finding . 47

4.4 Joint Optimization . 47

4.4.1 Joint View Selection for Multiple Objects 48

4.4.2 Joint View and Path Planning 55

5 System Evaluation 64

5.1 View Planning Evaluation . 64

5.2 Path Planning Evaluation . 67

5.3 System-Level Evaluation . 68

5.4 Object Variety Evaluation . 70

6 Addressing Surface Inaccessibility 75

6.1 Augmented Hardware Design . 76

6.2 Iterative View Planning . 78

6.2.1 New Pose Suggestion . 79

6.2.2 View Quality Re-evaluation 80

7 Conclusion, Discussion, and Future Work 84

Bibliography 88

viii

List of Tables

2.1 Default setting for the user-adjustable candidate view sampling param-

eters. 18

5.1 Comparison of total time for our view planning vs. naive strategies

employing a fixed number of views per object. 65

5.2 Comparison of total distances and times for our TSP-based path plan-

ning vs. a naive path planning strategy. 67

ix

List of Figures

1.1 Scan an object from one point of view. 3

1.2 3D acquisition pipeline. 4

1.3 Typical existing 3D acquisition systems, with references being (a) [9],

(b) [35], (c) [2], (d) [45], (e) [61], (f) [62], (g) [3], and (h) [1]. 6

2.1 The physical layout of our prototype scanning system. 11

2.2 Illustration of major system components. 12

2.3 Hardware devices of the compact structured-light scanner with dimen-

sions. 14

2.4 Four binary masks of the four toy soldiers scene obtained from the

webcams for silhouette carving. 15

2.5 A scene with four toy soldiers (left) and the approximate models ob-

tained via silhouette carving (right). 16

2.6 A scene with three flat objects (left) and the approximate models ob-

tained via extruding the 2D contours, where mesh triangle edges are

shown to better present the model shape (right). 16

2.7 An top view visualization of candidate views computed around four

objects. 17

2.8 An top view visualization of candidate views adaptively computed

around a long and thin objects. 18

2.9 Actuators in our positioning system. 19

x

2.10 The positioning system, with a calibration target on the scanning plat-

form. 20

2.11 The AprilTag pattern overlaid with calibrated centers of the tags (left)

and the centers reprojected into the world (right). Tag ids are color-

coded from blue to red. 21

2.12 Zoomed in view of the calibrated tag centers reprojected in the world,

showing the variation across the scanning platform. 22

2.13 The initial scan poses provided by the scanner calibration (left), to-

gether with the final result of registration (right). 22

3.1 Stacked gray code column stripe patterns to split the illuminated space

into small regions. 26

3.2 Stacked phase shifting column patterns that simulates a sine wave and

can interpolate between adjacent light planes defined by the binary

stripe patterns. 27

3.3 Diamond pixel for vertical, horizontal, and diagonal lines arranged in

the projector’s light engine. http://www.ti.com/lit/ug/dlpu011f/

dlpu011f.pdf . 27

3.4 Both the gray code patterns (above) and the phase shift patterns (be-

low) are rotated for 45◦ to align with the mirror arranging direction in

the projector. 28

3.5 The checkerboard pattern used for camera and projector calibration,

where the three dots define the center and orientation of the pattern. 29

4.1 The objective function in Equation 4.4 examines surface point samples

(left) and views selected from a given candidate set (right) to measure

the goodness of a configuration. 34

xi

http://www.ti.com/lit/ug/dlpu011f/dlpu011f.pdf
http://www.ti.com/lit/ug/dlpu011f/dlpu011f.pdf

4.2 View assignment quality visualization with different objective func-

tions. Each scanner view is represented by a camera-projector pair of

frustums connected with a dotted line. The object model is represented

by surface samples with the view quality value encoded according to

the jet color map, as shown in (d). Red means good view quality and

green means poor. 39

4.3 Given a scene of “dragon fighting armadillo” with increasing distance

between the two objects (a), we visualize the surface sample view qual-

ity based on the corresponding selected views (b). The close-up views

show that, as the armadillo moves from “close” (left) to “near” (mid-

dle), and then “far” (right) from the dragon, the view quality of the

head of the dragon improves. 40

4.4 The optimal objective value achieved by different approaches with

varying γ, with higher value indicating better overall view quality. . . 46

4.5 The approximate model of the 8 objects used for view planning. . . . 49

4.6 Comparison between the view selection objective value Ev in log space

by optimizing for each object independently and by optimizing for all

the objects together, with varying desired view quality parameter ω. . 50

4.7 Comparison between the average view quality achieved by optimizing

for each object independently and by optimizing for all the objects

together, with varying desired view quality parameter ω. 51

4.8 Comparison between the per-object number of views selected by op-

timizing for each object independently and by optimizing for all the

objects together, with varying desired view quality parameter ω. . . . 53

4.9 Comparison on the CPU time between optimizing for each object inde-

pendently and by optimizing for all the objects together, with varying

desired view quality parameter ω. 54

xii

4.10 Comparison between path length L achieved by jointly and sequen-

tially optimizing Ev and Ep, with varying desired view quality param-

eter ω. 56

4.11 Comparison between jointly and sequentially optimizing Ev and Ep from

the overall planning objective E = Ev + Ep in log space, with varying

desired view quality parameter ω. 57

4.12 Comparison between the average per-object view quality ω ·Q achieved

by jointly and sequentially optimizing Ev and Ep, with varying desired

view quality parameter ω. 58

4.13 Comparison between the number of views selected by jointly and se-

quentially optimizing Ev and Ep, with varying desired view quality pa-

rameter ω. 59

4.14 Comparison on the breakdown in the objective change introduced by

the joint optimization, with varying desired view quality parameter ω. 61

4.15 Visualization of a path (296 seconds long, 57 views) obtained by the

joint approach (left) and a path (336 seconds long, 54 views) obtained

by the sequential approach (right). 62

4.16 Comparison on the CPU run time between the joint and the sequential

approaches (left) and comparison between the saved runtime for the

acquisition system and the extra CPU time introduced by using joint

view and path planning (right). 63

5.1 Front (left) and back (right) side of the reconstructed models of four

objects scanned simultaneously with adaptive view planning. Models

with the same color correspond to each other. 65

xiii

5.2 We compare the scans obtained using our view planning (right) to those

acquired with a naive method employing five (left) or nine (middle)

views, equally spaced around the centroid of the object. Our view

planning result also selects nine views in this case. 66

5.3 Comparison of our TSP-based path planning (a) and naive path plan-

ning (b). The former reduces motion time by approximately 15%. . . 67

5.4 The two plots show the total amount of time a human interacted with

the scanning system (left) and the total amount of idle time when the

human did not need to attend the system between two adjacent inter-

actions (right) on scanning batches of fresco fragments using both our

system and the turntable system. Our system required less interaction

time overall and afforded far larger gaps between interactions during

which the operator was free to do other work undisturbed. 68

5.5 Reconstructed models of increasingly-large sets of fresco fragments, as

used in our scalability experiment. The batch size is, from left to right,

9, 16, and 25. 69

5.6 We scan a scene with ten toy soldiers based on views (a) planned

from approximate, silhouette-carved models (b), and reconstruct high

resolution 3D models (c). Each toy soldier is about 5 cm tall, and our

system reconstructs sub-millimeter geometric detail (d). 70

5.7 A 20 cm tall angel figurine (left) is scanned and reconstructed (right)

using our system, with the object platform adjusted to three heights. 72

5.8 Two differently sized soldiers (left) are scanned together and recon-

structed (right) with our system. 72

5.9 A flower with a long, thin stem (a) is scanned and reconstructed (d)

with our system. Elongated objects such as this are a worst case for a

turntable-based system with equally-spaced views (c). 73

xiv

5.10 An 8 × 6 × 3 cm reproduction cuneiform tablet (left) is scanned and

reconstructed (right) with our system. 74

6.1 Detail in certain region cannot be perfectly reconstructed due to miss-

ing data caused by surface inaccessibility. 76

6.2 An imagined augmentation to the current acquisition system design,

with a transparent scanning platform and a coupled scanner from below. 77

6.3 We scan the front side of an object using our system as usual but the

back side through a sheet of transparent thin acrylic (left) and obtained

the final models nicely reconstructed for both the front (right) and back

(middle) side, which are then merged together. 78

6.4 An iterative 3D acquisition pipeline. 78

6.5 The reconstructed 3D model (left) and its convex hull (right. 80

6.6 The reconstructed 3D model (left) re-oriented at different stable poses

(middle and right). 80

6.7 The view quality visualization on point samples representing the object

before (left) and after (right), where red stands for good view quality

and green for bad. 81

6.8 The view quality visualization on point sampled from the reconstructed

model which is oriented into two new stable poses suggested by Algo-

rithm 2, where red stands for good view quality and green for bad. . . 82

6.9 Side by side comparison among the reconstruction after 1 iteration

(left), 2 iteration (middle), and the merged data acquired from iteration

2 (right). 83

xv

Chapter 1

Introduction

“It’s supposed to be automatic, but

actually you have to push this

button.”

John Brunner

1.1 3D Acquisition at Scale

3D acquisition, namely measuring the 3D shape and reconstructing the 3D digital

model of real-world objects, has made realistic capture possible. Given the dimen-

sionality of the world we observe, 3D models naturally become a common and even

expected mode of representing tangible objects for a variety of purposes. The com-

pleteness and accuracy of the data obtained from 3D acquisition can potentially

benefit applications across a wide range of fields:

• Industrial inspection: Non-contact 3D scanning has become an important

tool for quality control in manufacturing. While manufacturers are faced with

the challenge of mass-produce innovative products with high quality at a rapid

pace, fast and precise 3D measurement at scale would provide solutions to

automatic industrial inspection.

1

• Online and automated retail: 3D digital models with high fidelity could

be created for different types of commodities. This would enable retailers to

advertise their products in a more realistic way to customers shopping online.

Such 3D product catalogs could further spur the development of automated

retailing technology.

• Cultural heritage digitization: Digitizing the shape of artifacts en masse

would enable efficient documentation in a precise and permanent form. Such

digital collections would create easy viewing access for a larger audience re-

gardless of location. In addition, new research opportunities could be explored,

since the digital model could be studied without fear of damaging the physical

artifacts.

• Virtual, augmented, and mixed reality: Conveniently acquiring the 3D

digital model for real-world objects would naturally yield easy 3D content cre-

ation. Combining this with emerging technologies like virtual, augmented, and

mixed reality would inspire more exciting applications.

Fully realizing the potential of 3D acquisition, however, will require scanning large

numbers of objects with high quality and at reasonable cost. While scan quality and

speed are continuously being improved by state-of-the-art scanning systems [35, 45,

9, 63], their dependence on manual labor remains a major bottleneck to scalability.

This dissertation focuses on studying the problem of practical 3D acquisition at scale.

1.2 Statement of Problem

Before we start delving into solving the problem of acquiring the 3D models for

thousands of objects, let’s first look at how a typical 3D acquisition process happens

for a single object. As illustrated in Figure 1.1, given an arbitrary object, a 3D scanner

2

can be placed in the “view space” around it, to capture the depth information about

the object surface. In order to obtain a complete 3D model of the object, the scanner

object

scanner

view space

Figure 1.1: Scan an object from one point of view.

needs to scan the object surface from more than one point of view. In our context,

a view specifies the intrinsic parameters of the scanner, as well as the relative pose

between the scanner and the object, assuming the object to be la rigid body. Data

obtained from multiple views are to be registered in a common coordinate system,

and integrated into a single complete model, representing the 3D shape of the object.

The use of a single 3D scanner, which is mostly the case, the relative pose between

the object and the scanner needs to be altered to achieve multiple views.

To obtain a complete model of an object with perfectly high fidelity, one could

imagine scanning the object from an infinite number of views sampled in the view

space around the object. In practice, however, it takes non-trivial time to scan per

view, and therefore, it is necessary to select only a subset of all possible views for the

scanner to scan from. The process of determining a suitable set of views for a scanner

to capture the complete surface of an object is defined as view planning. Given the

set of views selected through view planning, the process of altering the relative pose

between the scanner and the object is usually called positioning. View planning, and

3

positioning, together with the following scanning and reconstruction, constitute a

general pipeline of a 3D acquisition system, as shown in Figure 1.2.

View Planning Positioning Scanning ReconstructionObjects 3D Models

Figure 1.2: 3D acquisition pipeline.

Our goal is to make 3D acquisition practical in a scenario with large numbers of

objects. It is non-trivial to generalize the pipeline in Figure 1.2 from a single object

to many. The key obstacle preventing this from scaling up in fact, is the manual

effort involved, in particular for selecting and altering the views. In this dissertation,

we study different approaches to solving the view planning problem, which applies

to arbitrary multi-object scanning scenarios. In addition, we propose an end-to-end

3D acquisition system, composed of a view planning module, a positioning system, a

scanner, and the subsequent reconstruction, to validate the practicality of our design.

1.3 System Design

We argue that the key to making 3D acquisition at scale practical is to reduce the

manual effort required per object. This is in contrast to the design goals of many

existing 3D acquisition systems. Different strategies have been adopted to select views

and alter the pose between the scanner and the object being scanned, but none of

them can be efficiently applied to a multi-object situation to obtain high-fidelity data:

• Fixed scanner setup: Many existing scanning systems are single object ori-

ented. Among those, one typical design is to fix the scanner to face a motorized

turntable, which can carry the object being scanned and rotate to achieve dif-

ferent views. For example, Figure 1.3(a) shows the laser scanner used by Brown

et al. in their work [9]. In such a setup, the viewing angle between the scanner

4

and the center of the turntable is fixed, which limits the degree of freedom in

the relative poses that can possibly be achieved between the object and the

scanner. This is likely to yield inaccessible parts for the scanner to reach, es-

pecially when scanning objects with more complicated surface shape, such as

concavities. To start a scanning sequence in such a setup, a user needs to inter-

acts with the system every few seconds or minutes by positioning a new object

and occasionally rotating the object to uncover parts that could not be seen.

