
TidyBot: Personalized Robot Assistance with Large Language Models

Jimmy Wu,1 Rika Antonova,2 Adam Kan,3 Marion Lepert,2 Andy Zeng,4 Shuran Song,5

Jeannette Bohg,2 Szymon Rusinkiewicz,1 Thomas Funkhouser1,4

Abstract— For a robot to personalize physical assistance
effectively, it must learn user preferences that can be generally
reapplied to future scenarios. In this work, we investigate
personalization of household cleanup with robots that can tidy
up rooms by picking up objects and putting them away. A key
challenge is determining the proper place to put each object,
as people’s preferences can vary greatly depending on personal
taste or cultural background. For instance, one person may
prefer storing shirts in the drawer, while another may prefer
them on the shelf. We aim to build systems that can learn
such preferences from just a handful of examples via prior
interactions with a particular person. We show that robots
can combine language-based planning and perception with the
few-shot summarization capabilities of large language models
(LLMs) to infer generalized user preferences that are broadly
applicable to future interactions. This approach enables fast
adaptation and achieves 91.2% accuracy on unseen objects in
our benchmark dataset. We also demonstrate our approach
on a real-world mobile manipulator called TidyBot, which
successfully puts away 85.0% of objects in real-world test
scenarios.

I. INTRODUCTION

Building a robot that provides personalized assistance
for physical household tasks is a long-standing goal of
robotics research. In this paper, we investigate the task of
tidying up a room: moving every object on the floor to its
“proper place.” One of the challenges in performing this task
is determining the correct receptacle (“proper place”) for
every object. This is difficult because where objects should
go is highly personal, and depends on cultural norms and
individual preferences. One person may want to put shirts in
a dresser drawer, another may want them on shelves, and a
third may want them hanging in a closet. There is no “one
size fits all” solution.

Classical approaches to the household cleanup task ask a
person to specify a target location for every object [1], [2],
which is tedious and impractical in an autonomous setting.
Other works learn generic (non-personalized) rules about
where objects typically go inside a house by averaging over
many users [3], [4], [5]. Works that focus on personalization
aim to extrapolate from a few user examples given similar
choices made by other users, using methods such as collabo-
rative filtering [6], spatial relationships [7], or learned latent
preference vectors [8]. However, all of these approaches
require collecting large datasets with user preferences or
generating datasets from manually constructed, simulated

1Princeton University, 2Stanford University, 3The Nueva School,
4Google, 5Columbia University

This work was supported in part by the Princeton School of Engineering,
Toyota Research Institute, and the National Science Foundation under CCF-
2030859, DGE-1656466, and IIS-2132519.

Fig. 1. We study the task of household cleanup, where each object on the
floor must be picked up and put away while following user preferences.

scenarios. Such datasets can be expensive to acquire and
may not generalize well if they are too small.

Our approach is to utilize the summarization capabilities
of large language models (LLMs) to provide generalization
from a small number of example preferences. We ask a
person to provide a few example object placements using
textual input (e.g., yellow shirts go in the drawer, dark purple
shirts go in the closet, white socks go in the drawer), and then
we ask the LLM to summarize these examples (e.g., light-
colored clothes go in the drawer and dark-colored clothes
go in the closet) to arrive at generalized preferences for this
particular person.

The underlying insight is that the summarization capa-
bilities of LLMs are a good match for the generalization
requirements of personalized robotics. LLMs demonstrate
astonishing abilities to perform generalization through sum-
marization, drawing upon complex object properties and
relationships learned from massive text datasets. By using
the summarization provided by LLMs for generalization in
robotics, we hope to produce generalized rules from a small
number of examples, in a form that is human interpretable
(text) and is expressed in nouns that can be grounded in
images using open-vocabulary image classifiers. Using an
off-the-shelf LLM also avoids expensive collection of user
preference data and model training.

We investigate the proposed approach in a real-world
robotic mobile manipulation system for household cleanup,
which we call TidyBot (Fig. 1). Before the robot begins
cleanup, we ask the user to provide a handful of example
placements for specific objects, which are passed to an LLM

to be summarized into a generalized set of rules (personalized
to that user) mapping object categories to receptacles. The
nouns of these generalized rules are provided to an open-
vocabulary image classifier in order to identify objects on
the floor and determine target receptacles for them using
the rules. The robot will then carry out the cleanup task by
repeatedly picking up objects, identifying them, and moving
them to their target receptacles.

We evaluate our approach quantitatively on both a text-
based benchmark dataset and our real-world robotic system.
On the benchmark, we find that our approach generalizes
well, achieving an accuracy of 91.2% on unseen objects
across all scenarios in the benchmark. In our real-world test
scenarios, we find that TidyBot correctly puts away 85.0%
of objects. We also show that our approach can be easily
extended to infer generalized rules for manipulation primitive
selection (e.g., pick and place vs. pick and toss) in addition
to inferring object placements.

