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Fig. 1. Left: A heightfield in which heights and colors have been optimized by our method in order to produce desired appearances from 3 different directions
as indicated. Right: Snapshots of this heightfield from the 3 viewing directions together with the desired and rendered appearances of the regions of interest.

We present a method for the digital fabrication of surfaces whose appearance

varies based on viewing direction. The surfaces are constructed from a mesh

of bars arranged in a self-occluding colored heightfield that creates the

desired view-dependent effects. At the heart of our method is a novel and

simple differentiable rendering algorithm specifically designed to render

colored 3D heightfields and enable efficient calculation of the gradient of

appearance with respect to heights and colors. This algorithm forms the

basis of a coarse-to-fine ML-based optimization process that adjusts the

heights and colors of the strips to minimize the loss between the desired and

real surface appearance from each viewpoint, deriving meshes that can then

be fabricated using a 3D printer. Using our method, we demonstrate both

synthetic and real-world fabricated results with view-dependent appearance.
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1 INTRODUCTION
Recent advances in 3D printing technology, including the ability

to print the entire color spectrum at very high resolutions, have

enabled many new applications in digital fabrication. One such
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application of these capabilities is making directly printable 3D ob-

jects whose surface appearance changes dynamically with viewing

angle to create multi-image displays. Such tangible displays have

applications in various communication tasks and art. For example,

one could use such a surface to display co-located AprilTags on one

small square [Olson 2011], or to make color changing artwork [Lee

et al. 2022; Weissman 2015] and interactive objects.

The current state of the art solution for this task, “Lenticular

Objects” [Zeng et al. 2021], employs a UV printer to print 3D objects

covered in tiny lenses. Underneath each lens lies an array of colored

dots. The lenses then cause different colors to appear based on

viewing direction, allowing multiple images to be displayed on

a single object’s surface. However, this method requires the use

of clear material, and the printed objects appear to have dark a

hexagonal overlay around the edges of each lens. These objects also

require a polish coating to be painted on them after printing, and the

visual effects of the surfaces are very sensitive to the type of coating

used. Furthermore, lens-based approaches can only a achieve low

resolutions: with lenticular objects, the resolution of the images is

limited by the requirement that each lens be large enough to cover

a given number of dots (equal to the number of viewing directions).

Our work aims to achieve higher printable resolutions than prior

approaches by using a self-occluding colored heightfield that can be

directly fabricated with UV 3D printers and require no additional

fabrication steps such as lenses or polish. In the heightfield, certain

strips will obstruct each other from different vantage points, creating

view-dependent effects such as those shown in Fig. 1. We propose

a machine-learning based method for automatically creating these

heightfields based on the desired surface appearance. At the heart of

our method lies a novel differentiable rendering algorithm tailored

specifically to 3D heightfields.

We present a suite of various optimization techniques for self-

occluding heightfields. To better search for a global optimum of
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our system, we use coarse-to-fine stochastic-gradient-descent (SGD)

interspersed with simulated annealing. Furthermore, we employ

alternating block coordinate descent to improve the accuracy of our

results. We regularize our surfaces to make them suitable for 3D

printing with extra barrier loss and neighbor loss terms in our ob-

jective function. We also conduct a series of experiments to validate

the effectiveness of these various techniques and the limitations of

our approach in terms of number and range of viewing directions,

accuracy and resolution.

In this work we contribute:

(1) A novel special-purpose differentiable renderer designed for

self-occluding heightfields.

(2) A tailored SGD-based optimization algorithm that includes

coarse-to-fine surface subdivision, alternating block coordi-

nate descent, steps of simulated annealing, and surface reg-

ularization, which is effective for optimizing self-occluding

heightfields.

(3) A demonstration of the effectiveness of our algorithm on

synthetic and real-world 3D printed results.

2 RELATED WORK
View Dependent Appearance and Fabrication. Previous research

employs a variety of methods to achieve surfaces capable of dis-

playing multiple images. Pjanic and Hersch [2015] propose a two

metal-printing method that uses superposition of horizontal and

vertical colored lines to create surfaces which appear to change color

with view direction. Their results, however, have a grainy quality.

Also, the approach is specific to metal media and a maximum of two

distinct images can be embedded into a single surface.