In particular, to scan the bottom of an object, the user needs to flip the object

on the turntable.

• Gantry-support scanner: A gantry-support 3D scanner has been designed in

the Digital Michelangelo Project [35] to capture the delicate surface geometry

of large statues. During the scanning, the object (statue) is kept static, and

a gantry is used to carry the scanner to reach different views surrounding the

object (Figure 1.3(b)). The movement of the scanner is carefully controlled by

expert human users.

• Hand-held scanners: Another category of systems [45, 2] allow the user to

hold either the scanner or the objects, as shown in Figure 1.3(c) and (d). The

hand-held setup makes it easy to control where to capture data from, and thus

solves the problem of covering the complete object surface. At the same time,

however, the required human interaction prevents the scanning from scaling up.

Recent work by Wu et al. [61] employs robotic arms to hold the scanner and the

object (Figure 1.3(e)), which eliminates the manual effort involved in the task of

scanning a single object, but switching from one object to another has not been

addressed. In this case, either a human operator or a robot capable of moving

the object is necessary. Further more, physical contact may rise as another

potential issue when the objects being scanned are fragile and/or precious.

5

• Mobile robotic scanning systems: It has been increasingly common for 3D

scanning devices to be integrated into mobile robotic systems to collect visual

information about certain environments [62, 3, 28]. In these setups, the scan-

ner(s) are mounted on motorized agents, e.g. humanoid robots (Figure 1.3(f)),

cars (Figure 1.3(g)), or drones (Figure 1.3(h)). The agents’ moving trajectories

are either controlled by human operators or some auto-navigation programs [43].

These techniques can be especially useful for applications regarding scene-level

acquisition, such as civil mapping and indoor reconstruction. Object level ac-

quisition, on the other hand, requires more careful planning and finer resolution.

(b) [Levoy et al. 2000]

(d) [Rusinkiewicz et al. 2002] (e) [Wu et al. 2014]

(a) [Brown et al. 2008] (c) Artec 3D scanner

(f) [Xu et al. 2015]

(g) Google street view car (h) 3DR integrating with DJI drones

Figure 1.3: Typical existing 3D acquisition systems, with references being (a) [9],
(b) [35], (c) [2], (d) [45], (e) [61], (f) [62], (g) [3], and (h) [1].

6

In summary, it is not trivial to adapt the scene level acquisition systems to perform

high quality object scanning, as the view planning and positioning requirement can

be very different. Streamlining any existing single object oriented scanner, on the

other hand, requires reducing the number of user interactions, not just their length.

Our system: We present a system for automatically scanning multiple 3D objects

at a time. In our system, the user places several to several-dozen objects in the

working volume, and the system automatically acquires their rough shapes and po-

sitions. The system then plans an optimal set of views to scan the objects at high

quality, as well as the exact path along which the scan head should move. Using a

3-degree-of-freedom positioning system, our scanner automatically performs the 3D

scans, restricting the necessary user interaction to placing the objects initially, then

flipping them over halfway through scanning if necessary. The latter interaction could

be avoided by placing the objects on a sheet of glass and using a second scan head

to scan from below; we run a preliminary experiment to explore the feasibility of this

further refinement in this paper. We also explore scanning of larger objects by adding

a manually-adjusted fourth degree of freedom.

The main benefit of our system, therefore, is that it allows the entire scanning

process to happen with no human interaction. In contrast, scanning the same number

of objects one-by-one with an existing system might require a similar total scanning

time, but with human interaction required every few seconds or minutes.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes the

workflow of our automated multi-object 3D acquisition system prototype, and jus-

tifies major design decisions. It also introduces the design and implementation for

the positioning component of the acquisition system, and elucidates the process of

7

registering all the sensors and the motors of the acquisition system to a common co-

ordinate system. Chapter 3 describes the 3D scanning techniques used in our system,

with detail about how the structured-light based scanner is implemented. Chapter 4

analyzes the view and path planning problem for multi-object scanning. It starts by

formulating the objective function in consideration of how well the object surface is

viewed, as well as the time budget. Different approaches to optimize for the objec-

tive function are studied and compared, including (1) sequentially solving the view

planning and the path planning problem, and (2) jointly solving the view and path

planning problem. Chapter 5 evaluates each component of our acquisition system, as

well as system level performance. Both visual and quantitative results are presented.

Chapter 6 further studies the refinement for the multi-object 3D acquisition system,

by addressing the problem of surface inaccessibility. Possible solutions are explored,

including both improving the hardware design for the system, and refining the view

planning by making it iterative. Finally, Chapter 7 presents conclusions about this

work, discusses its limitations, and suggests ideas for future work.

8

Chapter 2

Prototype Multi-object 3D

Acquisition System

“Moreover, since the sun remains

stationary, whatever appears as a

motion of the sun is really due

rather to the motion of the earth.”

Nicolaus Copernicus

Capturing from multiple view points is necessary for a scanner to acquire a com-

plete and high-fidelity 3D model of an object. The choice of views directly influences

the overall scan quality since it determines whether there is full coverage of the object

and whether good data can be captured for every part of every object (scan quality is

generally affected by the object’s distance from the scanner and angle of incidence).

Most existing motorized scanning systems uniformly sample view space, often by ro-

tating a turntable. Objects with deep concavities or other irregularities often need

very dense sampling in this scenario, even if large parts of the object are convex and

can be covered by few scans.

9

Our system, in contrast, optimizes the number and position of views using a low-

resolution overview model acquired with a set of webcams. Because we move the

(small) scan head rather than the (large) table of (potentially fragile or unsteady)

objects, we can support a wider range of motion and obtain more optimal views. Our

scanner supports automatic motion with three degrees of freedom — two directions of

horizontal translation as well as rotation around the vertical axis — as a reasonable

compromise between engineering complexity and flexibility. It works well for scanning

collections of small objects. For larger objects that need scans from different heights,

we can manually raise or lower the scanning platform between sets of scans. In any

case, the view planner handles arbitrary degrees of freedom if the scanning stage

provides them.

2.1 System Design for Scanning Multiple Objects

Figure 2.1(left) illustrates the physical layout of our scanning system [18]. The objects

are placed on a flat, stationary platform, with the scanner mounted overhead at a

fixed, 45◦ tilt, as shown in Figure 2.1(right). The scanner has three degrees of freedom

of motion, which allows it to translate in the x and y directions (parallel to the

platform) and rotate about the z axis. The tilt and height are both fixed, although

they can be adjusted manually to accommodate objects of different sizes.

Automatic scanning systems typically move either the object or the scan head

in order to obtain multiple views. Moving the object is more common, because a

motorized turntable works well for single objects, is relatively easy to build, and does

not take much space. Alternatively, robot- or vehicle-mounted scanners work well for

navigation applications and for scanning buildings and large outdoor scenes.

Scanning many closely spaced, small objects at once falls into neither of these

categories. Full coverage requires a denser set of views than a turntable can provide.

10

Figure 2.1: The physical layout of our prototype scanning system.

The scanning stage would need, at a minimum, to move forward, back, and side-

to-side, as well as rotating around its axis. To prevent objects from tipping over,

breaking, or crumbling, vibrations would need to be damped. Because the scan head

is small and can tolerate vibration, we believe that moving the scan head is a simpler

and cheaper option to engineer.

A free-moving robot would run into a different problem in our scenario: it is an

alternative way to move the scan head rather than the objects, but it would still need

to navigate between the objects. Unless the objects are spaced far apart, this is a

physical impossibility.

2.2 System Pipeline

The design of our automatic acquisition system follows the work-flow shown in Fig-

ure 1.2 and Figure 2.2. The system starts with a scene exploration process, which

examines the shapes and poses of the objects to be scanned. This information is

passed to the view planning algorithm, which outputs an optimized set of scanner

poses. Following an optimized path, the scanner is then brought to these desired poses

by a calibrated positioning system and stops at each to perform a scan. Standard

11

registration and integration algorithms are applied to the captured data to generate

high-fidelity 3D models for the objects.

(a) System Layout (b) View and Path Planning

(c) Structured-light Scanning (d) Acquired 3D Models

Figure 2.2: Illustration of major system components.

Scene exploration. Our system starts by finding the rough geometry of all the

objects in the scene, then generating a set of candidate scanner views that will be a

superset of the final selected views. The availability of cheap sensors makes it possi-

ble to quickly acquire sufficient information about the scene to enable view planning.

Specifically, with the objects placed on the scanning platform, we use a set of fixed

calibrated webcams to capture the layout of the objects from the top, then perform

12

silhouette carving [33] to obtain approximate object models for the view plan. We

present the design and implementation of the scene exploration in the following sec-

tion (2.3).

View planning. Based on the rough models produced by the scene exploration

stage, we plan an optimal set of scanner poses (also referred as views). These adap-

tively cover the accessible part of the objects, while also ensuring a fair amount of

overlap between adjacent views. Our view planning selects the best views by optimiz-

ing a view-quality-based objective function. Details of the view planning are presented

in Chapter 4 and 6, which discusses several alternative approaches for optimizing the

same objective.

Path planning and positioning. With the set of best views computed by view

planning, we use a calibrated motion system to position the scanner at the desired

poses. Due to stability concerns we assume that the scanner moves at a moderate

speed, and hence in a scaled-up scenario with a large number of objects, the total

travel time will be non-trivial. This motivates us to equip the positioning system

with a path-planning component, which computes an approximate shortest path to

traverse all the desired scanner poses. We discuss our positioning system in Section 2.4

and the path planning in Chapter 4.

Scanner setup. Once we have positioned the scan head, we acquire 3D data using

a standard structured-light technique adapted from the work of Taylor [54]. More

detail will be discussed in Chapter 3. As illustrated in Figure 2.2c and Figure 2.3, the

scanner consists of a compact camera (a 3.2-megapixel PointGrey Flea3) and projec-

tor (a 0.4-megapixel TI DLP LightCrafter), mounted at an angle of approximately

20◦ to each other. Both devices are compact enough to be attached to the positioning

system, and the center of the rig is attached to the rotational axis of the position-

13

(a)TI DLP LightCrafter (b) PointGrey Flea3

117mm

30mm

Figure 2.3: Hardware devices of the compact structured-light scanner with dimen-
sions.

ing system. Details of the scanner implementation and calibration are discussed in

Chapter 3.

Registration and integration. We adopt standard techniques to register and

integrate the scanned data into a complete 3D surface model. We perform ICP [47]

to align multiple scans of a single object, with the initial poses provided by the

calibrated positioning system. The aligned meshes are merged into a single complete

model using VRIP [14] and screened Poisson surface reconstruction [30].

2.3 Scene Exploration

We perform a scene exploration step to obtain an approximate model of the scene

with proxy geometry for all objects to be scanned. Our system generates a set of

candidate scanner views based on this rough geometry, and passes both the rough

geometry and candidate views to the view planner.

Approximate object models. The objects are placed on the scanning platform,

which is covered in black cloth for ease of object segmentation. Four static, calibrated

webcams positioned around the platform capture images of the scene from above.

14

The webcam poses are calibrated using the patterns in Figure 2.10, which will be

described in Section 2.4. We run background subtraction to segment the objects

from the captured images — Figure 2.4 shows the object masks. Silhouette carving

Figure 2.4: Four binary masks of the four toy soldiers scene obtained from the web-
cams for silhouette carving.

is performed on these masks, and the carved volume surfaces are triangulated into

meshes, where the (user-specified) n largest connected components are detected as

the approximate models, as illustrated in Figure 2.5. We use a 200× 200× 200 voxel

grid and have not observed any view planning problems from missing data, but it

is possible to expose the grid size as a parameter to handle objects with finer detail

such as thin protrusions.

For flat objects we simplify the carving process by extracting 2D contours and

extruding them upwards by a user-specified height to approximate the 3D shapes, as

shown in Figure 2.6. The 2D contours are extracted from the masks and simplified

using a dynamic programming based polygon approximation algorithm [16]. In our

15

experiments, view planning has never been sensitive to variations in the thickness to

which we extrude the contours.

Figure 2.5: A scene with four toy soldiers (left) and the approximate models obtained
via silhouette carving (right).

Figure 2.6: A scene with three flat objects (left) and the approximate models obtained
via extruding the 2D contours, where mesh triangle edges are shown to better present
the model shape (right).

We believe that depth sensors may also provide a solution for obtaining rough 3D

models, and in some situations they may work better than silhouette carving. For

small objects, however, we observe that the resolution of currently available depth

sensors, such as Kinect, is inadequate to improve upon the models produced by

silhouette carving.

Candidate scanner views. Our view planning approach (discussed in Chapter 4)

is based upon selecting a subset of available views that provide sufficient coverage

of the 3D surface of an object. To generate these candidate views, we first fit an

16

elliptical cylinder to the approximate object model, then dilate the ellipse by several

different amounts corresponding approximately to the scanner’s “standoff” (i.e., the

distance between the camera position and points ranging from the front to the back

of the scanner’s working volume). The candidate scanner positions are obtained by

uniformly sampling angles on the ellipses. At each potential scanner position, we

consider a number of scanner orientations centered around the direction facing the

middle of the object. Figure 2.7 shows an example of candidate views computed for

four objects. The view planner selects a small subset of these candidate views that

provides both complete coverage of the object and enough overlap between views to

support scan registration.