Our contributions are: (i) the idea that text summarization
with LLMs provides a means for generalization in robotics,
(ii) a publicly released benchmark dataset for evaluating
generalization of receptacle selection preferences, and (iii)
implementation and evaluation of our approach on a real-
world mobile manipulation system.

Please see our project page at https://tidybot.
cs.princeton.edu for additional supplementary material,
benchmark dataset and code, and qualitative videos of our
real-world system TidyBot in action.

II. RELATED WORK

Household cleanup. Many recent works in Embodied AI
have proposed benchmarks or methods for completing house-
hold tasks in simulated indoor environments [9], [10], [11],
[12], [13], [14]. For household cleanup in particular, the
object rearrangement task [10], [15], [12], [16], [17] requires
an embodied agent to pick up and move objects so as to bring
the environment into a specified state. Household cleanup has
also been studied in robotics works, in which instructions for
object rearrangement are specified via pointing gestures [1]
or target layouts [2]. The drawback of these setups is that a
target location must be manually specified for every object to
be manipulated, which can require significant human effort.
Prior works have addressed this challenge by automatically
inferring object placements based on human preferences
for where objects typically go inside a house [3], [4], [5],
eliminating the need to specify where every individual object
goes. However, these works predict human preferences that
are generic rather than personalized. To handle the variability
in preferences across different users, other works have used
collaborative filtering [6], spatial relationships [7], or learned
latent preference vectors [8] to predict object placements that
are based on personalized user preferences. These methods
require the collection of large crowd-sourced datasets for
human preferences, which can be expensive. By contrast,
our approach uses off-the-shelf LLMs with no additional
training or data collection. We are able to directly leverage

the commonsense knowledge and summarization abilities of
LLMs to build generalizable personalized preferences for
each user.

Object sorting. Object sorting has been studied in robotics
using approaches such as clustering [18], active learning [19],
[20], metric learning [21], or heuristic search [22], [23].
These setups carry out pre-specified sorting rules using
physical properties such as color [24], [18], [19], [20], [22],
[25], [23], shape [20], size [18], [20], [25], or material [26].
Notably, they are not able to sort based on semantics or
commonsense knowledge, nor are they able to automatically
infer sorting rules. More recently, Høeg and Tingelstad [27]
studied whether classification of objects into general high-
level categories can be improved by using an LLM to
take in an object detector’s prediction and output a general
category for the object. In our work, we similarly tap into the
commonsense knowledge of LLMs to reason about object
sorting. However, whereas their setup uses pre-specified
sorting rules based on a fixed set of categories, ours is able
to infer generalizable sorting rules automatically.

LLMs for robotics. Large language models (LLMs) have
been shown to exhibit remarkable commonsense reasoning
abilities [28], [29], [30]. As a result, there has been in-
creasing interest in harnessing the capabilities of LLMs to
build more commonsense knowledge into robotic systems.
Many recent works study how LLM-generated high-level
robotic plans (typically produced using the few-shot learning
paradigm [28]) can be grounded in the state of the envi-
ronment. This can be done with value functions [31], [32],
semantic translation into admissible actions [33], scene de-
scription as context [34], [35], [36], [37], feedback [38], [39],
or re-prompting [40]. However, these works assume a setup
in which the LLM is expected to output a single generic plan.
This is not a good fit for personalized household cleanup,
because a “one size fits all” plan would not address the wide
variability in user preferences. Instead, our system generates
personalized plans that are tailored to the preferences of a
particular user. Other works in robotics have used LLMs
for PDDL planning [41], code generation for robotic control
policies [42], and parsing navigation instructions into textual
landmarks [43]. These works all use LLMs as a means of
integrating commonsense knowledge into robotic systems,
which is also true in our case. However, unlike these works,
we additionally show that the summarization ability of LLMs
enables generalization in robotics.

III. METHOD

We use the summarization capabilities of an off-the-shelf
LLM to generalize user preferences from a small number
of examples. Below, we describe how we use the LLM to
infer personalized rules for both receptacle selection and
manipulation primitive selection, and also how we deploy
the approach on a real-world mobile manipulation system
for household cleanup.

A. Personalized receptacle selection

Our system first receives a few examples of object place-
ments reflecting the personal preferences of a user. For
instance, the user may specify that yellow shirts and white
socks go in the drawer, while dark purple shirts and black
shirts go in the closet. We provide these examples to an LLM,
which then infers personalized rules on where objects belong.
Specifically, the LLM (i) summarizes the examples into
general rules, and then (ii) uses the summary to determine
where to place new objects.

