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ABSTRACT

Research in generative self-supervised learning (SSL) has largely fo-
cused on local embeddings for tokenized sequences. We introduce
a generative SSL framework that learns a global representation that
is disentangled from local embeddings. We apply this technique to
jointly learn a global speaker embedding and a zero-shot voice con-
verter. The converter modifies recorded speech to sound as if it were
spoken by a different person while preserving the content, using only
a short reference clip unavailable to the model during training. Lis-
tening experiments conducted on an unseen dataset show that our
models significantly outperform SOTA baselines in both quality and
speaker similarity for various datasets and unseen languages.

Index Terms— generative self-supervised global representation
learning, cross-lingual zero-shot voice conversion

1. INTRODUCTION

Pretrained deep neural networks recently enabled a variety of im-
pressive applications in NLP, imaging, speech recognition, among
many other fields. Generative self-supervised pretraining is a form
of unsupervised learning that forms a representation by reconstruct-
ing data or properties of the data without human labels. In NLP and
speech, self-supervised learning (SSL) is often formulated around
sequence prediction for discrete tokens, e.g. using context to predict
missing text [1], discretized sound [2], or audio codec tokens [3].
The trained model then can be repurposed for downstream tasks such
as text generation [4, 2], speech recognition [4], or speaker classifi-
cation [5]. The primary advantage of SSL is the ability to leverage
in-the-wild data. Research has shown significant performance gains
by pretraining a large SSL model with crawled Internet data in order
to improve subsequent models trained by supervised learning, e.g.
wav2vec for speech recognition [6] and SEER for few-shot image
classification [7].

While generative SSL has shown success in local representation
learning, we introduce an approach to learning a global representa-
tion from unlabelled audio data, for generation. A global representa-
tion is a fixed-dimension real-valued vector that represents a certain
property that is consistent across the entire input data, e.g., the topic
of a paragraph – or in our applications, the vocal characteristics of an
individual speaker. Conventional methods often use supervised con-
trastive learning (which requires labels) to learn such embeddings,
e.g., d-vectors in learned speaker embedding [8]. Another approach,
contrastive SSL, learns a common embedding for data that share the
same global characteristics, for example instance-to-instance con-
trast in SimCLR [9]. However, unlike generative SSL, these models
do not have the ability to generate instances after training [10].

This paper proposes an SSL framework to learn a global repre-
sentation from unlabelled in-the-wild data via a generative process.
We show its application to zero-shot voice conversion (VC) – the

task of converting an utterance made by one person so that it sounds
like a different (reference) voice, using a model trained without the
voice of either speaker. Zero-shot VC methods can be broadly classi-
fied into two categories: one is based on auto-encoders [11, 12, 13],
and the other is based on speech recognition and resynthesis [14,
15, 16]. Apart from these, NANSY [17] utilizes perturbation on
speech components to learn disentangled components through syn-
thesis. Style Tokens [18] trains a separate model to infer style tokens
from reference audio samples while our approach learns style rep-
resentation, audio-to-style, style-to-audio jointly without the need
of text. VALL-E [19] is a language-model-based TTS method that
can be used for VC but it doesn’t preserve prosody from the input
speech while ours does. The main difference between our method
and these approaches is that these approaches often use a fixed pre-
trained speaker encoder to describe speaker information, whereas
GR0 jointly learns the speaker representation and generation via a
single SSL framework while ensuring that the learned style repre-
sentation contains no local information from the input data.

The key idea is as follows (Figure 1): we use local feature ex-
tractors to extract the non-global information of an input sequence,
for example, speech content. Next we train a global encoder that
we call a GR0-encoder, together with a decoder to reconstruct the
input clip. Unlike Style Tokens [18], GR0 is trained using a sec-
ond sequence (clip) that shares the same global properties as the first
sequence (e.g. speaker identity) but contains different local informa-
tion (e.g. speech content). During training, the decoder reconstructs
the input clip using its extracted local features coupled with the
global embedding from the second clip. If the reconstruction is suc-
cessful, the learned global embedding contains information invariant
across local embeddings (hence disentangled) while capturing the in-
formation shared by both sequences. This SSL framework simulta-
neously learns a global embedding and a generator. One can control
generation by modifying the global embedding to achieve VC. Our
experiments with zero-shot VC show that the jointly-learned embed-
ding and generator outperform baseline methods using contrastive
pretrained embeddings.