Self-occlusion is a popular technique for displaying multiple im-

ages or changing images on a single surface. Snelgrove et al. [2013]

employs parallax walls to cause certain colors to appear depending

on the direction of incident light on the surface. Unlike our method,

the heights of these walls are regular and fixed regardless of the

desired input images, making the method constrained to changes

in appearance across only one axis. In one of the closest existing

works to ours, Sakurai et al. [2018] uses a UV printer to create tiny

heightfields that induce self-occlusion by creating several subcells

for each desired color at each point in the image and designing walls

that block the colors of certain subcells from certain viewing direc-

tions. This method, however, compromises image quality, as the

black walls and fragments of the other colors are visible from each

view angle, creating a grainy texture. This method is also explicitly

limited to a low number of views and cannot exploit the benefits of

shared pixel color across viewpoints, whereas our method can.

Lenticular lens surfaces can also be used to create surface ap-

pearance that changes with view angles. Most recently, Zeng et al.

[2021] demonstrate printing lenses directly onto 3D objects to cause

changing surface appearance. Due to the nature of the lenses, these

surfaces have the appearance of a thin dark hexagonal lattice over-

lay due to the shadows between the lenticular lenses, whereas our

method produces no dark regular artefacts or shadows.

Klehm et al. [2014] and Nindel et al. [2021] both propose ap-

proaches for respectively optimizing synthetic and 3D printable

surfaces by changing the material color and opacity of the surface

per voxel to achieve a desired appearance. However, unlike our

approach, neither focus on updating surface geometry to create

view-dependent appearance.

Self-Occlusion and self-shadows. The technique of fabricating com-

plex surfaces that have self-occluding or self-shadowing properties

has also been previously used in a variety of applications outside of

fabricating multi-image displays. Alexa andMatusik [2011] uses self-

shadowing heightfields to produce images that vary based on the

direction of incident light. Additionally, Alexa and Matusik [2012]

exploits shadowing to dither images by placing irregular pits on

surfaces where the deeper the pit, the darker the appearance at that

point on the surface. Along these same lines, Peng et al. [2019] fab-

ricates indented 3D surfaces to create QR codes on 3D objects. Our

current algorithm does not consider the effects of self-shadowing,

but as a future extension of our work it could be augmented to do

so using a similar approach to that in [Alexa and Matusik 2011].

Applications of Digital Fabrication. The process of applying graph-
ics to the physical world has been the subject of a longstanding and

growing area of research [Salisbury Jr 1999; Séquin 2013], with a

number of studies focusing in particular on creating surfaces with

unique and unusual optical effects. Papas et al. [2011] uses the tech-

nique of indenting surfaces in order to manipulate incident light so

that when light shines through the surface, a desired image appears

on a projection plane. Regg et al. [2010] fabricates 3D holograms by

indenting parabolic and hyperbolic grooves into specular materials.

Pereira et al. [2017] uses magnetic flakes embedded in resin to print

surfaces with anisotropic appearance. Weyrich et al. [2009] opti-

mizes microfacet heightfields to replicate desired reflected highlight

shapes, and manufactures these surfaces with a milling machine.

Differentiable Rendering. There is a large body of previous work

that designs and employs differentiable rendering on meshes for

a variety of applications [Kato et al. 2020]. To tackle discrete dis-

continuities that occur from occlusion and object boundaries, one

can facilitate gradient computation by approximating the rendering

forward pass with a smooth function. For example, Rhodin et al.

[2015] fades the density of objects at boundaries, and Liu et al. [2019]

proposes the Soft Rasterizer, which utilizes spatial blurring and a

probabilistic pixel color aggregation method. Recently, Petersen

et al. [2022] presents a generalized family of differentiable renderers

that employ a large variety of sigmoid functions to approximate the

Heaviside stepwise function. In our work we also utilize a smooth

Heaviside stepwise function approximation for differentiable render-

ing. However, unlike previous methods, our differentiable renderer

is optimized for 3D heightfields. This is a computationally inexpen-

sive approach that allows us to directly compute gradients in terms

of the heights and colors of the bars in the heightfield.