Figure 2.7: An top view visualization of candidate views computed around four ob-
jects.

In our current setup, the user-adjustable parameters for candidate view sampling

are the radii of the ellipses around which we select views, the different heights of the

scanner (constant for small objects), the angular density of views around each object,

17

Figure 2.8: An top view visualization of candidate views adaptively computed around
a long and thin objects.

and the maximum angular deviation of the scanner from each object center. The

angular deviation can be increased when the object shape is extreme, e.g. the long

thin geometry as shown in Figure 2.8 and 5.9. Table 2.1 shows the parameters used

in our experiments.

Table 2.1: Default setting for the user-adjustable candidate view sampling parame-
ters.

parameter default setting

ellipse radii
10 to 20 cm plus the object
bounding box diagonal radius

scanner heights
1.5 to 3 multiples of the object
bounding box height

angular density 10◦

angular deviation ±20◦

18

2.4 Positioning in the “World”

We propose a novel positioning system that is designed to support efficient 3D acqui-

sition of multiple objects. Motion of the system is calibrated so that the scanner is

able to arrive at desired poses based on the view planning results.

Motion ability As shown in Figure 2.9, the positioning system consists of three

linear axes (two from a motorized linear translation stage and one from a manual

lift table) orthogonal to each other, and a (motorized) rotational axis orthogonal

to the plane defined by the two motorized linear axes. The scanner is attached to

the rotational axis. The automatic system is driven by three stepper motors: two

for translation with a step size of 0.05 mm and one for rotation with a step size of

0.9◦. Speed and acceleration of the motors is controlled by an Arduino-based micro-

controller.

System layout

Motorized linear translation stage

Motorized rotation axis

Manual lift table

Figure 2.9: Actuators in our positioning system.

19

Global coordinates The scene exploration, view planning, and scanning need to

happen in a unified coordinate system, so that the positioning system is able to

accurately position the scanner to reach the poses specified by view planning, and

scanned data from different views can be registered and integrated into a complete

model. A global coordinate system is defined by employing the AprilTags fiducial

system [40], where each tag is a unique 2D bar code. Our calibration pattern uses

256 tags arranged in a 16 × 16 2D array and glued onto the scanning platform, as

shown in Figure 2.10. This pattern is used to calibrate all the sensors employed in our

acquisition system, including the four fixed RGB cameras used for scene exploration

and the camera in the structured light rig for scanning. Camera extrinsic parameters

are estimated by taking a picture of the calibration pattern and detecting the unique

tags with their poses known in the global coordinates.

System layout AprilTags [Olsen, 2011]
based calibration patternAll sensors

Figure 2.10: The positioning system, with a calibration target on the scanning plat-
form.

Motion calibration The motor controller receives commands in the form of

(xs, ys, θsz) triplets, but these need not correspond to the global coordinate system

(“the world”) defined by the AprilTags. To calibrate the motor coordinates, we

employ an interpolation-based strategy. During the calibration phase, the position-

ing system moves the scanner to a set of sparse samples in (xs, ys, θsz) space, and

20

at each stop the scanner captures an image of the calibration pattern to compute

its corresponding pose in the global coordinates. Our calibration process is able to

Figure 2.11: The AprilTag pattern overlaid with calibrated centers of the tags (left)
and the centers reprojected into the world (right). Tag ids are color-coded from blue
to red.

capture the subtle variations across the scanning platform. Ideally, the top of the

scanning platform should be a plane and the height of the scanner to the plane is

fixed. In practice, however, this is not the case. This is due to the deformation of

the wooden plate serving as the platform, the flex of the linear rails along which the

axes move, as well as the fact that the rotational axis of the scanner is not perfectly

perpendicular to the platform. Figure 2.12 shows a closeup view of the calibrated

AprilTag centers in the global coordinates.

To compensate for such variations, a quadratic, rather than linear, model is chosen

to fit to the sampled data, to interpolate the transform from any desired pose in global

coordinates to a motor command triplet. After calibration, the positioning system

achieves 0.5 cm accuracy over approximately a 1 m × 1 m area. Figure 2.13 shows the

accuracy provided by our initial calibration, and the good final alignment achieved

with automatic registration beginning with those poses.

21

Figure 2.12: Zoomed in view of the calibrated tag centers reprojected in the world,
showing the variation across the scanning platform.

Figure 2.13: The initial scan poses provided by the scanner calibration (left), together
with the final result of registration (right).

22

Chapter 3

Scanning

An experiment is a question which

science poses to Nature, and a

measurement is the recording of

Nature’s answer.

Max Planck

In this section, we first briefly review the taxonomy of 3D scanning techniques,

with a focus on the triangulation based methods. Considering both accuracy and

efficiency, we implement a structured-light scanner in our prototype 3D acquisition

system as the main capture device.

3.1 3D Scanning Techniques

3D scanning is the process of measuring the 3D shape of real-world objects. Tech-

niques developed for 3D scanning can be broadly categorized into two major types -

contact and non-contact methods.

Contact scanning devices, for instance, a coordinate measuring machine

(CMM) [26], probe the object’s surface through physical touch. This can be very

23

efficient in some cases, and is widely used in applications like industrial inspection.

However, the physical touch inherently limits measuring efficiency and the variety of

objects that can be probed.

Non-contact methods, on the other hand, offers more flexibility. The non-contact

family of 3D scanning techniques can be further divided into active and passive meth-

ods, depending on whether or not there is emission of light or radiation to “probe”

the object surface by detecting reflection. Passive methods examines the 3D shape

from only by detecting reflected ambient radiation (e.g., color images), and therefore

can usually be fast and cheap. Much research has been conducted to estimate the

object’s shape from silhouette [37, 38] or stereo [19, 51]. In addition to utilizing a

regular camera, the potential of light field imaging systems has also been studied for

depth recovery [4, 39, 52] through stereo and refocus.

Active scanning methods typically perform better compared to passive methods,

especially in the absence of textures. By controlling the illumination, they are likely

to yield more accurate and densely-sampled data from the shape. These includes

techniques based on depth from defocus, time of flight [25], photometric stereo [44],

and projected-light triangulation [42, 41, 15]. Various work has digitized objects at

fine resolution using active 3D scanning techniques [6]. In our context, we especially

focus on triangulation based methods.

Laser stripe triangulation has been widely used in previous work to acquire

the 3D shape of archaeological artifacts of different size. Levoy et al. [35] built a

system which employs laser triangulation rangefinders to digitize large statues by

Michelangelo. Brown et al. [9] proposed a 3D model acquisition system for large

numbers of fresco fragments with a laser scanner. In both works, laser scanners

provide sub-millimeter resolution, but the data quality is proportional to scanning

24

time, since slower sweeping of the laser stripe across the surface leads to higher-

density acquisition.

Structured-light triangulation accelerates the scanning process by projecting a

set of temporally-coded patterns onto the object and returning a full range image at a

time, as opposed to a single stripe of 3D data from a laser scanner. Various structured-

light based acquisition systems have been designed to obtain high-quality 3D geometry

data. Bernardini et al. [7] used a lower-resolution structured light system coupled

with photometric stereo to digitize Michelangelo’s Florentine Pietà. Structured light

scanning systems can be fast enough to achieve real-time 3D model acquisition [45,

60]. Data resolution can be enhanced by optimizing pattern design [48], and by

combining fine details obtained from normal maps [5].

3.2 Implementing A Structured-Light Scanner

In our prototype system, a structured-light scanner is adopted to capture the depth

data, as aforementioned in the system pipeline description in Section 2.2. The

structure-light based scanning technique, in its simplest form, uses a projector to

illuminate an object or scene with a sequence of time varying patterns, and a cam-

era to capture a corresponding sequence images under these varying illuminations.

Correspondences are established between points in both the projector frame and the

camera frame by decoding the resulting sequence of images.

3.2.1 Illumination Pattern Design

We adopt a sequence of patterns as a combination of Gray code and phase shift

encoding. More specifically, our pattern sequence consists of 10 Gray code column

patterns, 10 Gray code row patterns, 8 phase shifting column patterns and 8 phase

25

shifting row patterns, plus an all black and an all white pattern for subtracting

background illumination.

It is common to use a sequence of binary code based stripe patterns to identify the

integer coordinates of each illuminated pixel in the scene. Such patterns only have two

levels of illumination, which are coded as 0 (dark) and 1 (bright). To reduce decoding

error, we use Gray code to encode the stripe patterns, since the Hamming distance

between any adjacent pair of Gray code words stays 1. The stripes are implemented

both vertically and horizontally. Figure 3.1 shows the stacked 10 Gray code column

patterns used in our system.

Figure 3.1: Stacked gray code column stripe patterns to split the illuminated space
into small regions.

The discrete nature of binary code based patterns limits the spatial accuracy,

bounded by the projector’s resolution, which is usually lower than that of a digital

camera. In our system, the projector has a 0.4-megapixel resolution, whereas the

camera has a 3.2-megapixel resolution. To achieve accuracy at sub-pixel level, con-

tinuous patterns, such as phase shifting sinusoidal patterns, are commonly adopted

together with the binary patterns, since the binary patterns eliminates the ambiguity

caused by the periodic sinusoidal patterns, while the phase shifting patterns improve

the spatial resolution. As the binary stripes divide the space in regions, the phase

shifting patterns are essentially projected light with a sine wave coded intensity that

26

can interpolate between adjacent light planes. Figure 3.2 shows the stacked 8 phase

shifting column patterns used in our system.

Figure 3.2: Stacked phase shifting column patterns that simulates a sine wave and
can interpolate between adjacent light planes defined by the binary stripe patterns.

As shown in Figure 2.3(left), we choose the TI DLP LightCrafter projector be-

cause it’s compact and fast. The “pixel frame” of the projector is in fact a Digital

Micromirror Device (DMD) [27] with 1039680 mirrors, arranged in 912 columns by

1140 rows with the diamond pixel array geometry and configuration, as illustrated in

Figure 3.3.

Figure 3.3: Diamond pixel for vertical, horizontal, and diagonal lines arranged in the
projector’s light engine. http://www.ti.com/lit/ug/dlpu011f/dlpu011f.pdf

27

http://www.ti.com/lit/ug/dlpu011f/dlpu011f.pdf

To fully leverage resolution of the projector, we adapt our illumination patterns

to align with diagonal pixel arrays by rotating the stripes for 45◦. Figure 3.4 gives an

example of how the vertical stripe patterns look like after the rotation. The horizontal

stripes are also similarly rotated.

Figure 3.4: Both the gray code patterns (above) and the phase shift patterns (below)
are rotated for 45◦ to align with the mirror arranging direction in the projector.

3.2.2 Scanner Calibration

A checkerboard calibration pattern, as shown in Figure 3.5, is utilized to calibrate

the intrinsic parameters of the camera and the projector, as well as the relative pose

between them. During the calibration process, the checkerboard pattern plane is

posed in different angles and distance relative to the scanner view, and at each pose,

the entire 38 frames of illumination patterns are sequentially projected onto the plane

and captured by the camera. The set of fully illuminated (using the all white pattern)

images of the checkerboard pattern at each pose are processed first to detect corners

in each frame. Standard camera calibration techniques [56, 64] are applied to estimate

the camera intrinsics. By decoding the structured-light patterns, correspondences are

28

constructed between the camera and the projector. A camera model is then iteratively

fitted to the projector using a RANSAC [21] based optimization.

Figure 3.5: The checkerboard pattern used for camera and projector calibration,
where the three dots define the center and orientation of the pattern.

29

Chapter 4

Planning

“It is a narrow mind which cannot

look at a subject from various points

of view.”

George Eliot

The goal of planning in our context is to automatically find a suitable sequence

of views, from which the scanner can efficiently acquire the complete surface of many

objects with high quality. An abundance of literature can be found that studies the

selection of views for one application or another, but few of them can be trivially

adapted to achieve the planning goal in our scenario. We propose a general purpose

quality measurement as an objective function which works in arbitrary setting of

view and path planning tasks for multi-object 3D acquisition, taking into account

both efficiency of the system operating and accuracy of the acquired 3D model. We

study different approaches to optimize for this objective function.

4.1 Related Work

A variety of research has addressed the problem of view planning for 3D reconstruction

and inspection [49]. Existing approaches can be categorized as model-based or non-

30

model-based. Model-based methods can be divided into subcategories according to

different techniques for model representation, including visibility matrices [53, 50],

aspect graphs [53, 8], and “art gallery” floor plans [57]. Solutions can be found in the

research field of set theory, graph theory, and computational geometry. Similar work

on optimal camera placement from the field of distributed sensor networks [23, 65]

can also be adapted to solve view planning for 3D acquisition. However, none of these

methods incorporate explicit quality goals for the reconstructed object model, nor do

they consider view-overlap constraints for registration. Recent work by Xu et al. [62]

proposed an automatic object-in-scene scanning system, but it requires physically

moving the objects using the robot. This is incompatible with our goal of safe,

contact-less scanning of valuable objects. Incorporating general robotic systems into

3D acquisition [10, 32] is an interesting topic, but it would be difficult to guarantee

safety for the objects being scanned.