Following recent work [34], [37], we convert the user
examples into LLM prompts that are structured as Pythonic
code. This prompt form is advantageous because LLMs are
trained on large amounts of code, and it also provides a
structured output that is easy to parse. To represent the user
examples, the prompt first contains a list of objects present in
the scene and a list of potential receptacles. This is followed
by a series of pick and place commands reflecting where the
objects should be placed according to the user. Then, we ask
the LLM to complete the last line, which is a code comment
summarizing what the preceding code block does. Here is an
example LLM completion where the output from the LLM
is highlighted:

objects = ["yellow shirt", "dark purple shirt", "white
socks", "black shirt"]
receptacles = ["drawer", "closet"]
pick and place("yellow shirt", "drawer")
pick and place("dark purple shirt", "closet")
pick and place("white socks", "drawer")
pick and place("black shirt", "closet")
Summary: Put light-colored clothes in the
drawer and dark-colored clothes in the closet.

In this example, the LLM summarized the provided object
placements and inferred that light-colored clothes go in the
drawer while dark-colored clothes go in the closet. These
examples lead to a generalized rule for where objects belong,
personalized to this particular user.

Next, the summary is used by the LLM to generate
placements for novel, unseen objects. The prompt consists
of the summary from the LLM summarization step (in the
form of a code comment), a list of the unseen objects, a list
of receptacles, and a partial pick and place command for the
first object. We then ask the LLM to provide a placement
for each object by completing the prompt:

Summary: Put light-colored clothes in the drawer and
dark-colored clothes in the closet.
objects = ["black socks", "white shirt", "navy socks",
"beige shirt"]
receptacles = ["drawer", "closet"]
pick and place("black socks", "closet")
pick and place("white shirt", "drawer")
pick and place("navy socks", "closet")
pick and place("beige shirt", "drawer")

The output pick and place commands can then be parsed
to determine where each unseen object should be placed.

B. Personalized primitive selection

Similar to the way we infer generalized rules for recep-
tacle selection, we can also infer generalized rules for how
to manipulate objects, again leveraging the summarization
capabilities of LLMs. First, we provide a few examples of
objects along with their user-preferred manipulation primi-
tive to the LLM, and ask it to summarize. Here is an example
completion where the output from the LLM is highlighted:

objects = ["yellow shirt", "dark purple shirt", "white
socks", "black shirt"]
pick and place("yellow shirt")
pick and place("dark purple shirt")
pick and toss("white socks")
pick and place("black shirt")
Summary: Pick and place shirts, pick and
toss socks.

The summary can then be used as a generalized rule to
predict the appropriate primitive to use for unseen objects:

Summary: Pick and place shirts, pick and toss socks.
objects = ["black socks", "white shirt", "navy socks",
"beige shirt"]
pick and toss("black socks")
pick and place("white shirt")
pick and toss("navy socks")
pick and place("beige shirt")

C. Real-world robotic system

Given generalized rules from LLM summarization, we
can now implement these rules on a robot tasked with
tidying up a household environment. To do so, we use
a perception system to localize and recognize objects in
the environment, and a predetermined set of manipulation
primitives to move objects into receptacles. For our setup, we
use pick and place and pick and toss as our primitives,
as they are well-suited for household cleanup. However, other
sets of primitives could also be used.

For each new user, the system will receive a set of example
preferences and run the previously described LLM pipeline
to get personalized rules for the user. The rules contain a set
of generalized object categories produced by summarization
(e.g., light-colored clothes, dark-colored clothes), each of
which is matched to a preferred receptacle and manipulation
primitive for that category. The robot will tidy up the envi-
ronment by iteratively performing the following steps until
no more objects remain on the floor: (1) localize the nearest
object, (2) classify the object into a generalized category,
(3) determine the appropriate receptacle and manipulation
primitive for the object using generalized rules produced
by the LLM, and (4) use the manipulation primitive to put
the object into the receptacle. Fig. 2 provides a conceptual
illustration of this procedure, and Algorithm 1 outlines these
steps in pseudocode.

One important aspect of our approach is that the LLM
summarization automatically provides candidate categories
to the perception system. Nouns (or noun phrases) are
extracted from the summarization text as categories, and used
as the target label set for CLIP [44], the open-vocabulary

ViLD

Overhead image Closest object

CLIP

Egocentric image

Category: can LLM Receptacle: recycling bin
Primitive: toss

Image classificationObject detection Object placement and primitive selection

Fig. 2. System overview. Once the user’s preferences have been summarized with an LLM, TidyBot will localize the closest object on the floor, move
to get a close-up view with its egocentric camera, predict the object’s category using CLIP, use the LLM-summarized rules to select a receptacle and
manipulation primitive, and then execute the primitive to put the object into the selected receptacle, repeating this entire process until no more objects can
be found on the floor.