The contributions of this work include: (1) We introduce GR0, a
general SSL framework for disentangling global conditions. (2) We
apply GR0 to zero-shot VC – unseen speaker, utterance and dataset.
(3) Experiments show that both applications achieve higher quality
and speaker similarity than SOTA baselines. (4) Experiments also
show that the learned global embedding is more effective for en-
coding speaker characteristics than a pretrained embedding based on
contrastive learning that relies on the same decoder design. (5) We
also introduce a data preprocessing approach that can produce a large
single-speaker dataset for SSL from in-the-wild data. A subset of
the listening examples from our experiments may be found here:
https://pixl.cs.princeton.edu/pubs/Wang_2024_GSG/
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Fig. 1. An illustration of GR0. Voice conversion (b) is implemented
based on the general framework (a). The green modules are train-
able and the blue modules are fixed feature extractors. The extracted
local feature vectors are independent of learned global feature vector
because the two inputs share the same global information (speaker
identity) but different local information (speech content).

2. METHOD

Our method employs generative self-supervised learning to capture a
global representation (e.g., speaker identity). For training, it requires
two sequences with shared global information (e.g., same utterance
excerpts) but differing local content. The first sequence undergoes
local feature extraction (such as F0 and speech content) that pro-
duces a representation excluding the global information we aim to
model. The second sequence goes through an encoder we call GR0-
encoder that outputs a fixed-sized global embedding. Our hypoth-
esis is that for any pairs of sequences that share a global feature,
if a decoder can reconstruct the first sequence based on the local
features and global embedding, the learned global embedding (1)
effectively captures the shared global features and (2) remains inde-
pendent of the local features. The choice of the two sequences and
local features is how we control the definition of the global embed-
ding. For instance, in voice conversion, if the local condition rep-
resents speaker-invariant content tied to phonemes, the global con-
dition will encompass the speaker’s identity and intonation patterns.
However, if we include F0 in the local condition, the intonation pat-
tern will no longer be considered as global information. Using two
non-overlapping excerpts from the same single-speaker utterance,
we can train on in-the-wild data without speaker labels.

2.1. General Framework

Our model (Figure 1) consists of two trainable modules: a global
content encoder EncGR0(·) and a decoder DecGR0(·, ·, ·) for recon-
struction. Collectively, they are referred to as the generator G. We
use two input audios x1 and x2 which have shared global informa-
tion but different local information. Our GR0-encoder summarizes
the global information shared by the two inputs (e.g., voice charac-
teristics for utterances from the same speaker) from mel-spectrogram
x2 and outputs a 1-dimensional global embedding vector g with a
size of 256, inspired by the formulation of Resemblyzer [8]. The
global embedding is then repeated over the time axis and concate-
nated with the local content embeddings obtained from x1. The

decoder learns to reconstruct the mel-spectrogram of x1 from the
concatenated embeddings. We choose a transformer-based decoder
for our final model after comparison (website Appendix). We adopt
a postnet from previous work [11, 12] to add details to the generated
mel-spectrogram from the decoder. Finally, we synthesize the output
audio from the output mel-spectrogram using vocoder [20].

Loss Function. The reconstruction loss is the sum of two L2 losses,
one for the mel-spectrogram prediction before the postnet, and one
for the final output mel-spectrogram:

Lrecon = Es

[
∥X1 −G′(s)∥22

]
+ Es

[
∥X1 −G(s)∥22

]
where s is (x1, x2) the pair of input audios, X1 is the mel-
spectrogram of the audio x1 for reconstruction, G is the generator,
and G′ is the generator without the postnet. The generator extracts
local information from x1 and learns global information from x2 in
order to reconstruct X1.