3D Reconstruction. 3D reconstruction is a popular computer vi-

sion task, with a variety of deep-learning based approaches being

used for this purpose [Maxim and Nedevschi 2021]. Typically these

aim for the appearance of the object to be consistent and coherent

across views. In contrast, our work aims for the surface of an ob-

ject to change its appearance when viewed from different vantage

points. For example, NeRF achieves very accurate and consistent

results by using a neural radiance field representation for scenes
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Fig. 2. Diagram of setup of our system for two arbitrary views. 𝐷1 and 𝐷2

are desired appearance images. A heightfield with heights 𝐻 and colors
𝐶 are viewed by cameras 𝑐𝑎𝑚1 and 𝑐𝑎𝑚2 to produce actual appearance
images 𝐼1 and 𝐼2.

[Mildenhall et al. 2021] but is not necessarily well-suited for our

task, as it does not output an explicit geometry suitable for 3D

printing. Algorithms have been proposed to reconstruct 3D meshes

from volumetric representations [Lorensen and Cline 1987; Uy et al.

2022], but often suffer from artifacts and introduce an additional

phase in the reconstruction process. This is why we instead propose

an explicit heightfield optimization approach tailored to creating

surfaces with view-dependent appearances.

3 HEIGHTFIELD RENDERING ALGORITHM
We propose a special-purpose differentiable rendering method for

3D heightfields, which we describe below.

3.1 Heightfield and Camera Setup
A heightfield is represented by a height matrix 𝐻 and color matrix

𝐶 . The heightfield is viewed by an series of orthographic cameras

𝐶𝐴𝑀 pointed at the heightfield, as shown in Fig. 2.
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We use weak perspective projections due to the relatively shallow

nature of our heightfields. Each camera 𝑐𝑎𝑚𝑖 is simply parameter-

ized by a 3D viewing direction vector. For each of these viewing

directions, there is a given desired image 𝐷 . Below, we describe the

rendering algorithm to find the actual projected image 𝐼 for each

camera.

For each camera, we obtain a matrix of camera rays by tracing

from evenly distributed points on the 𝑥𝑦 plane backwards along

the direction of the camera. Each camera ray has a direction vector

(𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) and origin (𝑜𝑖 , 𝑜 𝑗 , 𝑜𝑘 ).

3.2 Slicing the Heightfield
To render the resulting image for each camera, we slice the height-

field to obtain a cross-section for each camera ray. We do this by

projecting the original 3D ray r onto the 𝑥𝑦 plane to obtain a 2D

projected ray r𝑥𝑦 . On the 𝑥𝑦 plane, we determine which heightfield

strips this 3D projected vector intersects with and the corresponding

coordinates of each intersection.

We then calculate the distance between each adjacent pair of

intersection points. We use these distances to construct a slice repre-

sented by a 1D array of strip heights𝐻 ′, a cumulative sum of widths

𝑊 ′ and colors𝐶′. We then re-project the original ray onto this slice

to retrieve a final projected ray p. The process of projecting a 3D

ray to obtain a 2D slice of the heightfield and 2D ray is illustrated

in Fig. 3.

3.3 Rendering a Single Pixel
We can determine the color of a single ray by determining which

strip of the heightfield slice is hit by the projected ray p with direc-

tion (𝑑𝑝𝑥 , 𝑑
𝑝
𝑦 ). We first set the origin of p at 𝑥 = 0 and solve for the

corresponding 𝑦 value at this point, to get a projected ray origin

(𝑜𝑝𝑥 , 𝑜
𝑝
𝑦).

We then back-trace along the direction of 𝑝 from each strip to

find strip boundary parameters 𝑌 = (𝑦0, . . . , 𝑦𝑛+1) for each strip, as

visualized in Fig. 4. We can calculate 𝑦0, . . . , 𝑦𝑛+1 from the sliced

strip heights 𝐻1𝐷 = ℎ0, . . . , ℎ𝑛+1 and cumulative widths𝑊1𝐷 =

(𝑤0, . . . ,𝑤𝑛+1) by using the invertible function 𝑓 defined as

𝑦𝑖 = 𝑓 (𝑖) = ℎ𝑖 −
𝑑
𝑝
𝑥

𝑑
𝑝
𝑦

·
(
(𝑖 + 1) ·𝑤𝑖

)
. (1)

We can determine which strip the ray 𝑝 hits by looking for an 𝑖

such that, for the pair of boundary parameters (𝑦𝑖 , 𝑦𝑖+1), we have
𝑦𝑖 < 𝑜

𝑝
𝑦 < 𝑦𝑖+1 as shown in Fig. 4. Note that we first need to make

sure that the set of boundary parameters is monotonically increasing

by using a cumulative maximum, to deal with the case where a strip

is entirely obstructed and should be “skipped” accordingly, as shown

in Fig. 5.