Algorithm 1 System pipeline
Input: Ereceptacle = {(o1, r1), (o2, r2), . . .}
Input: Eprimitive = {(o1, p1), (o2, p2), . . .}
Sreceptacle = LLM.Summarize(Ereceptacle)
Sprimitive = LLM.Summarize(Eprimitive)
C = LLM.GetCategories(Sreceptacle)
robot.Initialize()
while True do

Itop = GetOverheadImage()
o = ViLD.GetClosestObject(Itop)
robot.MoveTo(o)
Iego = robot.GetEgocentricImage()
c = CLIP.GetCategory(Iego, C)
r = LLM.GetReceptacle(Sreceptacle, c)
p = LLM.GetPrimitive(Sprimitive, c)
robot.PickUp(o)
robot.MoveTo(r)
robot.ExecutePrimitive(p)

end while

image classification model we use. For example, the follow-
ing LLM prompt will extract the two general categories in
the summary text (light-colored clothing and dark-colored
clothing):

Summary: Put light-colored clothes in the drawer and
dark-colored clothes in the closet.
objects = ["light-colored clothing",
"dark-colored clothing"]

This combination of summarization and open-vocabulary
classification is critical to the autonomy of the system, as
it enables the object classifier to work with a small set of
generalized object categories. The approach is (i) robust as
there are only a small number of categories to differentiate
between, and (ii) flexible because it supports arbitrary sets
of object categories for different users. In contrast, without
LLM summarization, the object classifier would have to be
able to recognize all possible fine-grained object classes,
which is much more difficult. Alternatively, the user would
have to manually specify the list of objects present in each
target scene, which would be impractical for an autonomous
system.

IV. EXPERIMENTS

We investigate the performance of our proposed approach
with two types of evaluation. For the first type of evalu-
ation, we design a benchmark for generalization of recep-
tacle selection using text-based examples, which enables
direct comparison to alternative approaches and ablation
studies, with quantitative metrics. For the second type of
evaluation, we deploy our approach in a real-world mobile
manipulation system for tidying up a room based on user
preferences. Unless otherwise specified, the LLM we use
is text-davinci-003, a variant of GPT-3 [28]. All LLM
experiments were run with temperature 0.

A. Benchmark dataset

In order to evaluate the proposed approach and to quanti-
tatively compare it to alternatives, we created a benchmark
dataset of object placements. The benchmark is comprised
of 96 scenarios, each of which has a set of objects, a set
of receptacles, a set of example “seen” object placements
(preferences), and a set of “unseen” evaluation placements,
all specified as text. The task is to predict the placements in
the “unseen” set given the examples in the “seen” set.

The benchmark scenarios are defined in 4 room types
(living room, bedroom, kitchen, pantry room), with 24 sce-
narios per room type. Each scenario contains 2–5 receptacles
(potential places to put objects, such as shelves, cabinets,
etc.), 4–10 “seen” example object placements provided as
input to the task, and an equal number of “unseen” object
placements (distinct from the seen examples) provided for
evaluation. There are 2 seen and 2 unseen object placements
per receptacle. In total, there are 672 seen and 672 unseen
object placements, which cumulatively reference 87 unique
receptacles and 1,076 unique objects.

Success on this benchmark is measured by the object
placement accuracy: the number of objects placed in the
correct receptacle divided by the total number of objects.
We evaluate accuracy separately for seen and unseen objects,
to tease apart memorization versus generalization. For each,
we compute the accuracy per scenario, and then average the
results across all scenarios to produce the numbers shown in
the tables.

TABLE I
COMPARISONS TO BASELINES

Method Accuracy (unseen)

Examples only 78.5%
WordNet taxonomy 67.5%
RoBERTa embeddings 77.8%
CLIP embeddings 83.7%
Summarization (ours) 91.2%

B. Baseline comparisons

In our first set of experiments, we use the benchmark to
provide quantitative evaluation of our approach compared to
several alternatives. The results are in Tab. I. Since the main
challenge is to generalize from objects in the examples (seen)
to those in the evaluation set (unseen), we consider a variety
of baseline generalization approaches and report placement
accuracy metrics only for unseen objects.

The following paragraphs describe each baseline and pro-
vide a discussion of how the performance compares to that
of our proposed approach.