Non-model-based view planning is also known as the Next-Best-View (NBV) prob-

lem. It seeks to find the viewpoint that provides the greatest expected reduction in

uncertainty about the object being scanned [49]. Most of these methods assume

no a priori knowledge about the object, and plan each view iteratively based on

the acquired data. Wu et al. [61] presented a Poisson-guided autonomous scanning

method and demonstrated high-quality reconstruction. However, their method is

quality-driven and does not aim to minimize the number of scans needed to cover

the object’s surface; it will therefore require a large number of views to scan multiple

objects, with correspondingly long acquisition times.

Another related technique is based on viewpoint entropy [58]. It is generally

concerned with selecting informative views, which is a little different from our need

of complete coverage. However, among the choices for views that give full coverage,

those that contain maximum entropy in the overlapping areas tend to align and merge

most robustly.

31

Research on view and path planning can also be found in robotics [59, 11, 17],

where the trajectory of agents is designed based on simplified, abstract models that

capture environment features.

4.2 Objective Setup

We start by formulating the view planning problem in a model-based approach. Given

a set of view configurations and certain information of the objects surface, we propose

an objective function that measures the goodness of the configuration, taking into

consideration both accuracy and efficiency at the same time:

E = Q − C (4.1)

Q is the view quality term representing how well the objects surface are viewed, and

C is the view cost term representing the time consumption introduced by the given

set of views. The view cost can be further divided into two parts: the total time S

needed for the scanner to scan at each view, and the total time L needed for the

scanner to travel (by the positioning system) among all the views.

C = S + L (4.2)

In order to make the view quality term and the view cost term comparable, it

would be nice to measure Q in unit of time as well. We multiply Q by a constant ω,

which indicates the “amount of time increase” by scanning a unit-area surface with

adequate quality. The physical meaning of the new view quality term ω · Q then

becomes the amount of time needed to achieve certain scan accuracy on the entire

surface area considered.

32

As a result, we re-write the objective function as:

E = ω · Q − S −L (4.3)

The remainder of this section describes how we set up the view quality term Q

- we first define a per-point view quality score, and then integrate it over multiple

views and many surface samples to measure the quality of a complete set of views.

4.2.1 Search Space Discretization

The objective function E is evaluated based on the objects’ surface geometry and a

set of views selected from certain view space. We use a set of oriented point samples

P to model the object surface geometry, and discretize the view space into a set of

candidate views V . The objective E in Equation 4.1 then becomes a function of P

and V ∗,

E(P, V ∗) = ω · Q(P, V ∗)− S(V ∗)−L(V ∗)

= ω · Q(P, V ∗)− s · |V ∗| −L(V ∗) (4.4)

where V ∗ ⊂ V is a selected set of views, and s denotes the average scanning time

spent at a single view in V ∗

Sampling surface geometry. The model-based view planning assumes some

knowledge about the objects to be scanned. Usually, the “model” that the view

planning bases on is an approximation of the final output from the 3D acquisition

pipeline. For example, it can be obtained as an approximate surface model from

the scene exploration process described in Section 2.3. Notice that the final output

is essentially a surface interpolated from a dense set of samples obtained by a 3D

scanner. Since the approximate model does not capture sufficient details on the

33

object surface geometry, it is reasonable to downsample the approximate surface.

We uniformly sample oriented points from the approximate surface, such that each

sampled point represents a surface patch with unit area. In the view planning, these

point samples are used as a proxy of the object surface geometry to compute the

view quality measurement Q. A surface is represented as a triangular mesh in our

context. To uniformly sample the surface by area, each triangular face is selected

with a probability proportional to its area, and then, a point within this triangle is

uniformly sampled at random, as shown in Figure 4.1(left).

Points sampled
on surface geometry

Candidate views sampled
in view space

Figure 4.1: The objective function in Equation 4.4 examines surface point samples
(left) and views selected from a given candidate set (right) to measure the goodness
of a configuration.

Sampling the view space. In practice, the positioning system that moves the

scanner to each selected view is limited by the precision of its motors and gears; it

is therefore reasonable to examine the space of scanner candidate views as a discrete

space. Different approaches can be utilized to discretize the candidate view space, as

long as it provide sufficient coverage of the object surface to be scanned. One might

imagine to use a 3D voxel grid to represent space of where each view can locate,

and sample the viewing direction on a sphere at each location. A more efficient way

of sampling is to constrain the candidate views by each object to be scanned, as

34

described in Section 2.3. Figure 4.1(right) gives an illustration on how the candidate

views are constrained by the approximate object surface model.

4.2.2 View Quality Metric

Given the oriented point set P and candidate view set V , we begin by defining a view

quality function that measures how well one single point p ∈ P is “seen” by a single

scanner view v ∈ V :

q(p, v) = h(p, v) · g(p, v), (4.5)

where h(p, v) is a visibility term and g(p, v) is a geometry term. Each point p is

defined by 6 parameters [x, y, z, nx, ny, nz], where x, y, and z specify its location, and

nx, ny, and nz specify the direction in which the surface patch around p is oriented.

Note that a scanner view v is defined by all its constituent optical devices, and those

devices can be either sensors (e.g., cameras) or lighting devices (e.g., projectors). The

prototype we built in Chapter 2 adopts a one-camera, one-projector structured-light

configuration, but the metric developed in this work applies generally to any multi-

camera, multi-projector setup. Each optical device at a scanner view is defined by its

intrinsic and extrinsic parameters.

Visibility term. A point is visible to a device view if the point is within the field

of view of that device and the point is not occluded by other parts of the surface

model. We define the visibility term as a binary function

h(p, v) =

1 if p is visible to all device views at v,

0 otherwise.

(4.6)

35

The field of view of each optical device can be obtained through calibration process,

such as the one described in Section 3.2.2. Occlusion is checked by performing efficient

ray-mesh intersection [46].

Geometry term. For points that are visible to a scanner view, we define the ge-

ometry term to quantify how well each point is “seen” from the view:

g(p, v) = max
{

0,min{~c (1)v · ~np,~c (2)v · ~np, ...,~c (K)
v · ~np}

}
, (4.7)

where ~np is the surface normal vector at point p, K is the total number of optical

devices in the scanner setup, and ~c
(k)
v is the viewing vector from p to the center of

projection of device k. The dot products are clamped at 0 because the surface becomes

invisible when the angle between the two vectors is less than 90◦. The geometry term

ensures that all the optical devices “see” the point frontally.

Integration. Given a candidate scanner view set V and a surface sample set P , we

integrate the per-point, per-device view quality scores q(p, v) over V and P to form

an overall measurement of the quality of any subset of scanner views from V . For

some selected set of scanner views V ∗ ⊂ V , we therefore define the best view for each

point as

β1(p) = arg max
v∈V ∗

q(p, v). (4.8)

The overall view quality measurement can then be written as

Q(P, V ∗) =
∑
p∈P

q(p, β1(p)), (4.9)

Note that for each point p we do not take the summation of its view qualities over

all views, but instead over only the best one. This will ensure that each point has at

least one “good” view, as opposed to a larger number of views with mediocre quality.

36

4.2.3 Overlap-Aware Heuristics

The basic view quality term in Equation 4.9 encourages full “good view” coverage over

all the points. It does not, however, necessarily guarantee overlap between scans from

adjacent views, which is essential to the subsequent registration step. We therefore

propose heuristics to improve the objective function so that it addresses view overlap.

Second-best views. In order to acquire more accurate data and encourage view

overlap for registration, we would like each point to be “seen” by the scanner from at

least two views as opposed to only one as indicated in Equation 4.9; and hence for

some selected set of views V ∗ we define the second-best views for each point as

β2(p) = arg max
v∈V ∗\{β1(p)}

q(p, v). (4.10)

The view quality term is then re-written as

Q2(P, V
∗) =

∑
p∈P

q2(p,β(p)), (4.11)

where

q2(p,β(p)) = (1− ε) · q(p, β1(p)) + ε · q(p, β2(p)). (4.12)

In this equation, ε ∈ [0, 1] is a user specified weight that defines how much we rely

on the quality of the second-best views. Now we ensure that each point has at least

two “good” views.

Neighborhood view quality aggregation. To encourage overlap around sharp

corners, we measure the view quality of a point more conservatively by evaluating

the view quality of all points in its neighborhood. For any point p ∈ P with its

small neighborhood N(p) ⊂ P , and a given view v, the neighborhood aggregated

37

view quality is defined as

qN(p, v) = (1− τ) · min
p′∈N(p)

q(p′, v) + τ · 1

|N(p)|
∑

p′∈N(p)

q(p′, v). (4.13)

Plugging this into Equations 4.11 and 4.12, we obtain a new view quality measurement

Q2,N(P, V ∗) =
∑
p∈P

q2,N(p,β(p)), (4.14)

where

q2,N(p,β(p)) = (1− ε) · qN(p, β1(p)) + ε · qN(p, β2(p)). (4.15)

Figure 4.2 shows an example that visualizes view quality without and with differ-

ent heuristics. We maximize the objective function in Equation 4.4 by plugging in

different view quality terms, using the optimization described in Section 4.3. With

only a single best view considered and no neighborhood heuristic (Equation 4.9), all

the points have very good view quality, but the view assignment is not addressing

overlaps. When the second best view is also considered (Equation 4.11), the plan-

ning tends to add slightly more views and encourages overlap between some pairs of

adjacent views. When neighborhood aggregation is introduced to the objective func-

tion, with the same view cost but only a single best view considered (Equation 4.14

with ε = 0), it sacrifices per-point view quality in favor of encouraging overlap where

it is often difficult to achieve manually, such as around sharp corners. The hybrid

objective with both neighborhood aggregation and second-best view (Equation 4.14

with ε = 0.5) also gives reasonable results, but usually uses the most views because

it is the most conservative. We adopt the single-best-view objective function with

neighborhood aggregation (Equation 4.14 with ε = 0) in the following experiments.

38

(a) single best view (Eq. 4.9) (b) two best views (Eq. 4.11)

(c) single best view + neighborhood
(Eq. 4.14 with ε = 0)

(d) two best views + neighborhood
(Eq. 4.14 with ε = 0.5)

Figure 4.2: View assignment quality visualization with different objective functions.
Each scanner view is represented by a camera-projector pair of frustums connected
with a dotted line. The object model is represented by surface samples with the view
quality value encoded according to the jet color map, as shown in (d). Red means
good view quality and green means poor.

Multi-object objective. Our view quality metric easily generalizes to the multi-

object case. We sum up the objective function over all objects, modifying the visibility

term by checking occlusion from all object surfaces in the scene to avoid inter-object

occlusion. Figure 4.3 shows an experiment evaluating occlusion detection performance

in three different cases. As shown at right, when there is plenty of space between the

two objects, the view rendered in light blue is selected to cover most of the region of

the dragon head. However, when the armadillo is moved closer, as shown in the middle

and left, the originally desired view can no longer see the dragon’s head well due to

39

(a) Models of “dragon fighting armadillo” as the armadillo moves from “close” (left) to
“near” (middle), and then “far” (right) from the dragon. The models are synthesized at
similar level of quality with the approximate models acquired from the scene exploration.

(b) Visualization of the surface sample view quality based on the corresponding selected
views for the three different scenes: “close” (left), “near” (middle), and “far” (right). Red
represents good view quality and green poor. The scanner views are simplified by only
visualizing corresponding camera views. Zoomed-in views of the dragon head are shown to
illustrate the view quality change. For the “close” and “near” scenes, we show closeups of
the dragon head both with and without the armadillo occlusion.

Figure 4.3: Given a scene of “dragon fighting armadillo” with increasing distance
between the two objects (a), we visualize the surface sample view quality based on
the corresponding selected views (b). The close-up views show that, as the armadillo
moves from “close” (left) to “near” (middle), and then “far” (right) from the dragon,
the view quality of the head of the dragon improves.

occlusion, and therefore the view planner has to select alternate views from further

back. As illustrated in the zoomed-in area, the view-quality visualization provides

feedback to the user in these cases: a significant amount of green area suggests that

flipping or rearranging the objects will be necessary to acquire a complete model. In

most cases, however, inter-object occlusion detection ensures proper view selection

to avoid occlusion. To better leverage the information from a scene with multiple

objects, we discuss...4.4.

40

4.3 Sequential View and Path Optimization

Given the objective function in Equation 4.4, different strategies can be employed to

maximize it. We start with a simple approach, which decompose the objective into

two parts, a view selection objective Ev and a path finding objective Ep, and tries to

optimize for them separately:

E = Ev + Ep (4.16)

where

Ep = −L(V ∗). (4.17)

and

Ev = ω · Q(P, V ∗)− s · |V ∗|

= ω ·
n∑
i=1

(Q(Pi, V
∗
i)− γ · |V ∗i |) (4.18)

n denotes the total number of objects being scanned. For simplicity we use γ = s
ω

to control the ratio between the amount of accuracy and efficiency to be achieved,

and optimize the objective Ev for each object independently. This of course does not

guarantee optimal result, but the simplicity of solving each component independently

makes the problem more tractable.

4.3.1 Optimizing the View Planning Objective Function

We explore several different approaches to maximize Ev. Given that each point needs

to be seen at least once or twice, depending on the choice of objective function,

maximizing the objective reduces to the classic NP-complete set-cover and multicover

problems [29]. Therefore, we explore a number of ways of approximating the problem

in order to find solutions with practical computation time.

41

Sequential greedy optimization. An intuitive way of optimizing our view selec-

tion objective function is using the classic greedy approach. In fact, there are in-

approximability results [20] showing that the sequential greedy approach is the best

possible polynomial-time approximation algorithm for set cover. In our scenario, we

begin with V ∗ = ∅ and iteratively add the view that yields the largest increase in the

objective function. The constant γ ensures that, at some point, no new view can be

found that leads to an increase in the objective function, terminating the algorithm

and controlling the number of views we select.