We devise a formula for directly obtaining the strip that ray 𝑝

hits based on the reasoning above. Let 𝑔(𝑦) be the Heaviside step
function where 𝑔(𝑦) = 0 if 𝑦 < 0 and 𝑔(𝑦) = 1 if 𝑦 ≥ 0. Then,

𝑦𝑖 ≤ 𝑜
𝑝
𝑦 < 𝑦𝑖+1 ⇐⇒ 𝑔(𝑜𝑝𝑦 − 𝑦𝑖+1) == 0, 𝑔(𝑜𝑝𝑦 − 𝑦𝑖 ) == 1 (2)

Thus:

𝑦𝑖 ≤ 𝑜
𝑝
𝑦 < 𝑦𝑖+1 ⇐⇒ 𝑔(𝑜𝑝𝑦 − 𝑦𝑖 ) − 𝑔(𝑜

𝑝
𝑦 − 𝑦𝑖+1) == 1 (3)

Now, as the 𝑦 boundary values are monotonically increasing, for

the ray 𝑝 with origin height 𝑜
𝑝
𝑦 we are guaranteed that we will have

𝑦𝑖 ≤ 𝑜
𝑝
𝑦 < 𝑦𝑖+1 exactly once across all pairs (𝑦𝑖 , 𝑦𝑖+1); in all other

cases, either 𝑜
𝑝
𝑦 < 𝑦𝑖 , 𝑦𝑖+1 or 𝑜

𝑝
𝑦 ≥ 𝑦𝑖 , 𝑦𝑖+1, in which case the value

𝑔(𝑜𝑝𝑦 −𝑦𝑖 ) −𝑔(𝑜
𝑝
𝑦 −𝑦𝑖+1) = 0 (as the values in this subtraction are 0

or both are 1). Thus we can calculate the color seen by ray 𝑝 as

𝑐𝑜𝑙𝑜𝑟 (𝑝) = 𝑐0
(
𝑔(𝑜𝑝𝑦 − 𝑦0) − 𝑔(𝑜

𝑝
𝑦 − 𝑦1)

)
+ 𝑐1

(
𝑔(𝑜𝑝𝑦 − 𝑦1) − 𝑔(𝑜

𝑝
𝑦 − 𝑦2)

)
+ . . .

+ 𝑐𝑛
(
𝑔(𝑜𝑝𝑦 − 𝑦𝑛) − 𝑔(𝑜

𝑝
𝑦 − 𝑦𝑛+1)

)
.

(4)
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Fig. 3. Left: a 3D ray 𝑟 (red) hitting 3D heightfield, with its projected ray (black) and the strips the projected ray intersects highlighted. Right: the corresponding
2D slice of the heightfield with multiple projected camera rays hitting it.

Fig. 4. An illustration of two camera rays hitting the surface of the height-
field. Ray 𝑝0 will be green, as 𝑦2 < 𝑜

𝑝0
𝑦 < 𝑦3. Ray 𝑝1 will be purple, as

𝑦3 < 𝑜
𝑝0
𝑦 < 𝑦4.

This formula can be rearranged as

𝑐𝑜𝑙𝑜𝑟 (𝑝) = 𝑔(𝑜𝑝𝑦 − 𝑦0) · 𝑐0
+ 𝑔(𝑜𝑝𝑦 − 𝑦1) · (𝑐1 − 𝑐0)
+ . . .

+ 𝑔(𝑜𝑝𝑦 − 𝑦𝑛) · (𝑐𝑛 − 𝑐𝑛−1)

− 𝑔(𝑜𝑝𝑦 − 𝑦𝑛+1) · 𝑐𝑛 .