Examples only. The first baseline provides a direct compar-
ison to a system like ours if it did not use summarization.
The LLM is given a list of objects, receptacles, and example
placement preferences, along with a list of unseen objects
for a new scene. Then, the LLM is asked to directly infer
the proper placements (highlighted text) for unseen objects
in the new scene, without summarization as an intermediate
step:

objects = ["yellow shirt", "dark purple shirt", "white
socks", "black shirt"]
receptacles = ["drawer", "closet"]
pick and place("yellow shirt", "drawer")
pick and place("dark purple shirt", "closet")
pick and place("white socks", "drawer")
pick and place("black shirt", "closet")

objects = ["black socks", "white shirt", "navy socks",
"beige shirt"]
receptacles = ["drawer", "closet"]
pick and place("black socks", "drawer")
pick and place("white shirt", "closet")
pick and place("navy socks", "drawer")
pick and place("beige shirt", "closet")

The prediction accuracy of this method for unseen objects
(78.5%) is significantly worse than that of our method
(91.2%). Since the main difference between this method
versus ours is that our method leverages summarization, this
result presents strong evidence for our main hypothesis —
i.e., summarization is useful for generalization. This finding
is also consistent with recent work showing that LLMs
perform better when they are asked to output intermediate
steps of reasoning before the final answer [29], [30]. When
looking at the predictions, we find that this baseline approach
generally predicts object placements that are sensible but
may not be consistent with the user’s preferences.

WordNet taxonomy. This baseline uses a hand-crafted lex-
ical ontology called WordNet [45] to generalize placements

TABLE II
ABLATION STUDIES

Method Seen Unseen

Commonsense 45.0% 45.6%
Summarization 91.8% 91.2%
Human summary 97.1% 97.5%

from seen to unseen objects. For each unseen object, we
place it in the same receptacle as the most similar seen
object, where similarity is measured using the shortest path
between two objects in the taxonomy. Since WordNet is
a hand-crafted taxonomy, it does not contain all possible
object names. For the 694 objects in our benchmark that
are missing from WordNet, we manually mapped each of
them to the closest WordNet object name. Even with the
manual mapping, the performance of this WordNet baseline
for unseen objects (67.5%) is far worse than that of our
method (91.2%). This shows that LLM summarization pro-
vides better generalization than using the hierarchy provided
by a hand-crafted ontology.

Text embedding. This baseline uses pretrained text em-
beddings to assist with generalization. For each unseen
object, we place it in the receptacle provided for the
most similar seen object, where similarity is defined
by cosine similarity between encoded object names in
the RoBERTa [46] or CLIP [44] embedding space. For
RoBERTa, we use the pretrained Sentence-BERT [47] model
from the SentenceTransformers library. Specifically, we use
the all-distilroberta-v1 variant which is a distilled
version of the RoBERTa [46] model that is fine-tuned on
a dataset of 1 billion sentence pairs. For CLIP, we use
the pretrained model provided by OpenAI. In either case,
the generalization performance for predicting placements
of unseen objects does not reach the performance of our
proposed summarization approach (77.8% for RoBERTa and
83.7% for CLIP, versus 91.2% for ours). Although text
embeddings trained on large datasets encode many types of
object similarities, particularly for related object categories,
they may not encode the object attributes relevant to the pref-
erences of a particular user (e.g., light objects go here, heavy
object go there). In contrast, our summarization approach is
able to correctly encode a larger variety of user preferences.

C. Ablation studies

In the second set of experiments, we use the benchmark to
evaluate the performance of several variants to our method.
The goal of these experiments is to compare its performance
to alternatives with far less information (using only common
sense, without preferences) or far more information (using
human-generated summarizations). We also study the impact
of using different LLMs. The benchmark metrics for both
seen and unseen objects are provided in Tabs. II and III.

Commonsense. Our first ablation study measures how well
an LLM can perform the benchmark tasks using only com-
monsense reasoning — i.e., without using the preferences
at all. For each benchmark scene, we give the LLM the

TABLE III
COMPARISON OF DIFFERENT LLMS

Model Commonsense Summarization
seen unseen seen unseen

text-davinci-003 45.0% 45.6% 91.8% 91.2%
text-davinci-002 41.8% 37.5% 84.1% 75.7%
code-davinci-002 41.4% 39.4% 88.6% 83.2%
PaLM 540B 45.5% 49.6% 84.6% 75.7%

list of objects and list of receptacles, and then ask it to
generate object placements (highlighted text) without using
the provided user preferences:

Put objects into their appropriate receptacles.
objects = ["black socks", "white shirt", "navy socks",
"beige shirt"]
receptacles = ["drawer", "closet"]
pick and place("black socks", "drawer")
pick and place("white shirt", "closet")
pick and place("navy socks", "drawer")
pick and place("beige shirt", "closet")

This baseline performs poorly, even for seen objects
(45.0%), due to the high variability of object placement pref-
erences in the benchmark. The predicted object placements
are sensible but are not reflective of the particular user’s
preferences. In contrast, our method can learn preferences
from examples via summarization and performs much better
for both seen and unseen objects (91.8% and 91.2%).