GAN Training. In our experiments, minimizing L2 loss almost per-
fectly reconstructs the input mel-spectrogram, but the audio quality
is limited by the commonly observed over-smoothing effect where
unpredictable noises collapse into the average. Therefore, we apply
adversarial training after the model is sufficiently converged with the
reconstruction loss to improve the generation quality further. The
discriminator is adapted from the SpecGAN discriminator [21]. We
use the hinge loss objective [22, 23] together with the feature match-
ing loss [24, 25]:

Ladv(D;G) = EX1 [min(0, 1−D(X1))]

+ Es [min(0, 1 +D(G(s)))]

LFM (G;D) = Es

[
1

N
∥DF (X1)−DF (G(s))∥1

]
Ladv(G;D) = Es [−D(G(s))]

where D is the discriminator, and DF is the discriminator’s fea-
ture maps, defined as the activations of the layers before the output
layer in the discriminator. N is the total number of features in the
discriminator feature layer. Our final loss is calculated as below,
where we set λadv = 105 and λFM = 10 to scale the objectives to
the same range:

LG = Lrecon + λadv (Ladv(G;D) + λFMLFM (G;D))

LD = λadvLadv(D;G)

2.2. Voice Conversion

Our design is depicted in Figure 1. The generator G incorporates
two fixed modules for local information extraction: a pre-trained
content encoder Enclocal(·) and a pitch extractor Pitch(·). Given
an input audio waveform x, we divide it into two halves x1 and
x2. The first half is for extracting its local representations includ-
ing the speech content C = Enclocal(x1) and the pitch (i.e. F0)
P = Pitch(x1); the second half is used for learning a global repre-
sentation g = EncGR0(x2).

For the speech content, we use the last layer output of wav2vec
2.0 (wav2vec2-large-960h-lv60-self) fine-tuned with
CTC loss [4], which based on our experiment, does not con-
tain speaker information. We use nearest neighbor interpola-
tion to match our time resolution to that of wav2vec. Other
speaker invariant speech features such as HuBERT [2] or lin-
guistic features in NANSY [17] can also be an option. For the
pitch, we use CREPE [26] to extract the fundamental frequency
(F0) for all utterances. Then we compute the F0 range to guide



SWIPE [27] to extract the F0 from the speech. This practice ame-
liorates the known double-frequency issue in SWIPE and also over-
comes an issue of CREPE where the F0 contour is over-smoothed.
Then we compute the log of F0 and normalize it using the mean
and standard deviation of this utterance following this format
(log F0 − mean(log F0)) / (4 std(log F0)) and clip the value be-
tween 0 and 1. We quantize the range of 0-1 into 256 bins, and
create a 257-dimensional one hot vector to present the F0 with one
additional dimension as a binary indicator for voiced/unvoiced.

Intuitively, if the input audio is clean and the local represen-
tations are phonetic information and F0 (pitch), the disentangled
global embedding should contain speaker information that is invari-
ant of content and F0. Our experiments in Section 3.1 verify that
the learned global embedding captures sufficient vocal characteristic
information for driving a voice conversion task. Thus, we refer to
this embedding as a speaker embedding. Next, a decoder combines
the speaker embedding and the local embeddings to reconstruct the
first half of the input mel-spectrogram: X̂1 = DecGR0(g, C, P ).