(5)

We thus have a simple formula in terms of backtraced strip heights

𝑦0, . . . , 𝑦𝑛 , strip colors 𝑐0, . . . , 𝑐𝑛 , and ray height 𝑜
𝑝
𝑦 for the view of

ray 𝑝 on a given slice of the heightfield:

𝑐𝑜𝑙𝑜𝑟 (𝑝) = 𝑔(𝑜𝑝𝑦 − 𝑦0) · 𝑐0 − 𝐻 (𝑜
𝑝
𝑦 − 𝑦𝑛+1) · 𝑐𝑛

+
𝑛∑︁
𝑖=0

𝑔(𝑜𝑝𝑦 − 𝑦𝑖 ) · (𝑐𝑖 − 𝑐𝑖−1) .
(6)

To enable differentiation of the above formula, we use a smooth

approximation of the Heaviside step function 𝑔. More details of this

are provided in Section 4.1.

3.4 Rendering all the pixels
For each camera, we render all of the rays coming from the cam-

era with the process above. Note that we can simplify the process

somewhat, as for each camera every column of rays will have the

same corresponding heightfield slice, so we do not need to re-slice

the heightfield for every camera pixel. These rendered rays form an

output image 𝐼𝑖 for camera 𝑐𝑎𝑚𝑖 .

3.5 Optimization Process
Based on the above, the complete process to get from a ray 𝑟𝑖 to a

view color consists of the following steps:

(1) Project the ray onto the 𝑥𝑦 axis and obtain the parameters

𝐻 ′,𝑊 ′,𝐶′, of the corresponding slice of the heightfield and

the new “2D” ray p.

(2) Apply the differentiable, invertible function 𝑓 to all of the

strips heightsℎ′
0
, . . . , ℎ′𝑛 , to obtain backtraced boundary heights

𝑦0, ...𝑦1.

(3) Make the sequence of 𝑦𝑖 monotonically increasing, via the

function𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 (𝑦𝑖 ) = max{𝑦0, ..., 𝑦𝑖 }.
(4) Calculate the color of the ray with 𝑐𝑜𝑙𝑜𝑟 (𝑝).
This establishes a completely differentiable forward rendering

process to derive the image seen by a camera pointed at the height-

field. Let this mapping be denoted as

𝐼𝑖 = forward(𝑐𝑎𝑚𝑖 , 𝐻,𝐶). (7)

Repeating Units. There are two general application scenarios of

our method: reproducing single images or reproducing repeated pat-

terns. If we wish to reproduce repeated patterns, we optimize for a

smaller unit of the heightfield and repeat this unit while considering

the occlusion that occurs across units.

4 OBJECTIVE FUNCTION
Our objective is to minimize the pixel-wise𝑀𝑆𝐸 loss between the

actual appearance of the heightfield obtained from our forward ren-

dering algorithm and the given𝑚 by𝑚 desired appearance images

𝐷1, . . . , 𝐷 |𝐶𝐴𝑀 | :
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Fig. 5. Left: An example of non-monotonic back-traced strip heights. Right: The same strips back-traced converted into monotonically increasing heights.

Table 1. MSE loss after 100 steps on two-view optimization

camera 1 camera 2 none barrier smoothing
barrier

smoothing

black white 0.066 0.092 0.087 0.136

black random 0.086 0.105 0.127 0.133

black stripes 0.156 0.162 0.168 0.169

random stripes 0.198 0.249 0.209 0.203

random random 0.116 0.131 0.113 0.124

min

𝐻,𝐶

1

𝑚2 |𝐶𝐴𝑀 |

|𝐶𝐴𝑀 |∑︁
𝑖=1

𝑚∑︁
𝑥=1

𝑚∑︁
𝑦=1

(
𝐷𝑖𝑥,𝑦 − forward

(
𝑐𝑎𝑚𝑖 , 𝐻,𝐶

)
𝑥,𝑦

)
2

.

(8)

We also consider several variants on this objective function ob-

tained by adding extra loss terms for surface regularization and

different choices for the smooth Heaviside approximation function.

We perform an ablation across the regularization variants, which is

presented in Table 1. In this ablation, we find that additional loss

terms for surface regularization decrease the resulting accuracy of

the images on the heightfield’s surface. However, this trade-off is

necessary to ensure that our surfaces remain within height bounds

and do not contain spikes that can easily break or deep troughs that

may have extreme shadowing.