Human summary. This ablation studies how the summaries
provided by the LLM compare to summaries crafted manu-
ally by a human. For each benchmark scenario, a human-
written summary was used by the LLM (in place of the
LLM-produced summary) to predict object placements for
the test objects. The results achieved with this “oracle”
summarization are better than the LLM summarization by
6% for both seen and unseen objects. This result suggests that
the LLM summarizations are already quite good, and that
improvements to LLM summarization could enable further
gains for our method in the future.

Different LLMs. Table III reports our performance
on the benchmark using different LLMs. We find that
text-davinci-002 and code-davinci-002, which are older
variants of GPT-3, are not as good as the newest one
(text-davinci-003). In particular, there is a much larger
gap between seen and unseen objects. This is because the
older models are more likely to generate summaries that list
out individual objects in the seen set, which does not general-
ize well to the unseen objects. For PaLM 540B [48], we find
that while it shows slightly higher performance on common-
sense reasoning, it does not do as well as text-davinci-003
on summarization, particularly in scenarios where there is a
larger number of receptacles to choose from.

D. Real-world experiments

In our final set of experiments, we test the proposed
approach on a robot performing a cleanup task in the real
world (Fig. 1). The robot base is a holonomic vehicle capable
of any 3-degree-of-freedom motion on the ground plane. This

maneuverability comes from the vehicle’s Powered-Caster
Drive System [49], which consists of four caster wheels that
are powered to roll and steer as needed to achieve the desired
vehicle motion. The robot manipulator is a Kinova Gen3
7-DoF arm mounted on top of the mobile base with a Robotiq
2F-85 parallel jaw gripper as its end effector.

The robot is placed inside a room with various objects and
receptacles on the floor and is then tasked with picking up
all the objects and putting them into the correct receptacles
according to user preferences. The preferences are provided
as a set of textual examples for a particular user (as in
the benchmark). As described in Sec. III-C and illustrated
in Fig. 2, the robot iteratively locates the closest object
on the floor, navigates to it, recognizes its category, picks
it up, determines the appropriate receptacle for the object,
navigates to the receptacle, and then puts the object inside.

Implementation. The robot uses two overhead cameras for
2D robot pose estimation (x, y, θ) and 2D object localization
(x, y). The pose of the robot base is estimated using ArUco
fiducial markers [50] mounted on its top plate (see Fig. 1).
The object locations are detected in the overhead camera
using ViLD [51], while the receptacle locations are hard-
coded for each scenario. We found that these design choices
work well for our mobile robot system. However, other pose
trackers and object detectors could also be used instead.

To navigate in the scene, the robot calculates the shortest
collision-free path to the target position using an occupancy
map that includes obstacles in the scene such as receptacles.
It then uses the pure pursuit algorithm [52] to follow the
computed path.

After the robot arrives at the closest object, it uses a
camera mounted on its base (and pointed forward at the
ground) to take a close-up, centered image of the object,
then determines the object category using cosine similarity
between text and image features in the CLIP embedding
space [44]. The set of object categories in the LLM summary
is automatically extracted and used as the target label set
for CLIP. Note that without these categories from LLM
summarization, a human would have to manually specify a
list of fine-grained object classes potentially present in the
target scene in order to use CLIP for object classification.

After the object category is identified, the system uses the
LLM summarization to predict the appropriate receptacle and
manipulation primitive for the object. The robot then moves
the object into the receptacle with a sequence of two high-
level manipulation primitives: (i) pick and (ii) place or toss.
The “pick” primitive uses the gripper to grasp at the center of
the detected object. The “place” primitive moves the gripper
to a location just above the selected receptacle and drops
the grasped object in. The “toss” primitive swings the robot
arm and releases the gripper with timing that results in
tossing [53] of the grasped object into the selected receptacle.

Real-world evaluation. Using this mobile robot system, we
ran tests on 8 real-world scenarios as shown in Fig. 3, each
with its own set of 10 objects, 2–5 receptacles, 4–10 “seen”
examples indicating preferences for which objects should go

Fig. 3. Real-world scenarios. We evaluate our mobile manipulation system in 8 real-world scenarios, encompassing a wide variety of objects and
receptacles.

into which receptacles and which primitive should be used to
put them there, as well as 10 “unseen” test objects. Across all
8 scenarios, 70 unique “unseen” test objects and 11 unique
receptacles are represented.

For each scenario, we asked the robot to perform 3 runs of
the cleanup task and measured its success throughout opera-
tion. Overall, the system was able to put 85.0% of the objects
into the correct receptacle during these tests. For qualitative
examples, please refer to the supplementary material and
additional videos at https://tidybot.cs.princeton.edu.