3. EXPERIMENTS

Podcast Dataset. We derived our training dataset from the Spo-
tify Podcast dataset [28] which consists of 47K hours of transcribed
audio over 100K podcast episodes. To eliminate music, noise, and
speaker cross-talk, we developed a data processing pipeline to obtain
single-speaker samples: for every file, we first label find frames with
speech using voice activity detector (VAD) [29]. We extract contin-
uous utterances that are longer than 15 seconds and contain a single
speaker. We used NISQA [30] to further assess the audio quality [31]
retain samples have MOS of 4.3 or higher. This step effectively
removes the bulk of multi-speaker and non-clean data. This strict
NISQA threshold leaves us 6127 hours of audio; to remove remain-
ing noise and unify the audio quality, we apply HiFiGAN-2 [32] and
bandwidth extension (BWE) [33] on the filtered utterances to obtain
clean audio. Compared to the other datasets, the Podcast Dataset
has greater speaker variety and more natural-sounding speech, but
it contains no speaker labels. This procedure can also be used for
ASR-oriented dataset to distill clean audios from in-the-wild data.

Mel-Spectrogram. We use the same mel-spectrogram format as
from the HiFiGAN vocoder [20] for consistency in the vocoding
stage, with 256 hop size, 1024 window size and FFT size, 80 bins,
0 min frequency, 8000 max frequency, and on a log scale. We use
22050 sample rate throughout the paper. Note that we do not nor-
malize the value of the mel-spectrogram during the training.

Model Training. We train our voice conversion model on 8 Nvidia
A100 GPUs using a batch size of 128 and the Adam optimizer with
a learning rate of 3e-5. During training, we randomly sample an
excerpt of mel-spectrogram with a shape of 1024×80 from a random
utterance, where we use the first half (512× 80) for generation and
the latter half (512 × 80) for global summarization. We train our
models 1M steps before adding GAN loss and feature matching loss.
With GAN training, the generator and discriminator are trained with
a learning rate of 1e-5 for another 100k steps.

3.1. Evaluation Settings

For zero-shot voice conversion, the quality of the converted voice
and the similarity between the target voice and the converted voice
indicate how well the speaker embeddings can capture speaker char-
acteristics. Therefore, we compare our approach to the supervised

speaker embedding method Resemblyzer [8], as often used in prior
voice conversion works. We also demonstrate that a voice converter
trained using GR0 outperforms other zero-shot voice converters. To
truly test generalizability, our evaluation is performed on unseen
datasets and cross-language conversions with unseen language.

DAPS voices. We use DAPS [34] as the evaluation dataset because
none of our models or baselines were trained on DAPS. DAPS en-
sures consistent text across speakers, so it is more convenient to com-
pare the results with the real recordings. We use the first 5 male
and female speakers from DAPS respectively, and the first sentence
of their 5 audio recordings, totaling 50 utterances. We name the
10 speakers s0, s1, ..., s9 and the 5 utterances from each speaker
u0, u1, ..., u4. For each pair of speakers (si, sj) 0 ≤ i, j ≤ 9,
we convert the content source siuk to target speaker sj using refer-
ence sju(k+1)%5, k = 0, 1, ..., 5, totaling 10× 10× 5 = 500 pairs
of voice conversion samples.

VCTK voices. We also use VCTK dataset [35] to evaluate the cross-
dataset generalizability of various methods. Unlike DAPS, which is
collected in the USA, The speakers in the VCTK dataset often have
British accent. Note that some of the baselines are trained on the
VCTK dataset and are likely to perform better on VCTK than other
datasets. We hope to demonstrate that our method maintains the
same performance regardless of what dataset is used. We select the
last 5 male speakers and the last 5 female speakers for testing be-
cause the last 10 gender-balanced speakers in VCTK are often held
as test speakers. We avoid short utterances and use 1 long utterances
(005) for testing. Thus we have 10× 10 pairs of samples in total.

Cross language Conversion We also challenge our model with
cross-language conversion. Similar to the setting of YourTTS [14],
we convert between the 10 speakers in VCTK and 10 speakers in
MLS Portuguese data [36]. We use the label EN−→PT to convert
from a source Portuguese utterance to a target English speaker, re-
sulting a Portuguese utterance. Likewise, the label PT−→EN denotes
converting from a source English speech to a target Portuguese
speaker, resulting an English utterance. The conversion between 10
speakers from VCTK and 10 speakers from MLS Portuguese gives
us 10× 10 pairs conversions for EN−→PT and PT−→EN each.