4.1 Smooth Heaviside Approximations
The Heaviside step function is not differentiable. We solve this prob-

lem by choosing a smooth approximation of this function 𝜆(𝑥, 𝑘)
from a variety of options (outlined in Table 2) with an additional

parameter 𝑘 which increases the amount of smoothing. We perform

an ablation study across various estimation functions with fixed

𝑘 = 0.1, comparing the change in loss over time for a surface opti-

mization over two cameras from opposite sides of the surface with

45 degree elevation. The cameras have desired surface appearance of

solid white and solid black respectively. The results of our ablation

are presented in Fig. 6. Based on this study, we identify the hyper-

bolic tan (tanh) approximation as the most effective approximation

for our algorithm.

Table 2. Heaviside function approximations

Heaviside approximation Formula

circle 𝜆 (𝑥, 𝑘 ) = 1

2
+ 1

2

𝑥

(𝑥2+𝑘2 )1/2

circle distance 𝜆 (𝑥, 𝑘 ) ∼ Bern

(
1

2
+ 1

2

𝑥

(𝑥2+𝑘2 )1/2

)
erfc 𝜆 (𝑥, 𝑘 ) = 1

2
+ 1

2

(
1 − 2√

𝜋

∫ 𝑘𝑥

0
𝑒−(𝑘𝑥 )

2

𝑑𝑥

)
tanh 𝜆 (𝑥, 𝑘 ) = 1

2
+ 1

2
tanh(𝑘𝑥 )

log 𝜆 (𝑥, 𝑘 ) ∼ Bern

(
1

2
+ 1

2
tanh(𝑘𝑥 )

)

Fig. 6. Convergence curves for various smooth approximations for the Heav-
iside stepwise function. erfc and tanh approximations outperform circle
distance, circle and log approximations.

4.2 Regularization
Barrier Loss. We regularize our surfaces by enforcing a minimum

height ℎ𝑚𝑖𝑛 and maximum height ℎ𝑚𝑎𝑥 via a barrier loss term:

barrier_loss = −
|𝐻 |∑︁
𝑖=1

log(ℎ𝑚𝑎𝑥 − ℎ𝑖 ) − log(ℎ𝑚𝑖𝑛 − ℎ𝑖 ) . (9)
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Smoothing. We also add a neighbor loss term for the difference

in height between adjacent strips, so that there are no “spikes” in

the heightfield:

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑜𝑠𝑠 = −
|𝐻 |∑︁
𝑖=1

|ℎ𝑖 − ℎ𝑖−1 |. (10)

Table 3. Loss after 100 steps on surfaces with uniform initial configurations,
for different combinations of optimizations.

cam 1 cam 2 none
coarse

to fine

coord.

descent

coarse to fine

coord. descent

sim. annealing

black white 0.136 0.067 0.107 0.011

random random 0.124 0.099 0.108 0.093

black random 0.133 0.108 0.094 0.051

black stripes 0.169 0.124 0.141 0.037

random stripes 0.203 0.205 0.180 0.057

5 OPTIMIZATION METHODS
Our basic optimization algorithm uses the AdamOptimizer [Kingma

and Ba 2015] to minimize the MSE loss between the desired views

and actual appearance of the surface for each camera. To design our

surfaces, we introduce a suite of various optimization techniques.

We perform an ablation across these methods, which is presented

in Table 3. We find that a combination of coarse-to-fine optimiza-

tion, alternating block coordinate descent, and simulated annealing

significantly improves the performance of our algorithm in all test

cases.

5.1 Coarse-To-Fine Optimization
We use coarse-to-fine optimization, whereby every 50 steps of the

algorithm, each of the heightfield strips is subdivided into a 2 × 2
block of strips with the same height and color as the original strips.

We begin the optimization process with heightfields of 8 × 8 strips,
and end the process with heightfields of 32×32 strips. This provides
some additional surface regularization and also improves the overall

performance of the algorithm.

5.2 Alternating Block Coordinate Descent
During optimization, we alternately update heights of the strips for

10 steps and the colors of the strips for 20 steps, until convergence.

This greatly improves the performance of our algorithm relative to

optimizing both heights and colors simultaneously at each iteration.