Looking at the results in more detail, there were 240
objects to be cleaned up in total (8 scenarios, 10 objects per
scenario, 3 runs per scenario). We observed that the overhead
camera was able to localize 92.5% of the objects, and
the object classifier correctly identified the object category
for 95.5% of the localized objects. Given the predicted
object category, the LLM selected the appropriate receptacle
and manipulation primitive for 100% of localized objects.
Additionally, the robot succeeded in executing the chosen
primitive for 96.2% of the localized objects. In terms of
speed, the robot took on average 15–20 seconds to pick up
and put away each object.

V. CONCLUSION

In this work, we showed that the summarization capa-
bilities of large language models (LLMs) can be used to
generalize user preferences for personalized robotics. Given
a handful of example preferences for a particular person, we
use LLM summarization to infer a generalized set of rules to
manipulate objects according to the user’s preferences. We
show that our summarization approach outperforms several
strong baselines on our benchmark, and we also evaluate our
approach on a real-world mobile manipulator called TidyBot,
which can successfully clean up test scenarios with a success
rate of 85.0%. Our approach provides a promising direction
for developing personalized robotic systems that can learn
generalized user preferences quickly and effectively from
only a small set of examples. Unlike classical approaches
that require costly data collection and model training, we
show that LLMs can be directly used off-the-shelf to achieve
generalization in robotics, leveraging the powerful summa-

rization capabilities they have learned from vast amounts of
text data.

ACKNOWLEDGMENTS

The authors would like to thank William Chong, Kevin
Lin, and Jingyun Yang for fruitful technical discussions, and
Bob Holmberg for mentorship and support in building up the
mobile platforms.

REFERENCES

[1] R. Rasch, D. Sprute, A. Pörtner, S. Battermann, and M. König, “Tidy
up my room: Multi-agent cooperation for service tasks in smart envi-
ronments,” Journal of Ambient Intelligence and Smart Environments,
2019.

[2] Z. Yan, N. Crombez, J. Buisson, Y. Ruichck, T. Krajnik, and L. Sun,
“A quantifiable stratification strategy for tidy-up in service robotics,”
in 2021 IEEE International Conference on Advanced Robotics and Its
Social Impacts (ARSO), 2021.

[3] A. Taniguchi, S. Isobe, L. El Hafi, Y. Hagiwara, and T. Taniguchi,
“Autonomous planning based on spatial concepts to tidy up home
environments with service robots,” Advanced Robotics, 2021.

[4] Y. Kant, A. Ramachandran, S. Yenamandra, I. Gilitschenski, D. Batra,
A. Szot, and H. Agrawal, “Housekeep: Tidying virtual households
using commonsense reasoning,” arXiv preprint arXiv:2205.10712,
2022.

[5] G. Sarch, Z. Fang, A. W. Harley, P. Schydlo, M. J. Tarr, S. Gupta, and
K. Fragkiadaki, “Tidee: Tidying up novel rooms using visuo-semantic
commonsense priors,” in European Conference on Computer Vision,
2022.

[6] N. Abdo, C. Stachniss, L. Spinello, and W. Burgard, “Robot, organize
my shelves! tidying up objects by predicting user preferences,” in 2015
IEEE international conference on robotics and automation (ICRA),
2015.

[7] M. Kang, Y. Kwon, and S.-E. Yoon, “Automated task planning
using object arrangement optimization,” in 2018 15th International
Conference on Ubiquitous Robots (UR). IEEE, 2018.

[8] I. Kapelyukh and E. Johns, “My house, my rules: Learning tidying
preferences with graph neural networks,” in Conference on Robot
Learning, 2022.

[9] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi, “Ai2-thor: An interactive
3d environment for visual ai,” arXiv preprint arXiv:1712.05474, 2017.

[10] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba,
“Virtualhome: Simulating household activities via programs,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[11] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020.

[12] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. S. Chaplot, O. Maksymets et al.,
“Habitat 2.0: Training home assistants to rearrange their habitat,”
Advances in Neural Information Processing Systems, 2021.

[13] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen,
K. E. Vainio, C. Gokmen, G. Dharan, T. Jain et al., “igibson 2.0:
Object-centric simulation for robot learning of everyday household
tasks,” in Conference on Robot Learning, 2022.

[14] S. Srivastava, C. Li, M. Lingelbach, R. Martı́n-Martı́n, F. Xia, K. E.
Vainio, Z. Lian, C. Gokmen, S. Buch, K. Liu et al., “Behavior:
Benchmark for everyday household activities in virtual, interactive,
and ecological environments,” in Conference on Robot Learning, 2022.

[15] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun,
S. Levine, J. Malik, I. Mordatch, R. Mottaghi et al., “Rearrangement:
A challenge for embodied ai,” arXiv preprint arXiv:2011.01975, 2020.

[16] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve,
A. Kembhavi, and R. Mottaghi, “Manipulathor: A framework for vi-
sual object manipulation,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2021.

[17] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi, “Visual room
rearrangement,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2021.