Simulated annealing. The greedy approach is simple to implement and very effi-

cient, but due to its deterministic nature the objective will not improve once a local

optimum is achieved. Simulated annealing [31] is a probabilistic method for approx-

imating the global optimum of an objective function that may possess many local

optima, at a cost of relatively long running time.

Algorithm 1 details our implementation of simulated annealing for optimizing the

objective in Equation 4.14. The algorithm is initialized with random views, and at

each iteration updates a state vector ~X = [X1, X2, ..., X|V |] consisting of indicator

variables representing whether a candidate view is selected or not, such that V ∗ =

{v |Xv = 1, v ∈ V }. While a basic implementation might simply enable or disable

a single view at each iteration, we take advantage of the structure of the candidate

view space V to improve efficiency. Specifically, with probability one-half we swap

some view v for a neighboring view v′ ∈ N(v), instead of simply switching a view on

or off. The energy function E(~X) guiding whether a state transition is accepted is

set equal to the objective function F (P, V ∗) with V ∗ defined by ~X, and the annealing

temperature T decreases exponentially.

As shown below, we find that simulated annealing, if given a slow-enough an-

nealing schedule and enough iterations, typically outperforms the greedy approach.

42

Algorithm 1 Simulated Annealing for View Planning

Input: random initialization ~X0

repeat
draw Pr from uniform (0, 1) distribution
if Pr < threshold then

randomly select view v ∈ V ∗
randomly select view v′ ∈ N(v)
~X ′t ← ~Xt with Xv and Xv′ swapped

else
randomly select view v ∈ V
~X ′t ← ~Xt with Xv flipped

end if
Tt = αt, ∆E = E(~X ′t)− E(~Xt)
if ∆E > 0 then

~Xt+1 ← ~X ′t
else

with probability exp(∆E · Tt), ~Xt+1 ← ~Xt

with probability 1− exp(∆E · Tt), ~Xt+1 ← ~X ′t
end if
t← t+ 1

until convergence

Moreover, it automatically decides the exact number of views needed in the optimal

solution based on the view cost parameter γ.

Integer programming. Another way to approximate the view planning optimiza-

tion is to formulate it as a binary integer programming problem. In this case, the

objective function needs to be quantized based on a view quality threshold η, and thus

given a point p and a view v, measuring the view quality becomes simply checking

whether it is “good enough”, namely above η. Specifically, we define a set of indicator

variables Wpv, which are 1 if f(p, v) > η and 0 otherwise. The objective function Ev

is then approximated by

∑
p∈P

min{Wpv ·Xv, |β(p)|} − γ
∑
v∈V

Xv. (4.19)

43

where |β(p)| is the number of best views considered for each point. A branch-and-

bound method [24] is applied to solve this integer program exactly.

4.3.2 Discussion on Performance

We evaluate the performance of the three approaches on the same dataset by com-

paring the optimal objective values they obtain, as shown in Figure 4.4. In each

figure, the blue curve shows the evolution of the objective value against the number

of views selected by the sequential greedy algorithm, with the ultimate result of the

greedy algorithm being the highest point. The red curve shows the objective value

achieved by integer programming, with different values of the view quality quantiza-

tion threshold η. The scattered orange squares are results from 10 different runs of

simulated annealing, using different random seeds.

Varying View Cost. The three plots in Figure 4.4 show results for different values

of the view cost multiplier γ. We leave the choice up to the user, to select γ to be

the desired increase in the average view quality, as one additional view is added. As

γ increases, the required benefit of adding a view increases, and hence the optimal

number of views decreases.

Algorithm Comparison. The figures show that simulated annealing achieves bet-

ter objective values compared to the greedy approach and integer programming. With

the threshold η properly chosen, the integer programming can perform as well as the

greedy approach, but is less predictable, since the number of views and ultimate

quality do not vary monotonically with η. While simulated annealing does require

more computation (a few minutes per object, where 2000 points are sampled on each

objects), we generally prefer it for our system. If this computation time is unaccept-

able, the greedy algorithm usually picks a near-optimal number of views, though the

44

views themselves may be sub-optimal. We also provide a clustering strategy to help

improve efficiency, which will be discussed in Chapter 7.

45

Number of views selected
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

O
b
je

c
ti
v
e
 v

a
lu

e
 e

v
a
lu

a
te

d
w

it
h
 o

ri
g
in

a
l
p
o
in

t
s
a
m

p
le

s

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67
γ = 0.003

Greedy
Integer programming
Simulated annealing

Number of views selected
9 11 13 15 17 19 21 23 25 27 29 31 33 35

O
b
je

c
ti
v
e
 v

a
lu

e
 e

v
a
lu

a
te

d
w

it
h
 o

ri
g
in

a
l
p
o
in

t
s
a
m

p
le

s

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65
γ = 0.004

Greedy
Integer programming
Simulated annealing

Number of views selected
7 9 11 13 15 17 19 21 23 25 27 29

O
b

je
c
ti
v
e

 v
a

lu
e

 e
v
a

lu
a

te
d

w
it
h

 o
ri
g

in
a

l
p

o
in

t
s
a

m
p

le
s

0.57

0.58

0.59

0.6

0.61

0.62

0.63
γ = 0.005

Greedy
Integer programming
Simulated annealing

Figure 4.4: The optimal objective value achieved by different approaches with varying
γ, with higher value indicating better overall view quality.

46

4.3.3 Path Finding

Once we have obtained a set of desired scanner positions for each object within the

working volume, planning the optimal path among them is naturally formulated as

the Traveling Salesman Problem (TSP) [34]. Between any pair of views, we compute

a motion cost corresponding to the time taken by the positioning system to move

between those views, taking into account that motion along multiple axes can happen

simultaneously. We solve the TSP on a complete graph, where each node in the

graph corresponds to a scanner pose (x, y, θz). For any pair of nodes (xi, yi, θzi) and

(xj, yj, θzj), there is an edge between them, and the distance is defined as the travel

time

max

{
|xi − xj|

vx
,
|yi − yj|
vy

,
min {|θzi − θzj|, 2π − |θzi − θzj|}

vθz

}
,

where vx, vy, and vθz respectively represent the motor speed along the linear axes and

around the rotational axis. The problem can be solved by many efficient algorithms,

e.g. the Christofides’ algorithm [12], the Lin-Kernighan heuristic [36], and some

branch-and-bound based method [13], We use the algorithm of Christofides [12] to

obtain a 3
2
-approximated optimal path.

4.4 Joint Optimization

In the previous section, we decompose the objective function E into different parts

and optimize for them independently. Such a simple and efficient approach provides

a reasonable lower bound for the solution to our planning problem. In this section,

we step by step introduce more dependence assumption among different parts in the

objective function, and try to search for an optimal solution by jointly examining

different parts constituting E.

47

4.4.1 Joint View Selection for Multiple Objects

The design of our view quality metric Q takes into account the presence of multiple

objects in the same scene, and is able to avoid views hurt by inter-object occlusion,

as shown in Figure 4.3. There are views, on the other hand, which can actually

benefit from the scanner being posed in a multi-object scene, and potentially see

parts from different objects at the same time. To better leverage the multi-object

scanning scenario, we study the case where each candidate view can contribute to

any object in the scene. This is reflected in the view selection objective function as

Ev = ω · Q(P, V ∗)− s · |V ∗|

= ω · Q(
n⋃
i=1

Pi,
n⋃
i=1

V ∗i)− s ·
n∑
i=1

|V ∗i | (4.20)

Recall that previously Ev is decomposed by object in Equation 4.18:

Ev = ω ·
n∑
i=1

(Q(Pi, V
∗
i)− γ · |V ∗i |)

=
n∑
i=1

(ω · Q(Pi, V
∗
i)− s · |V ∗i |) (4.21)

and it is independently maximized for each object, where ∀v ∈ V ∗i , v is not able to

contribute to the view quality for a different object Q(Pj, V
∗
j), (i 6= j).

Based on the study in Section 4.3.2, we choose to employ the simulated annealing

based method described in Algorithm 1 to maximize Ev in Equation 4.20, jointly

among all the objects. We compare the performance of this approach on view selection

to that described in Section 4.3. Experiments are carried out focusing on an 8-object

scene shown in Figure 4.5, starting with a single object, and gradually including more

objects (one at a time). 200 oriented points are sampled on each object. For each

scene with a given number of objects and a given value for ω, we run the experiment

for 10 times using different random seeds for the simulated annealing.

48

Figure 4.5: The approximate model of the 8 objects used for view planning.

In all the experiments we set s = 37.5 seconds, which is the average measured time

needed for the scanner in our prototype system (Chapter 2) to scan from a single view.

The constant ω is exposed as a user-adjustable parameter, which controls the amount

of desired view quality.

We first compare the overall objective Ev obtained by both approaches. As the

number of objects increases, no matter how ω is set, the joint optimization over all

the objects gives Ev a boost, suggesting better solutions compared to the piecewise

case, where the view selection objective is optimized over each object independently.

49

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.6: Comparison between the view selection objective value Ev in log space
by optimizing for each object independently and by optimizing for all the objects
together, with varying desired view quality parameter ω.

Such improvement is achieved by a combination of increase in view quality and

decrease in number of selected views.

50

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.7: Comparison between the average view quality achieved by optimizing for
each object independently and by optimizing for all the objects together, with varying
desired view quality parameter ω.

Plots in Figure 4.7 demonstrate how the average per-object view quality Q is

improved by the joint optimization. Notice that the similar “staricase” pattern shown

in the six plots implies certain objects arrangement in the test scene, as shown in

51

Figure 4.5. This can be eliminated if sufficient experiments are conducted on different

multi-object scenes. As the user-controlled parameter ω increases, the view quality

achieved for each object also increases, suggesting more surface areas represented by

the point samples P are “seen” more clearly.

The joint optimization allows any candidate view v ∈ V ∗ to “see” any object in the

scene, which makes it possible for the algorithm to select views where point samples

from more than one objects can be “seen”. This potentially reduces the necessary

number of views for achieving the same amount of view quality. Figure 4.8 shows

how the number of selected views is affected by different approaches to optimizing

the view selection objective Ev. The decrease in number of selected views achieved

by the joint optimization becomes more and more visible as ω increases. The error

bars on each curve in the plot suggest the variance in number of views selected in

different runs. As we use simulated annealing, a randomized algorithm, to optimize

for the objective, it is likely for it to yield different solutions with similar objective

values.

52

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.8: Comparison between the per-object number of views selected by optimiz-
ing for each object independently and by optimizing for all the objects together, with
varying desired view quality parameter ω.

Figure 4.9 shows the computational time consumption for both approaches. Opti-

mizing the view selection objective Ev jointly over all the objects can actually achieve

some reduction in runtime.

53

ω = 5 ω = 10

ω = 15

ω = 30

ω = 20

ω = 25

Figure 4.9: Comparison on the CPU time between optimizing for each object inde-
pendently and by optimizing for all the objects together, with varying desired view
quality parameter ω.

54

4.4.2 Joint View and Path Planning

Let’s revisit the objective function introduced in Equation 4.4 for the overall planning

problem:

E(P, V ∗) = ω · Q(P, V ∗)− s · |V ∗| −L(V ∗) (4.4 revisited)

the path length L(V ∗) is defined as the total time needed for the positioning system

to move the scanner and traverse all the view configurations in V ∗. Its value will

definitely depend on the selection of V ∗. In the previous sections, however, the view

selection does not take into account the path length that might be yielded by given

set of views V ∗, and L(V ∗) only gets separately optimized for after V ∗ has been

determined. Such decomposition of the objective makes the problem easier to solve,

but potentially it might yield suboptimal result for the overall objective E.

In this section, we examine the objective E as a whole. We again employ the

simulated annealing based method described in Algorithm 1, with an adaption of

evaluating ∆E according to Equation 4.4, instead of Equation 4.18, in each iteration.

For each configuration of ~Xt, L is computed among the corresponding V ∗ as the

shortest path length by Christofides’ algorithm [12].

We compare the performance of the proposed joint view and path planning ap-

proach to the sequential approach. In the sequential approach, the view selection

and the path finding are independently computed, but the view selection objective

Ev is jointly computed among all the views, as described in Section 4.4.1. This is

referred by label “view only joint plan” in the subsequent plots for quantitative anal-

ysis, whereas the “grand unified” method proposed in this section is referred by label

“joint path and view plan”.

As shown by Figure 4.10, since path length L is also evaluated during the opti-

mization for view selection, the “joint path and view plan” always yields a shorter

path in average. The “view only joint plan” computes L only once at the end of

55

the optimization, after the views are selected. Occasionally, it might obtain a shorter

path, but the large variance shown in Figure 4.10 suggests its instability.

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.10: Comparison between path length L achieved by jointly and sequentially
optimizing Ev and Ep, with varying desired view quality parameter ω.

56

Figure 4.11, 4.12, and 4.13 demonstrate that, on the surface, the two approaches

produce similar result in the overall objective, the average per-object view quality, as

well as the number views selected.

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.11: Comparison between jointly and sequentially optimizing Ev and Ep from
the overall planning objective E = Ev + Ep in log space, with varying desired view
quality parameter ω.

57

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.12: Comparison between the average per-object view quality ω ·Q achieved
by jointly and sequentially optimizing Ev and Ep, with varying desired view quality
parameter ω.