Baselines. We compare our model with a few notable zero-shot
voice conversion baselines that are also based on representation
learning. AutovcF0 [11] achieves zero-shot voice conversion
through an encoder-decoder architecture with a certain sized bot-
tleneck. We trained AutovcF0 with the original paper’s setting on
VCTK. AutovcAIC [12] builds upon AutovcF0 and adds alteration
invariant content loss (AIC loss) to lift the bottleneck restriction
and improve the generation quality. We implemented the model
AutovcAIC and trained an additional AutovcAIC model on the
Spotify Podcast dataset from scratch as AutovcAIC-spotify, to in-
vestigate the difference brought by training data. YourTTS [14] is
a state-of-the-art multi-speaker TTS model and can also be used in
zero-shot voice conversion. We adopt the released multilingual voice
conversion model from YourTTS GitHub repository. Finally, as a
global representation baseline, we evaluate Resemblyzer that learns
speaker identity embedding through contrastive learning [8] and is
widely used as speaker encoder in recognition and synthesis tasks.
We use the same architecture, replacing our learnable GR0-encoder
with a pre-trained Resemblyzer as a baseline for comparison.

3.2. Mean-Opinion-Scores (MOS) Evaluation

For every pair of source and target voice in Section 3.1, we obtain
test samples from our methods and various baseline methods (Sec-



DAPS VCTK EN→PT PT→EN
Exp. MOS SIM-MOS MOS SIM-MOS MOS SIM-MOS MOS SIM-MOS
GroundTruth 4.67± 0.04 4.26± 0.07 / / / / / /
Source / 1.87± 0.08 / 1.98± 0.14 / 1.76± 0.10 / 1.65± 0.10
Target 4.60± 0.04 / 4.55± 0.06 4.93± 0.03 4.77± 0.05 4.99± 0.01 4.42± 0.08 4.96± 0.03
Mismatch / 1.03± 0.02 / 1.01± 0.01 / 1.02± 0.02 / 1.19± 0.06

AutovcF0 2.77± 0.05 2.10± 0.07 3.08± 0.09 2.42± 0.12 2.72± 0.10 2.19± 0.10 2.69± 0.08 1.98± 0.10
AutovcAIC 2.47± 0.05 1.87± 0.06 2.85± 0.09 2.10± 0.12 2.75± 0.09 1.97± 0.10 2.52± 0.09 1.73± 0.09
AutovcAIC-spotify 3.09± 0.06 1.91± 0.08 3.31± 0.10 2.01± 0.13 3.27± 0.09 1.70± 0.09 3.10± 0.10 1.73± 0.10
YourTTS 2.54± 0.05 2.28± 0.07 2.82± 0.08 2.58± 0.11 2.74± 0.09 2.32± 0.10 2.59± 0.08 2.05± 0.10

Resemblyzer 3.94± 0.05 3.49± 0.08 4.14± 0.07 3.62± 0.12 4.08± 0.08 3.09± 0.08 4.02± 0.08 3.09± 0.12

Ours-TFdecoder 3.89± 0.05 3.80± 0.07 4.19± 0.08 3.98± 0.11 4.08± 0.07 3.56± 0.11 4.08± 0.08 3.25± 0.12
Ours-TFdecoder+ 4.14± 0.05 3.82± 0.07 4.37± 0.07 3.87± 0.11 4.34± 0.07 3.52± 0.11 4.35± 0.07 3.30± 0.09

Table 1. The quality (MOS) and similarity (SIM-MOS) scores for all methods with 95% confidence intervals. The first section of experiments
are real samples from the datasets, where Mismatch stands for an utterance with opposite gender to the Target. The second section shows
the baselines. The third section is a special baseline that combines our decoder with a pretrained speaker embedding Resemblyzer [8].
The forth section includes our model (Ours-TFdecoder) and its HiFiGAN-2 [32] enhanced version (Ours-TFdecoder+). Some entries are
not included: Source and Mismatch quality scores are not collected; EN−→PT and PT−→EN do not have GroundTruth samples; VCTK
GroundTruth and Target are the same; DAPS has GroundTruth available so we omitted the Target.