[18] M. Gupta and G. S. Sukhatme, “Using manipulation primitives for
brick sorting in clutter,” in 2012 IEEE International Conference on
Robotics and Automation, 2012.

[19] J. V. Kujala, T. J. Lukka, and H. Holopainen, “Classifying and sorting
cluttered piles of unknown objects with robots: a learning approach,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016.

[20] M. Herde, D. Kottke, A. Calma, M. Bieshaar, S. Deist, and B. Sick,
“Active sorting–an efficient training of a sorting robot with active
learning techniques,” in 2018 International Joint Conference on Neural
Networks (IJCNN), 2018.

[21] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma,
O. Taylor, M. Liu, E. Romo et al., “Robotic pick-and-place of novel
objects in clutter with multi-affordance grasping and cross-domain
image matching,” The International Journal of Robotics Research,
2022.

[22] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object re-
arrangement,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019.

[23] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic,
and J. A. Stork, “Multi-object rearrangement with monte carlo tree
search: A case study on planar nonprehensile sorting,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020.

[24] R. Szabo and I. Lie, “Automated colored object sorting application for
robotic arms,” in 2012 10th International Symposium on Electronics
and Telecommunications, 2012.

[25] T. Dewi, P. Risma, and Y. Oktarina, “Fruit sorting robot based on
color and size for an agricultural product packaging system,” Bulletin
of Electrical Engineering and Informatics, 2020.

[26] T. J. Lukka, T. Tossavainen, J. V. Kujala, and T. Raiko, “Zenrobotics
recycler–robotic sorting using machine learning,” in Proceedings of
the International Conference on Sensor-Based Sorting (SBS), 2014.

[27] S. H. Høeg and L. Tingelstad, “More than eleven thousand words:
Towards using language models for robotic sorting of unseen objects
into arbitrary categories,” in Workshop on Language and Robotics at
CoRL 2022, 2022.

[28] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, 2020.

[29] M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin,
D. Bieber, D. Dohan, A. Lewkowycz, M. Bosma, D. Luan et al.,
“Show your work: Scratchpads for intermediate computation with
language models,” arXiv preprint arXiv:2112.00114, 2021.

[30] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and
D. Zhou, “Chain of thought prompting elicits reasoning in large
language models,” arXiv preprint arXiv:2201.11903, 2022.

[31] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in 6th Annual Conference
on Robot Learning, 2022.

[32] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” arXiv preprint
arXiv:2303.12153, 2023.

[33] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” arXiv preprint arXiv:2201.07207, 2022.

[34] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke et al., “Socratic models:
Composing zero-shot multimodal reasoning with language,” arXiv
preprint arXiv:2204.00598, 2022.

[35] O. Mees, J. Borja-Diaz, and W. Burgard, “Grounding language
with visual affordances over unstructured data,” arXiv preprint
arXiv:2210.01911, 2022.

[36] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. S. Ryoo,
A. Stone, and D. Kappler, “Open-vocabulary queryable scene repre-
sentations for real world planning,” arXiv preprint arXiv:2209.09874,
2022.

[37] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situ-
ated robot task plans using large language models,” arXiv preprint
arXiv:2209.11302, 2022.

[38] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue:
Embodied reasoning through planning with language models,” arXiv
preprint arXiv:2207.05608, 2022.

[39] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” arXiv
preprint arXiv:2210.03629, 2022.

[40] S. S. Raman, V. Cohen, E. Rosen, I. Idrees, D. Paulius, and S. Tellex,
“Planning with large language models via corrective re-prompting,”
arXiv preprint arXiv:2211.09935, 2022.

[41] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T. Lozano-
Pérez, and L. P. Kaelbling, “Pddl planning with pretrained large
language models,” in NeurIPS 2022 Foundation Models for Decision
Making Workshop, 2022.

[42] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” arXiv preprint arXiv:2209.07753, 2022.

[43] D. Shah, B. Osinski, B. Ichter, and S. Levine, “LM-Nav: Robotic
navigation with large pre-trained models of language, vision, and
action,” arXiv preprint arXiv:2207.04429, 2022.

[44] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
Conference on Machine Learning, 2021.

[45] G. A. Miller, “Wordnet: a lexical database for english,” Communica-
tions of the ACM, 1995.

[46] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[47] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019.

[48] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al.,
“Palm: Scaling language modeling with pathways,” arXiv preprint
arXiv:2204.02311, 2022.

[49] R. Holmberg and O. Khatib, “Development and control of a holo-
nomic mobile robot for mobile manipulation tasks,” The International
Journal of Robotics Research, 2000.

[50] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, 2014.

[51] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary object detec-
tion via vision and language knowledge distillation,” in International
Conference on Learning Representations, 2021.

[52] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
Tech. Rep., 1992.

[53] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, 2020.