58

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.13: Comparison between the number of views selected by jointly and se-
quentially optimizing Ev and Ep, with varying desired view quality parameter ω.

59

In order to take a closer look at the performance comparison between the two

approaches, we evaluate the difference in the objective

∆E = Ejnt − Eseq

= (ω · Qjnt − Sjnt −Ljnt)− (ω · Qseq − Sseq −Lseq)

= ω · (Qjnt − Qseq) + (Sseq − Sjnt) + (Lseq −Ljnt)

= ∆Q + ∆S + ∆L (4.22)

The superscript “jnt” refers to the joint view and path approach, whereas “seq” refers

to the sequential view and path approach. Notice that positive ∆Q, ∆S, and ∆L

indicate better performance by the joint approach. ∆S and ∆L represent the saved

scanning time and travel time, respectively.

Figure 4.14 shows a breakdown in ∆E achieved by the joint approach over the

sequential one, where the the upward pointing (positive) bars denote improvement

in different terms, and the downward pointing (negative) bars denote the worsening.

The absence of the negative pink travel time worsening bars suggests that the joint

approach always achieves at least as short (good) path length as the sequential ap-

proach. Although the improvement in path length is often achieved sacrificing the

view quality, it still leads to an increase in the overall objective E for about 70% of the

time, among all the experiments we run. It is also worth noticing that, the changes in

view quality (purple) and scan time (olive) usually appear to be opposite, reflecting

the fact that fewer views tends to yield lower view quality.

60

ω = 5 ω = 10

ω = 15 ω = 20

ω = 25 ω = 30

Figure 4.14: Comparison on the breakdown in the objective change introduced by
the joint optimization, with varying desired view quality parameter ω.

The scanning time S = s · |V ∗|, determined by the number of views selected,

appears to be fluctuating, due to the randomness in the simulated annealing. Notice

that the coexistence of positive pink bar and negative olive bar suggests that, even

in the cases where the scanning time worsens because of more views being selected,

61

the algorithm is still able to produce a shorter path. The visualization in Figure 4.15

gives an example of how the two paths compare to each other. The joint approach is

able to obtain a path that takes 296 seconds for the scanner to travel across 57 views,

whereas the sequential approach yields a 336-second-long path with 54 views. In the

joint view and path optimization, to maintain a short path among all the views, when

new views are introduced, the path length term −L in the objective encourages the

algorithm to select views “along the way” to avoid the increase in path length.

Joint view and path plan Sequential view and path plan

Starting
point

Starting
point

Figure 4.15: Visualization of a path (296 seconds long, 57 views) obtained by the joint
approach (left) and a path (336 seconds long, 54 views) obtained by the sequential
approach (right).

While the joint view and path plan does achieve some improvement on the ef-

ficiency of the acquisition system, the current simulated annealing based algorithm

takes much longer to run, compared to the sequential approach, where the view se-

lection optimization does not depend on the resulting path length. Figure 4.16(left)

shows the CPU time comparison between the two approaches. We also compare the

decrease in the acquisition system run time (including the time for the scanner to both

scan and move) to the increase in the computational time introduced by the joint op-

62

timization, as shown in Figure 4.16(right), and find that the end-to-end system time

great increases due to the huge extra computational time.

Figure 4.16: Comparison on the CPU run time between the joint and the sequen-
tial approaches (left) and comparison between the saved runtime for the acquisition
system and the extra CPU time introduced by using joint view and path planning
(right).

In conclusion, our study in Section 4.4.1 and 4.4.2 shows that, it’s always worth

doing the joint optimization over all objects for view selection, as it achieves better

objective and costs less computational time at the same time. Jointly planning the

view and path together, on the other hand, can potentially achieve shorter path

and better overall objective. However, using the current simulated annealing based

method takes much longer in computation, and can not directly apply in practice.

Although more sophisticated optimization tools can be employed to close the gap

between the acquisition system run time and the computational time for planning,

our preliminary experiment suggests that it should only expect a small improvement

in the planning objective.

63

Chapter 5

System Evaluation

“All experimentation is criticism.”

Sir Peter B. Medawar

We have implemented the sequential view and path planning in the prototype

3D acquisition system we built. Experiments are conducted to evaluate the view

planning, path planning, as well as the system as a whole. In each case, we present

results for scanning time and quality, comparing our system to possible simpler im-

plementations. We also demonstrate that our system is capable of scanning a variety

of 3D objects with different geometry. The structured-light scanner in our system

can achieve a 0.1 mm resolution.

5.1 View Planning Evaluation

To demonstrate that our view plan improves the combination of scan time and quality,

we compare the acquisition results based on our view planning algorithm to those from

a naive strategy commonly adopted by previous work, namely placing views uniformly

around an object’s centroid, at a fixed radius.

64

Efficiency. We demonstrate the improvement in efficiency due to introducing view

planning into the acquisition pipeline on two test scenes (on both sides) with four

objects, each object having different shape and size. We run our view planning

algorithm to obtain the view schedules for all the objects. Then we compare to a

naive strategy with a fixed number of views, spaced equally around the centroid of

each object, with the number of views set equal to either the fewest or most views

associated with any object in our view-planning result from each scene.

Table 5.1: Comparison of total time for our view planning vs. naive strategies em-
ploying a fixed number of views per object.

min fixed max fixed adaptive

total number of scans 44 64 52
planning time (min) 2× 10−5 2× 10−5 3.20
total scan time (min) 27.28 40.30 32.63

total travel time1(min) 7.97 11.27 8.83
total time (min) 35.25 51.57 44.66

avg. time per object (min) 8.06 12.89 11.17

1 Note that in Table 5.1 the total travel time includes a five second pause per scan, for
vibration damping before capture, while in Table 5.2 the total travel time refers to the
amount of time the positioning system spent on moving only.

Figure 5.1: Front (left) and back (right) side of the reconstructed models of four
objects scanned simultaneously with adaptive view planning. Models with the same
color correspond to each other.

Table 5.1 summarizes the acquisition time for each of these scenarios. Note that we

achieve an improvement over the naive plan with the maximum number of views, with

65

no penalty (or even improvement) in the quality of the acquired data. Of course, our

view planning strategy is not as fast as the naive method with the minimum number

of views, but it is less prone to missing areas of the surface or ending up with low

data quality.

Figure 5.1 shows the final reconstructed models of the objects on both sides from

the acquisition with the adaptive view plan.

Coverage. Unlike the naive approach, which equally distributes a fixed number of

views around an object, the simulated annealing based view plan adaptively selects

the number of views for each object. Therefore, an acquisition with view planning

usually yields better coverage, especially for non-convex objects. We show a compar-

ison on the scans of an object acquired in the last 4-object experiment. Figure 5.2

shows a closeup to the aligned raw scans from naive methods and our adaptive view

plan (white regions indicate missing data). The scans acquired from the naive method

with five views are missing data from both the tip of a sharp corner and a deep con-

cavity. Even with the same number of views equally spaced around the object, the

naive method with nine views is still missing some data at the tip of the sharp corner.

With the neighborhood aggregation improvement added to our objective function,

the view plan optimization places views around sharp corners to increase meaningful

overlap.

Figure 5.2: We compare the scans obtained using our view planning (right) to those
acquired with a naive method employing five (left) or nine (middle) views, equally
spaced around the centroid of the object. Our view planning result also selects nine
views in this case.

66

5.2 Path Planning Evaluation

Given a set of views for multiple objects produced by the view planning stage, we

compare our TSP-based path planning strategy to a naive algorithm. For the latter,

we use the views selected for each object in sequence, always beginning the scanning

of an object from the nearest view to the last one in the previous object. Figure 5.3

shows the results of the two different strategies for a simple scene with four objects.

(a) TSP-based path planning (b) Naive path planning

Figure 5.3: Comparison of our TSP-based path planning (a) and naive path planning
(b). The former reduces motion time by approximately 15%.

Table 5.2: Comparison of total distances and times for our TSP-based path planning
vs. a naive path planning strategy.

our path plan naive path plan

number of scans 44 44
planning time (µs) 579 19

total translation distance (m) 5.30 6.05
total rotation distance (deg) 2330 2690

total travel time (s) 228 268

Table 5.2 compares the travel distances and times for the two strategies. Notice

that the TSP-based strategy achieves an improvement in travel time of 15%, even

67

with as few as four objects. For more objects, we have observed even greater savings

in travel time, with small increases in computation time.

5.3 System-Level Evaluation

We compare the performance of our system to another acquisition system which

employs the same structured light scanner, but uses a turntable as a simple positioning

system. The turntable system adopts the naive view planning strategy described

above, which uniformly samples a fixed number of views around the table center. We

assume that the turntable system chooses the average number of views for the objects

planned by our algorithm as its fixed number of views. Therefore the scanning time

per view of both systems should be approximately the same.

Figure 5.4: The two plots show the total amount of time a human interacted with
the scanning system (left) and the total amount of idle time when the human did
not need to attend the system between two adjacent interactions (right) on scanning
batches of fresco fragments using both our system and the turntable system. Our
system required less interaction time overall and afforded far larger gaps between
interactions during which the operator was free to do other work undisturbed.

Figure 5.4 presents comparative statistics from scanning batches of fragments

using both systems, illustrating how the total human interaction time and the idle

time between interactions scale up with increasing number of objects scanned. In this

68

set of experiments we use fresco fragments as test objects, which are an important

category of objects in archaeological digitization applications.

Scalability. The interaction time for the turntable system is linear in the number of

objects, because for each single object the average operating time stays the same. On

the other hand, the total interaction time for our system grows (slightly) sub-linearly,

indicating that our system makes large scale acquisition tasks more efficient.

More important is the comparison of (human-operator) idle time. This shows a

significant advantage of our system over the turntable system in that the user is free

from tending to our system for long periods of time. This is essential for practicality in

a scaled-up scanning scenario. In the case of fresco fragments, the idle time is actually

half of the entire acquisition time, because each fragment is flipped once during the

acquisition to obtain data from both sides. This leads to only two interactions with

the system, while the turntable system requires constant flipping and replacing of

objects. Notice that the sub-linear scalability of the idle time is mostly due to the

travel time, as a result of our path planning.

Figure 5.5: Reconstructed models of increasingly-large sets of fresco fragments, as
used in our scalability experiment. The batch size is, from left to right, 9, 16, and 25.

Quality. Figure 5.5 shows the reconstructed models for arrangements of 9, 16, and

25 objects scanned using our acquisition system. Based on manual inspection of the

resulting 3D models, our system achieves at least comparable surface coverage over

the objects being scanned, as compared to a turntable-based system.

69

5.4 Object Variety Evaluation

We demonstrate the capability of our system to scan a variety of 3D objects in addition

to the fresco fragments.

(a) Planned views and path.

(b) Approximate object models. (c) Reconstructed models.

(d) Close-up visualization.

Figure 5.6: We scan a scene with ten toy soldiers based on views (a) planned from
approximate, silhouette-carved models (b), and reconstruct high resolution 3D models
(c). Each toy soldier is about 5 cm tall, and our system reconstructs sub-millimeter
geometric detail (d).

70

Multiple small 3D objects. Figure 2.2 and Figure 5.6 together show an example

of scanning a scene with ten toy soldiers. Each soldier is represented in the same color

in Figures 5.6a, 5.6b and 5.6c. The entire scene is scanned from the views visualized

in Figure 5.6a, and the scanner travels along the path planning result, where the color

changes in camera view visualization correspond to the order along the path.

As demonstrated in Figure 5.6b, the approximate models acquired from our silhou-

ette carving-based scene exploration capture sufficient meaningful detail, as opposed

to the models obtained from consumer depth sensors such as the Kinect, which tend

to have more random noise and miss detail. Our structured-light scanner achieves a

resolution of 0.1 millimeter and captures an abundance of detail on the toy soldiers,

as illustrated by the closeup visualization in Figure 5.6d. We note the importance of

capturing structures such as the long barrel of the weapon in the exploration phase:

this is used in the subsequent view-planning stage to place the necessary scanner

positions to capture this tricky area. The reconstructed results suggest the potential

of our system to be used for large-scale capture of stop-motion animation.

Large object. Figure 5.7 shows a reconstructed model acquired from our scanning

system compared to the real figurine. The angel figurine is about 20 centimeters

tall and has complicated self-occlusion. Scanning it from a single height would yield

a large amount of missing data. Thus, we augment our prototype system with a

platform that we can manually raise and lower. We restrict the number of heights (to

three for this experiment), and calibrate them, allowing all of the scan positions to still

be planned using the same view-planning algorithm. The final model is reconstructed

by combining all of the scans, using a pipeline essentially identical to that for the

single-height case.

71

Figure 5.7: A 20 cm tall angel figurine (left) is scanned and reconstructed (right)
using our system, with the object platform adjusted to three heights.

Figure 5.8: Two differently sized soldiers (left) are scanned together and reconstructed
(right) with our system.

Objects with different scales. Our system is capable of simultaneously scanning

objects with different scales thanks to the adaptive view planning. Figure 5.8 shows

72

two soldiers at different sizes and their reconstructed scanned models. As introduced

in Section 2.3, candidate views are sampled based on an elliptical cylinder fit to each

approximate object model. In this case, the candidate views for the larger soldier

span a much wider range compared to those for the smaller soldier. This allows

greater flexibility in the scale of objects being scanned at the same time, compared

to a turntable scanning system in which the candidate views are always sampled on

a circle with fixed radius.