tion 3.2). Then we conducted listening tests on Amazon Mechanical
Turk (AMT) to rate the quality and speaker similarity of these sam-
ples in the form of mean-opinion-scores (MOS) on a Likert scale of
1 to 5. To establish high and low anchors, we also ask listeners to
rate MOS scores for the source voice sample, the target reference
voice sample used to extract the global embedding, the groundtruth
sample if available, a “mismatched” speaker sample that has the op-
posite biological gender of the target speaker and a heavily corrupted
sample. Details about experiment designs and participation statistics
are provided in website Appendix. Table 1 presents the results of the
studies for the baselines and our top performing methods.

DAPS Baseline Comparison. Figure 2 visualizes the scores for
DAPS from Table 1. We include Mismatch which is an utterance
whose speaker has the opposite reported gender to the Target as a
low anchor in the similarity test. Our method Ours-TFdecoder is
on par with Resemblyzer in quality but surpasses all baselines in
speaker similarity. This observation proves that we are able to learn
a better speaker representation for synthesis than Resemblyzer. Re-
semblyzer uses supervised contrastive learning that requires speaker
labels, while our method can easily expand to any speech dataset
with proper data pre-processing, and thus is more flexible in compar-
ison. Ours-TFdecoder+ achieves the highest MOS and SIM-MOS
out of all methods and is close to the ground truth, showing that our
method significantly outperforms the state-of-the-art zero-shot voice
conversion approaches. We also provide a gender-based analysis of
the results and report the speaker identification accuracy using the
learned embedding in the website Appendix.

Fig. 2. MOS (left) and SIM-MOS (right) for VC.

VCTK Results. Table 1 shows the MOS and SIM-MOS for VCTK
voices and the cross-language conversions. Evaluation on the VCTK
dataset suggests the same trend as observed on the DAPS dataset. It
is also worth noting that even though VCTK is used in training Au-
tovcF0, AutovcAIC, and YourTTS, their performance on unseen
speakers of VCTK does not catch up with our approach trained on
larger yet unlabelled data. Post-processing using speech enhance-
ment also proves to be helpful in improving quality. The similarity
scores are in the same trend, with ours leading the scores. Using
our learned speaker embedding with the decoder also improves upon
using the pretrained speaker embedding from Resemblyzer, with a
slight increase in quality and a large increase in speaker similarity.

Cross Language Conversions. In the cross-language scenario, our
models consistently outperform all baselines. Unlike reported in
YourTTS [14] that transferring from a reference PT sample reduces
the MOS by a large margin (4.20 → 3.40), our models are not af-
fected by cross language in generation quality. The similarity scores
are lowered in intra-lingual conversion for all methods, as it is more
challenging for human listeners to associate speaker identities across
languages. Thus we refer to the relative performance where our
models significantly outperform all baselines.

4. CONCLUSION

In this paper, we propose a generative SSL framework for learn-
ing global representations, and apply it to zero-shot voice conver-
sion. Listening tests suggest our model GR0 enjoys improved per-
formance in quality and speaker similarity over baseline models.

Here we discuss some limitations of our method, each of which
suggests areas for future work. First, the SIM-MOS of our method
still has a gap to ground-truth, mainly because we do not generate
prosody (F0 & timing are already contained in the local features).
Second, the synthesis quality is limited by the vocoder, which pro-
duces occasional artifacts and does not generate noise with fidelity.
Third, CTC loss requires supervised data to train and is limited to
the phoneme set. It may not generalize to all languages and other
human vocalizations, such as laughter. We advocate for others to ex-
periment with various content representation methods. Finally, we
also believe this SSL framework may be applied to other tasks, for
example, acoustic matching, transferring timbres of musical tones,
or style transfer in other domains (imaging or NLP).
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