5.3 Simulated Annealing
To improve our results for more complicated cases and better escape

local optima, we optionally perform steps of simulated annealing

[Bertsimas and Tsitsiklis 1993], as outlined in algorithm 1, on both

the strip heights and colors at the start of the algorithm and sub-

sequently every 100 steps. We set 𝑇𝑚𝑎𝑥 = 3, 𝑇𝑚𝑖𝑛 = 0.5 and cool

𝑇 using exponential decay with a factor of 0.99. If a more uniform

final pattern is desired, then simulated annealing can be omitted

from the optimization process.

Algorithm 1 Simulated Annealing [Bertsimas and Tsitsiklis 1993]

𝑇 ← 𝑇𝑚𝑎𝑥

𝐶,𝐻 ← init_C, init_H

while𝑇 > 𝑇𝑚𝑖𝑛 do

𝐶𝑟𝑎𝑛𝑑 , 𝐻𝑟𝑎𝑛𝑑 ← RANDOM_NEIGHBOUR(𝑇,𝐶,𝐻 )

Δ𝐿 ← LOSS(𝐶𝑟𝑎𝑛𝑑 , 𝐻𝑟𝑎𝑛𝑑 ) − ENERGY(𝐶𝑟𝑎𝑛𝑑 , 𝐻𝑟𝑎𝑛𝑑 )

if Δ𝐿 < 0 then

𝐶𝑂𝐿,𝐻 ← 𝐶𝑟𝑎𝑛𝑑 , 𝐻𝑟𝑎𝑛𝑑

else if random() < 𝑒−Δ𝐿/𝑇 then

𝐶,𝐻 ← 𝐶𝑟𝑎𝑛𝑑 , 𝐻𝑟𝑎𝑛𝑑

𝑇 ← COOL(𝑇,𝐶,𝐻 )

return𝐶,𝐻

Fig. 7. Renders of 8 × 8 initial surface configurations (left to right: flat,
vertical wall, horizontal wall, cross, random).

Fig. 8. Comparison of convergence curves across different initial surface
configurations.

5.4 Initial Configurations
We experiment with several different initial configurations for our

optimization, including uniform, random, and preset configurations,

as illustrated by Fig. 7. We compare the convergence curves when us-

ing these initial configurations for the four-view optimization prob-

lem (with elevation 30 and desired appearances of solid cyan, ma-

genta, yellow and black). The results of this experiment are shown

in Fig. 8. We find that using a criss-cross initial configuration pattern

6
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Fig. 9. The same surface as viewed from two directions displaying an image
of a dog (left) and cat (right), printed with higher bar width (top) and lower
bar width (bottom). The images on the bottom row suffer from more color
mixing due to translucency.

gives the best performance, closely followed by vertical and hori-

zontal wall configurations (which, aside from randomness, should

theoretically all have the same effect for this four-view problem).

5.5 Post-optimization projection
As an additional step after optimizing the heights and colors of the

field, we create multiple vertical segments for each heightfield bar,

and then re-project the desired images onto the heightfield. This

allows us to achieve higher resolution results without additional

computation time, which is particularly important for detailed im-

ages.

6 OPTIMIZATION RESULTS
We implemented the optimization algorithm using PyTorch, and the

fabrication mesh conversion script in Blender with the Python bpy
module. Optimization times range from 30 minutes to 2 hours.

We perform optimizations for various test cases, with varying

numbers of cameras, viewing angles and desired appearance. In

Fig. 10, we show surfaces optimized for five views (top) and four

views (bottom). The results closely match the desired appearance,

but we can see some quality degradation occurring when introduc-

ing the fifth view. We show additional rendered heightfields in our

video.

We also carry out a study to determine which pairs of viewing

angles are compatible with each other. We examine the loss after

100 steps on a two-view (solid black vs. solid white) optimization. In

Fig. 13a both views have the same elevation and different azimuth,

and in Fig. 13b both views have the same azimuth and different

elevation. We find that as difference in elevation and azimuth in-

creases beyond 40 degrees and 60 degrees respectively, we are able

to achieve a final MSE loss of < 0.1.