(a) The original
fabric flower

(b) Views selected from
adaptive planning

(c) Views selected from
naïve planning

(e) Reconstructed 3D model
using naïve view planning

(d) Reconstructed 3D model
with adaptive view planning

Figure 5.9: A flower with a long, thin stem (a) is scanned and reconstructed (d) with
our system. Elongated objects such as this are a worst case for a turntable-based
system with equally-spaced views (c).

Long, thin object. Figure 5.9 demonstrates that our system is able to handle

extreme geometry such as the flower with its long, thin stem. Due to the fact that we

compute candidate views based on an elliptical cylinder fit to the approximate object

model, as shown in Figure 5.9b, it is easy for our system to focus on areas such as

the stem and the backs of the flower’s petals (see Figure 5.9d for reconstruction). A

turntable scanning system that places views uniformly around the object at a fixed

73

radius (Figure 5.9c) is likely to yield very poor surface coverage of this flower (see

Figure 5.9e for reconstruction).

Cultural heritage. Figure 5.10 shows a reconstructed model of a reproduction

cuneiform tablet, which along with fresco fragments forms another important category

of objects in archaeological digitization. The inscriptions on the tablet are clearly

captured by our high-fidelity structured-light scanner, and with the scalability of our

system we believe it would be easy to digitize these artifacts en masse with little

human interaction, thus setting archaeologists and conservators free from tedious

tasks.

Figure 5.10: An 8 × 6 × 3 cm reproduction cuneiform tablet (left) is scanned and
reconstructed (right) with our system.

74

Chapter 6

Addressing Surface Inaccessibility

“In other words, because it’s

relatively impossible, it’s possible.”

Douglas Adams

Surface inaccessibility can become a major limitation pertaining to existing au-

tomated 3D acquisition systems, due to a combined effect of both the complexity of

shape geometry and the degrees of freedom of the scanner motion capped by engi-

neering capability. Figure 6.1 shows an example of failure in reconstructing certain

detail in the object surface. The 3D model is reconstructed from the data captured

using our prototype 3D acquisition system. Since the scanner in our system is facing

downward, as shown in Figure 2.2c, inherently it is not able to capture the geometry

information below the soldier’s hand. Similarly, the bottom of the object is not ac-

cessible to the any scanner view, either. To ameliorate this, we explore solutions from

different aspects, including improving the system hardware design, and adapting the

view planning algorithm.

75

Original object 3D model Reconstruction detail

Figure 6.1: Detail in certain region cannot be perfectly reconstructed due to missing
data caused by surface inaccessibility.

6.1 Augmented Hardware Design

In the current setup of our prototype system, the objects are placed on a scanning

platform covered by a black cloth. In order to obtain a complete surface model

of the objects, at least one flipping is required from the user, to reveal the hidden

surface region. Occlusion at the physical touching region is in fact unavoidable in

current platform based acquisition systems. This is also true to human hand-held or

robotic-arm-held systems. One simple augmentation to the current platform based

system design can be replacing the scanning platform with transparent material, and

incorporating from below an additional scanner, together with the positioning system.

Figure 6.2 renders an imagined design of the augmented system. Hypothetically, this

solution can entirely avoid the user flipping interaction.

76

Figure 6.2: An imagined augmentation to the current acquisition system design, with
a transparent scanning platform and a coupled scanner from below.

We run experiments to test the feasibility of this technique. We first place an

object on the platform of our existing system, and scan the revealed surface normally.

Then we flip the object, and place a sheet of transparent material on top of it,

mimicking the effect of placing the object on a transparent platform, but only upside

down. The second round of scan is performed by capturing the other side of the

object through the transparent material. Data for both sides are integrated into 3D

models and nicely merged together, as shown in Figure 6.3

This suggests that the proposed new design potentially makes it possible to remove

the user flipping interaction, making the acquisition more automatic in practice.

77

Figure 6.3: We scan the front side of an object using our system as usual but the back
side through a sheet of transparent thin acrylic (left) and obtained the final models
nicely reconstructed for both the front (right) and back (middle) side, which are then
merged together.

6.2 Iterative View Planning

As aforementioned in the problem statement (Section 1.2), obtaining a complete

object surface model requires altering the relative pose (view) between the object and

the scanner. The candidate view set of our prototype system is limited by its motion

flexibility. Section 6.1 above explores solution by doubling the motion flexibility of

the scanner, so that the candidate view set V extends. The complement of increasing

the engineering complexity to the system, is to re-orient the object. The flipping

operation involved in our current system is a straightforward example of re-orienting

the object. In this section, we study an extension of the view planning discussed in

Chapter 4, leveraging the information we already have about the object surface, to

provide guided re-orientation of the object, assuming re-orientation is necessary.

View Planning Positioning Scanning ReconstructionObjects 3D Models

New Pose
Suggestion

Figure 6.4: An iterative 3D acquisition pipeline.

78

Figure 6.4 shows how the original 3D acquisition pipeline is adapted. The idea is

to feed the information from the reconstructed 3D model back to the pipeline to make

the acquisition process iterative. We evaluate the output 3D model from the original

end-to-end pipeline to identify the regions with poor reconstruction, and based on

such information suggest new poses for re-orientating the object, which will hopefully

yield better views for the scanner to capture data from.

6.2.1 New Pose Suggestion

To re-orient an object, one key thing is to identify the possible poses that the object

can stably rest upon, given a flat supporting surface. A method similar to that

from [22] is adopted to estimate the stable poses.

Algorithm 2 Stable Pose Suggestion

Input: Reconstructed 3D triangular mesh model M
Compute the volume centroid M for M

Compute convex hull C for M

Simplify C by merging co-planar faces
for every face f ∈ C do

Compute the projection PM of M in the plane defined by f
if PM is inside polygon f then

Compute Tf that transforms vector
−−−→
PMM to be upright

end if
end for

Output: Set of transforms {Tf}

The volume centroid enclosed by the triangular mesh surface is computed by (1)

decomposing the volume into tetrahedra by the triangle faces and a random point,

and (2) accumulating the tetrahedra centroids weighted by their corresponding signed

volumes. The sign of each tetrahedron is defined by the whether the selected random

point is on the same side where the face normal is pointing to.

Figure 6.5 shows an example of the reconstructed 3D model and its convex hull.

We use CGAL [55] to compute the 3D convex hull.

79

Reconstructed model Model convex hull

Figure 6.5: The reconstructed 3D model (left) and its convex hull (right.

By applying the output transforms from Algorithm 2 to the originally recon-

structed 3D model, it can be re-oriented into different stable poses, as shown in

Figure 6.6.

Figure 6.6: The reconstructed 3D model (left) re-oriented at different stable poses
(middle and right).

6.2.2 View Quality Re-evaluation

The original view planning utilizes the approximate models obtain from the scene

exploration as a prior to evaluate view quality. Let’s revisit the original view quality

80

measurement defined in Chapter 4,

Q(P, V ∗) =
∑
p∈P

q(p, β1(p)), (4.9 revisited)

where P represents the set of point samples from the surface of the approximate

model. After running the entire acquisition pipeline once, much more information

about the object surface is obtained, and therefore this can be leveraged by planning

in the subsequent iteration.

The view quality is re-evaluated on the reconstructed model once it is obtained.

Figure 6.7 shows the view quality visualization on the object before (left) and after

(right) the scanning and reconstruction. The point samples from both the approxi-

mate model and the reconstructed model are examined in the pose where the object

is scanned.

View quality visualization
for approximate model

View quality visualization
for reconstructed model

Figure 6.7: The view quality visualization on point samples representing the object
before (left) and after (right), where red stands for good view quality and green for
bad.

Notice that starting from the second iteration, the planning should be “incremen-

tal”, i.e., it ought to focus on selecting views so that regions that are poorly scanned

or not scanned from previous iteration are “seen” well this time. Since a large portion

of the object surface is well covered by planning from previous iteration, there is no

need to repetitively scan those already nicely reconstructed regions. Objective wise,

instead of maximizing the sum of view quality over all point samples, we maximize

81

the increase in view quality only over the points with low view quality. We generalize

the view quality measurement Q from Equation 4.9 so that it becomes a function of

the iteration number t, (t = 1, 2, ...), corresponding to different poses in each iteration

the object is re-oriented to:

Q(t)(P (t−1), V ∗(t)) =
∑

p∈P̃ (t−1)

q(t)(p, β
(t)
1 (p))− q(t−1)(p, β

(0...t−1)
1 (p)) (6.1)

P (t−1) denotes the set of oriented points sampled from the reconstructed surface model

from previous iteration t−1. P̃ (t−1) = {p : p ∈ P (t−1); and q(t−1)(p, β
(0...t−1)
1 (p)) < ζ}

is the set of low confidence points in P (t−1), where the best view quality of these

points is lower than a threshold ζ. V ∗(t) denotes the set of selected views in iteration

t. q(t)(p, β
(t)
1 (p)) is the best view quality for p achieved by the selected views V ∗(t)

in the current iteration, whereas q(t−1)(p, β
(0...t−1)
1 (p) is the best view quality for p

achieved by
⋃t−1
τ=0 V

∗(τ), views selected over all the previous iterations. Notice that

when t = 1, this generalized formulation of Q degenerates to Equation 4.9, since

initially all the point samples from the approximate model P (0) have zero view quality

and P̃ (0) = P (0). Similarly, the generalization can apply to the view quality design

with overlap-aware heuristics (Equation 4.11 and 4.14).

View quality visualization
for new pose 1

View quality visualization
for new pose 2

Figure 6.8: The view quality visualization on point sampled from the reconstructed
model which is oriented into two new stable poses suggested by Algorithm 2, where
red stands for good view quality and green for bad.

82

Figure 6.8 shows the selected view for the two suggested new poses, by optimizing

the planning objective with the incremental view quality measurement in Equation 6.1

plugged in. As suggested in Figure 6.7 (right), the soldier stands upright in the first

iteration of scanning, and therefore the bottom surface is entirely missing. This is

captured by the planning in the subsequent iteration, where more views are placed

to “look at” the bottom when the soldier lies down (Figure 6.8). Figure 6.9 shows

that the quality of reconstruction is improved from iteration 1 to 2, where previously

missing region as well as more detail are captured due to the re-orientation and

incremental view planning in iteration 2. This suggests the potential of our proposed

approach in refining the final reconstruction after even more iterations.

Reconstructed model
after 1 iteration

Reconstructed model
after 2 iterations

Incremental scans
from iteration 2

Figure 6.9: Side by side comparison among the reconstruction after 1 iteration (left),
2 iteration (middle), and the merged data acquired from iteration 2 (right).

83

Chapter 7

Conclusion, Discussion, and Future

Work

“I open at the close.”

J. K. Rowling

In this dissertation, we study the problem of practical 3D acquisition for large

numbers of objects.

We propose a scalable prototype that automates the 3D acquisition of multi-

ple objects with novel view and path planning algorithms, using a high-accuracy

structured-light based scanner, and a calibrated motorized positioning system. Our

system significantly reduces the per-object human interaction time associated with

3D acquisition, which should lead to the broader use of 3D scanning in a variety of

fields.

We analyze the view and planning problem for multi-object 3D scanning. We

propose an objective function in consideration of both accuracy and efficiency for the

scanning. We study and compare different approaches to optimize for the objective

function, and conclude that sequentially solving the view planning and the path

planning problem is a reasonable strategy to adopt in practice. Jointly solving the

84

view selection problem over multiple objects can further expedite the process with

higher planning quality. Jointly solving the view selection and path finding problems,

on the other hand, can only achieve small increment in the objective, while requires

more sophisticated optimization strategies to reduce computational time, before it

can apply to a practical scenario.

Furthermore, we study different approaches to refine our multi-object 3D acquisi-

tion system. We propose two solutions, including improving the hardware design for

the system, and refining the view planning by making it iterative. This exploration

brings up new research topics, leading to fully automated high-quality 3D acquisition

for large numbers of objects.

Generalization. Currently our system focuses on acquiring a surface geometry

model. It would be interesting to generalize the view planning to support appearance

acquisition as well. This would involve augmenting our current view quality function

with a new term representing the expected response of a point sample to controlled

illumination, which would evaluate whether a given view is also good for photometric

capture.

Scan registration. Registration is always a required part of the post process in

a standard acquisition pipeline. Scanning multiple objects at a time provides more

global information for registering scans for the same scene, compared to scanning

with a single object system. However, our current prototype requires flipping the

objects to scan their under-sides, which in fact creates a new scene. There is no easy

way of aligning the front side to the back side globally. The strategy we adopt now

is to perform global alignment within the front side scene and the back side scene

to obtain models integrated for both sides, and then to segment out each object to

perform the back-to-front alignment independently. One possible future direction is

85

to explore global back-to-front registration algorithms that automatically account for

the user interaction of flipping each fragment.

Hardware limitations. The quality of our initial scan alignments is limited by

the precision of the scan-head’s motor control. While the existing initial estimates

of alignment are usually sufficient for automatic registration using ICP, inaccurate

initial poses complicate both automatic segmentation and registration of flat (and

otherwise underconstrained) objects such as fresco fragments. Adding encoders to

the motors to precisely read off their positions would lead to greater robustness in

post-processing.

Our prototype system is also limited in the motion ability of the scan head, since

we only have three automatic degrees of freedom in our positioning system. Chapter 6

has discussed preliminary solutions for scanning objects with significant self-occlusion.

By using two scissor-jack lifting platforms, we have demonstrated the possibility

of introducing an additional degree of freedom (vertical translation) with the system

still calibrated, and we believe it would be simple to motorize the axes of the lifting

platform. Because the view planning algorithm supports arbitrary scan-head motion,

a more complex gantry design can use the same planner to scan a more diverse group

of objects at once.