Additionally, we compare our approach to a lenticular-based ap-

proach [Zeng et al. 2021], and present renders of resulting surfaces in

Fig. 11 that reflect the highest possible resolution for each approach

with the same 3D printer. We find that our approach is qualita-

tively better at capturing sharp lines and high-resolution details

from the desired appearance images, although it does suffer slightly

more from color contamination across views. We also note that our

method displays a smaller crop of the desired appearance image

than the lenticular surface, due to the need for cropping during

image projection onto the heightfield surfaces.

7 FABRICATION
To fabricate the surfaces, we first convert the heightfields into

meshes and material template libraries using Blender. We then fabri-

cate the surfaces using a Stratasys J55 Polyjet UV printer. Results are

shown in Fig. 9 and Fig. 12. An example of a rendered and fabricated

version of the same surface can be seen in Fig. 14a, which also shows

a close match between rendered and real results. We identified the

best workable resolution for the printer by performing several strip

tests, and found that 300dpi was possible without aliasing. We used

this resolution as the minimum strip width for our fabrication. We

are able to achieve view-dependent effects at a very high resolution

as can be seen in Fig. 14b, which is less than 1cm wide. In order to

prevent strip breakage for such high-resolution prints, we added

a layer of ultra-clear printed material on top of this surface. This

layer, however, reduces the actual elevation required for the desired

surface appearance due to refraction.

Some results also suffer from color mixing across views due to

undesired printing material translucency, such as in Fig. 9. Our

current approach to solve this is to reduce the printing resolution

for a given target. Future work may also regularize the heightfield by

minimizing high color variance between neighboring bars to further

mitigate the negative effects ofmaterial translucencywithout having

to compromise on printing resolution.

8 DISCUSSION AND LIMITATIONS
Our algorithm explores the use of self-occluding heightfields in

fabricating multi-image displays. We demonstrate generating sur-

faces with view-dependent appearance at up to five distinct viewing

angles and fabricate surfaces that closely match the rendered results

at high resolution and with up to four viewing angles. The most im-

portant advantages of our method as opposed to prior works are the

high working resolution and ability to share colors across views. We

are also able to use bright colors on our surfaces, as we do not rely

on additional walls that darken the overall surface appearance as in

Sakurai et al. [2018]. However, we observe that the quality of results

from our procedure is highly dependent on the relative azimuth

and elevation of the cameras, unlike with lenticular-based methods.

Additionally, we do not take the self-shadowing of environment

lighting into account. Future work could, however, augment our

algorithm to account for self-shadows by darkening or lightening

the colors in the heightfield to offset these effects.

9 CONCLUSION
We devise a novel approach for fabricating multi-image displays

that does not rely on building fixed-color walls or using lenses

and polish. We present a suite of techniques that comprise a new

optimization algorithm specifically tailored to our task, including

a simple differentiable ray-casting inspired rendering algorithm

designed to render colored heightfields to achieve our task. Our

approach allows us to use a UV printer to successfully fabricate

colorful 3D objects whose surface-appearance changes depending

on viewing angle.
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Fig. 10. Top: Optimized surface with five distinct desired appearances. Bottom: Optimized surface with four distinct desired views.

Fig. 11. Top: desired appearances. Middle: Renders of lenticular surface from three different viewing directions. Bottom: Render of self-occluding surface
generated via our method from three different viewing directions.
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Fig. 12. Photographs of various fabricated surfaces. Top row: The same surface as viewed from four directions, displaying four unrelated colorful patterns.
Bottom row: The same surface as viewed from two directions, displaying the Stanford Dragon and the Stanford Bunny.

Fig. 13a. MSE loss after 100 steps with two viewing directions. The
first viewing direction has a desired appearance of solid black, with
elevation 60 and azimuth 0. The second viewing direction has a desired
appearance of solid white, elevation 60 degrees and variable azimuth.

Fig. 13b. MSE loss after 100 steps with two viewing directions. The
first viewing direction has a desired appearance of solid black, with
elevation 20 and azimuth 0. The second viewing direction has a desired
appearance of solid white, variable elevation and azimuth 0.

Fig. 14a. Top: Render of synthetic surface as viewed from two directions.
Bottom: Fabricated version of this same surface.

Fig. 14b. High-resolution fabrication of a biking/no biking sign as viewed
from two high-elevation directions (60 degrees). The surface is less than
1cm wide.
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