Planning Trade-off. While model based view planning and non-model based view

planning appear to be the two extremes of the solution spectrum to the problem, our

study on making the view planning iterative in Section 6.2 creates a bridge between

the two ends. Given any unknown object to be scanned, model based approaches

assume a priori knowledge about the object - this makes the problem easier to solve,

but the quality of the final reconstructed model is limited by the prior model. The

non-model based view planning, on the other hand, always looks for the next best

view based on the scans captured so far, which does make it more accurate to decide

86

where to scan next, but the entire process tend to become much more time- and

view- consuming. Our iterative approach is essentially doing a “next best set of

views” planning. We believe this to be a rich field for future research to study the

trade-off between the two categories of approaches.

87

Bibliography

[1] 3dr integrating with dji drones. https://3dr.com/blog/

3dr-dji-enterprise-atlas/. Accessed: 2018-04-04.

[2] Artec3d. https://www.artec3d.com/. Accessed: 2018-03-12.

[3] Google street view. https://en.wikipedia.org/wiki/Google_Street_View#

Data_capturing_equipment. Accessed: 2018-03-12.

[4] Edward H. Adelson and John Y. A. Wang. Single lens stereo with a plenoptic
camera. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):99–106, February 1992.

[5] Sema Berkiten, Xinyi Fan, and Szymon Rusinkiewicz. Merge2-3D: Combining
multiple normal maps with 3D surfaces. Proc. Int. Conf. 3D Vision (3DV), pages
440–447, December 2014.

[6] Fausto Bernardini and Holly Rushmeier. The 3D model acquisition pipeline.
Computer Graphics Forum, 21(2):149–172, 2002.

[7] Fausto Bernardini, Holly Rushmeier, Ioana M. Martin, Joshua Mittleman, and
Gabriel Taubin. Building a digital model of Michelangelo’s Florentine Pietà.
IEEE Computer Graphics and Applications, 22:59–67, 2002.

[8] Kevin W. Bowyer and Charles R. Dyer. Aspect graphs: An introduction and
survey of recent results. In Proc. SPIE: Close-Range Photogrammetry Meets
Machine Vision, volume 1395, pages 200 – 208, 1990.

[9] Benedict J. Brown, Corey Toler-Franklin, Diego Nehab, Michael Burns, David
Dobkin, Andreas Vlachopoulos, Christos Doumas, Szymon Rusinkiewicz, and
Tim Weyrich. A system for high-volume acquisition and matching of fresco
fragments: Reassembling Theran wall paintings. ACM Trans. Graphics (Proc.
SIGGRAPH), 27(3), 2008.

[10] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. Active vision in robotic sys-
tems: A survey of recent developments. Int. J. Robotics Research, 30(11):1343–
1377, 2011.

[11] Peng Cheng, James F. Keller, and Vijay Kumar. Time-optimal UAV trajec-
tory planning for 3D urban structure coverage. In Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), pages 2750–2757, 2008.

88

https://3dr.com/blog/3dr-dji-enterprise-atlas/
https://3dr.com/blog/3dr-dji-enterprise-atlas/
https://www.artec3d.com/
https://en.wikipedia.org/wiki/Google_Street_View#Data_capturing_equipment
https://en.wikipedia.org/wiki/Google_Street_View#Data_capturing_equipment

[12] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical Report 388, Graduate School of Industrial Administra-
tion, Carnegie Mellon University, 1976.

[13] William J Cook. In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation. Princeton University Press, 2011.

[14] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In Proc. ACM SIGGRAPH, pages 303–312, 1996.

[15] Brian Lee Curless. New Methods for Surface Reconstruction from Range Images.
PhD thesis, Stanford, CA, USA, 1998. UMI Order No. GAX98-10106.

[16] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Carto-
graphica: The International Journal for Geographic Information and Geovisual-
ization, 10(2):112–122, 1973. doi:10.3138/FM57-6770-U75U-7727.

[17] B. Englot and F. Hover. Inspection planning for sensor coverage of 3D ma-
rine structures. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), pages 4412–4417, 2010.

[18] Xinyi Fan, Linguang Zhang, Benedict Brown, and Szymon Rusinkiewicz. Au-
tomated view and path planning for scalable multi-object 3D scanning. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia), 35(6), November 2016.

[19] Olivier Faugeras, Bernard Hotz, Herv Mathieu, Thierry Viville, Zhengyou Zhang,
Pascal Fua, Eric Thron, Laurent Moll, Grard Berry, Jean Vuillemin, Patrice
Bertin, and Catherine Proy. Real time correlation-based stereo: algorithm, im-
plementations and applications. 1993.

[20] Uriel Feige. A threshold of Ln N for approximating set cover. J. ACM, 45(4):634–
652, 1998.

[21] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, June 1981.

[22] Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla Sheffer. Upright orientation
of man-made objects. ACM Trans. Graph., 27(3):42:1–42:7, August 2008.

[23] Jose-Joel Gonzalez-Barbosa, Teresa Garćıa-Ramı́rez, Joaqúın Salas, Juan-
Bautista Hurtado-Ramos, and José-de-Jesús Rico-Jiménez. Optimal camera
placement for total coverage. In Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pages 3672–3676, 2009.

[24] Inc. Gurobi Optimization. Gurobi optimizer reference manual.
http://www.gurobi.com, 2015.

89

[25] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Horaud. Time-of-Flight
Cameras: Principles, Methods and Applications. Springer Publishing Company,
Incorporated, 2012.

[26] R.J.(Ed.) Hocken and P.H.(Ed.) Pereira. Coordinate Measuring Machines and
Systems, Second Edition. Manufacturing Engineering and Materials Processing.
CRC Press, 2016.

[27] Larry Hornbeck. Digital Micromirror Device, US Patent No. 5,061,049, Inducted
in 2009.

[28] Niels Joubert, Mike Roberts, Anh Truong, Floraine Berthouzoz, and Pat Han-
rahan. An interactive tool for designing quadrotor camera shots. ACM Trans.
Graph., 34(6):238:1–238:11, 2015.

[29] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–
103. Plenum, 1972.

[30] Michael Kazhdan and Hugues Hoppe. Screened Poisson surface reconstruction.
ACM Trans. Graph., 32(3):29:1–29:13, 2013.

[31] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[32] S. Kriegel, M. Brucker, Z. C. Marton, T. Bodenmller, and M. Suppa. Combining
object modeling and recognition for active scene exploration. In Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), pages 2384–2391, 2013.

[33] Aldo Laurentini. The visual hull concept for silhouette-based image understand-
ing. IEEE Trans. PAMI, 16(2):150–162, 1994.

[34] Eugene L Lawler, Jan Karel Lenstra, AHG Rinnooy Kan, and David B Shmoys.
The traveling salesman problem: a guided tour of combinatorial optimization,
volume 3. Wiley, 1985.

[35] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The Digital Michelangelo Project: 3D scan-
ning of large statues. In Proc. ACM SIGGRAPH, pages 131–144, 2000.

[36] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516, 1973.

[37] Y. Matsumoto, H. Terasaki, K. Sugimoto, and T. Arakawa. A portable three-
dimensional digitizer. In Proceedings. International Conference on Recent Ad-
vances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134), pages 197–
204, May 1997.

90

[38] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and
Leonard McMillan. Image-based visual hulls. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00,
pages 369–374, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-
lishing Co.

[39] Ren Ng. Digital Light Field Photography. PhD thesis, Stanford, CA, USA, 2006.
AAI3219345.

[40] Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), pages 3400–3407, 2011.

[41] Besl P.J. Active optical range imaging sensors. Sanz J.L.C. (eds) Advances in
Machine Vision. Springer Series in Perception Engineering, 1989.

[42] J.L Posdamer and M.D Altschuler. Surface measurement by space-encoded pro-
jected beam systems. Computer Graphics and Image Processing, 18(1):1 – 17,
1982.

[43] Mike Roberts and Pat Hanrahan. Generating dynamically feasible trajectories
for quadrotor cameras. ACM Transactions on Graphics (SIGGRAPH 2016),
35(4), 2016.

[44] Guziec A Rushmeier H., Taubin G. Applying shape from lighting variation to
bump map capture. 1997.

[45] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3D model
acquisition. ACM Trans. Graph., 21(3):438–446, 2002.

[46] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point render-
ing system for large meshes. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pages 343–352,
New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[47] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm.
In Proc. 3D Digital Imaging and Modeling (3DIM), pages 145–152, 2001.

[48] Joaquim Salvi, Jordi Pagès, and Joan Batlle. Pattern codification strategies in
structured light systems. Pattern Recognition, 37:827–849, 2004.

[49] William R. Scott, Gerhard Roth, and Jean-François Rivest. View planning for
automated three-dimensional object reconstruction and inspection. ACM Com-
puting Surveys, 35(1):64–96, 2003.

[50] William R. Scott, William R. Scott Yz, Gerhard Roth, and Jean-Franis Rivest.
View planning as a set covering problem. Technical Report 44892, NRC Canada,
2001.

91

[51] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A compar-
ison and evaluation of multi-view stereo reconstruction algorithms. In 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’06), volume 1, pages 519–528, June 2006.

[52] Michael Tao, Pratul Srinivasa, Sunil Hadap, Szymon Rusinkiewicz, Jitendra Ma-
lik, and Ravi Ramamoorthi. Shape estimation from shading, defocus, and cor-
respondence using light-field angular coherence. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 39(3):546–560, March 2017.

[53] Glenn H. Tarbox and Susan N. Gottschlich. Planning for complete sensor cov-
erage in inspection. Computer Vision and Image Understanding, 61(1):84–111,
1995.

[54] C.J. Taylor. Implementing high resolution structured light by exploiting projec-
tor blur. In Proc. IEEE Workshop on Applications of Computer Vision (WACV),
pages 9–16, 2012.

[55] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
4.11.1 edition, 2018.

[56] R.Y. Tsai. An efficient and accurate camera calibration technique for 3d machine
vision. Proc. of Comp. Vis. Patt. Recog., pages 364–374, 1986.

[57] Jorge Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. Ur-
rutia, editors, Handbook of Computational Geometry. Elsevier, 2000.

[58] Pere-Pau Vázquez, Miquel Feixas, Mateu Sbert, and Wolfgang Heidrich. View-
point selection using viewpoint entropy. In Proc. Vision Modeling and Visual-
ization (VMV), pages 273–280, 2001.

[59] Pengpeng Wang, R. Krishnamurti, and K. Gupta. View planning problem with
combined view and traveling cost. In Proc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA), pages 711–716, 2007.

[60] T. Weise, T. Wismer, B. Leibe, , and L. Van Gool. In-hand scanning with online
loop closure. In Proc. 3D Digital Imaging and Modeling (3DIM), 2009.

[61] Shihao Wu, Wei Sun, Pinxin Long, Hui Huang, Daniel Cohen-Or, Minglun Gong,
Oliver Deussen, and Baoquan Chen. Quality-driven Poisson-guided autoscan-
ning. ACM Trans. Graph., 33(6):203:1–203:12, 2014.

[62] Kai Xu, Hui Huang, Yifei Shi, Hao Li, Pinxin Long, Jianong Caichen, Wei Sun,
and Baoquan Chen. Autoscanning for coupled scene reconstruction and proactive
object analysis. ACM Trans. Graph., 34(6):177:1–177:14, 2015.

[63] Feilong Yan, Andrei Sharf, Wenzhen Lin, Hui Huang, and Baoquan Chen. Proac-
tive 3D scanning of inaccessible parts. ACM Trans. Graph., 33(4):157:1–157:8,
2014.

92

[64] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Trans.
Pattern Anal. Mach. Intell., 22(11):1330–1334, 2000.

[65] Jian Zhao, Ruriko Yoshida, Sen ching Samson Cheung, and David Haws. Ap-
proximate techniques in solving optimal camera placement problems. Int. J.
Distributed Sensor Networks, (Article ID 241913), 2013.

93

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 3D Acquisition at Scale
	1.2 Statement of Problem
	1.3 System Design
	1.4 Dissertation Outline

	2 Prototype Multi-object 3D Acquisition System
	2.1 System Design for Scanning Multiple Objects
	2.2 System Pipeline
	2.3 Scene Exploration
	2.4 Positioning in the ``World''

	3 Scanning
	3.1 3D Scanning Techniques
	3.2 Implementing A Structured-Light Scanner
	3.2.1 Illumination Pattern Design
	3.2.2 Scanner Calibration

	4 Planning
	4.1 Related Work
	4.2 Objective Setup
	4.2.1 Search Space Discretization
	4.2.2 View Quality Metric
	4.2.3 Overlap-Aware Heuristics

	4.3 Sequential View and Path Optimization
	4.3.1 Optimizing the View Planning Objective Function
	4.3.2 Discussion on Performance
	4.3.3 Path Finding

	4.4 Joint Optimization
	4.4.1 Joint View Selection for Multiple Objects
	4.4.2 Joint View and Path Planning

	5 System Evaluation
	5.1 View Planning Evaluation
	5.2 Path Planning Evaluation
	5.3 System-Level Evaluation
	5.4 Object Variety Evaluation

	6 Addressing Surface Inaccessibility
	6.1 Augmented Hardware Design
	6.2 Iterative View Planning
	6.2.1 New Pose Suggestion
	6.2.2 View Quality Re-evaluation

	7 Conclusion, Discussion, and Future Work
	Bibliography

